高中复数知识点和相关练习试题doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题
1.复数21i
=+( ) A .1i --
B .1i -+
C .1i -
D .1i + 2.复数11z i =
-,则z 的共轭复数为( ) A .1i -
B .1i +
C .1122i +
D .1122i - 3.已知复数1=
-i z i ,其中i 为虚数单位,则||z =( )
A .12
B .2
C
D .2
4.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )
A .2
B .1
C .0
D .1-
5.i =( )
A .i -
B .i
C i -
D i 6.已知复数()2m m m i z i --=
为纯虚数,则实数m =( ) A .-1
B .0
C .1
D .0或1 7.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限 8.已知i 为虚数单位,复数12i 1i z +=
-,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
9.已知复数()211i z i
-=+,则z =( ) A .1i -- B .1i -+
C .1i +
D .1i - 10.已知复数2021
11i z i
-=+,则z 的虚部是( ) A .1- B .i -
C .1
D .i 11.若复数()41i 34i z +=
+,则z =( )
A .45
B .35
C .25
D .5
12.复数12i z i =
+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
13.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限 14.设复数z 满足(1)2i z -=,则z =( )
A .1
B C D .215.题目文件丢失!
二、多选题
16.若复数351i z i -=-,则( )
A .z =
B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限
17.下面是关于复数21i z =
-+的四个命题,其中真命题是( )
A .||z =
B .22z i =
C .z 的共轭复数为1i -+
D .z 的虚部为1-
18.已知复数122z =-,则下列结论正确的有( )
A .1z z ⋅=
B .2z z =
C .31z =-
D .202012z =-+ 19.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集
合M 的是( )
A .()()11i i -+
B .11i i -+
C .11i i +-
D .()2
1i - 20.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )
A .z 的虚部为3
B .z =
C .z 的共轭复数为23i +
D .z 是第三象限的点 21.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限
D .第四象限 22.已知i 为虚数单位,复数322i z i
+=-,则以下真命题的是( )
A .z 的共轭复数为
4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限
23.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )
A .若z 为纯虚数,则实数a 的值为2
B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122
- C .实数12
a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 24.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根
25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )
A .若0m =,则共轭复数1z =-
B .若复数2z =,则m
C .若复数z 为纯虚数,则1m =±
D .若0m =,则2420z z ++=
26.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).
A .38z =
B .z
C .z 的共轭复数为1
D .24z =
27.已知i 为虚数单位,下列说法正确的是( )
A .若,x y R ∈,且1x yi i +=+,则1x y ==
B .任意两个虚数都不能比较大小
C .若复数1z ,2z 满足2212
0z z +=,则120z z == D .i -的平方等于1
28.以下命题正确的是( )
A .0a =是z a bi =+为纯虚数的必要不充分条件
B .满足210x +=的x 有且仅有i
C .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件
D .已知()f x =()1
878
f x x '= 29.复数21i z i
+=-,i 是虚数单位,则下列结论正确的是( )
A .|z |=
B .z 的共轭复数为3122i +
C .z 的实部与虚部之和为2
D .z 在复平面内的对应点位于第一象限
30.已知i 为虚数单位,下列命题中正确的是( )
A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==
B .2(1)()a i a +∈R 是纯虚数
C .若2212
0z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数
【参考答案】***试卷处理标记,请不要删除
一、复数选择题
1.C
【分析】
根据复数的除法运算法则可得结果.
【详解】
.
故选:C
解析:C
【分析】
根据复数的除法运算法则可得结果.
【详解】
21i =+2(1)(1)(1)i i i -=+-2(1)12
i i -=-. 故选:C
2.D
【分析】
先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.
【详解】
因为,
所以其共轭复数为.
故选:D.
解析:D
【分析】
先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.
因为()()11111111222
i i z i i i i ++====+--+, 所以其共轭复数为
1122i -. 故选:D.
3.B
【分析】
先利用复数的除法运算将化简,再利用模长公式即可求解.
【详解】
由于,
则.
故选:B
解析:B
【分析】 先利用复数的除法运算将1=
-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222
i i i i z i i ++====-+--+,
则||2z ===. 故选:B
4.D
【分析】
由复数乘法化复数为代数形式,然后根据复数的分类求解.
【详解】
,它为纯虚数,
则,解得.
故选:D .
解析:D
【分析】
由复数乘法化复数为代数形式,然后根据复数的分类求解.
【详解】
2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,
则1010
a a +=⎧⎨-≠⎩,解得1a =-.
5.B
【分析】
由复数除法运算直接计算即可. 【详解】
.
故选:B.
解析:B
【分析】
由复数除法运算直接计算即可.
【详解】
(
)
2
1i
i
i
+
==
-
.
故选:B.
6.C
【分析】
结合复数除法运算化简复数,再由纯虚数定义求解即可
【详解】
解析:因为为纯虚数,所以,解得,
故选:C.
解析:C
【分析】
结合复数除法运算化简复数z,再由纯虚数定义求解即可
【详解】
解析:因为
()()
2
2
m m m i
z m m mi
i
--
==--为纯虚数,所以
20
m m
m
⎧-=



,解得1
m=,
故选:C.
7.A
【解析】
试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.
解:∵复数Z=i(1﹣2i)=2+i
∵复数Z的实部2>0,虚
解析:A
【解析】
试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分
析实部和虚部的符号,即可得到答案.
解:∵复数Z=i (1﹣2i )=2+i
∵复数Z 的实部2>0,虚部1>0
∴复数Z 在复平面内对应的点位于第一象限
故选A
点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.
8.C
【分析】
利用复数的除法法则化简,再求的共轭复数,即可得出结果.
【详解】
因为

所以,
所以复数在复平面上的对应点位于第三象限,
故选:C.
解析:C
【分析】
利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果.
【详解】 因为2
12(12)(1)11i i i z i i +++==-- 1322
i =-+, 所以1322
z i =--, 所以复数z 在复平面上的对应点1
3(,)22--位于第三象限,
故选:C.
9.B
【分析】
根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.
【详解】
由题意可得,则.
故答案为:B
解析:B
【分析】
根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.
由题意可得()()()()
()212111111i i i z i i i i
i i ---===--=--++-,则1z i =-+. 故答案为:B 10.C
【分析】
求出,即可得出,求出虚部.
【详解】
,,其虚部是1.
故选:C.
解析:C
【分析】
求出z ,即可得出z ,求出虚部.
【详解】
()()()2
2021
1i 1i
i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C.
11.A
【分析】
首先化简复数,再计算求模.
【详解】

.
故选:A
解析:A
【分析】
首先化简复数z ,再计算求模.
【详解】
()()()2
242112434343434i i i z i i i i ⎡⎤++⎣⎦====-++++ ()()()
()43443412163434252525i i i i i --=-=-=-++-,
45z ∴==. 故选:A
【分析】
对复数进行分母实数化,根据复数的几何意义可得结果.
【详解】
由,
知在复平面内对应的点位于第一象限,
故选:A.
【点睛】
本题主要考查了复数除法的运算以及复数的几何意义,属于基础题 解析:A
【分析】
对复数z 进行分母实数化,根据复数的几何意义可得结果.
【详解】 由()()()122112121255
i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫
⎪⎝⎭位于第一象限, 故选:A.
【点睛】
本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.
13.A
【分析】
由复数的除法求出,然后得出,由复数的几何意义得结果.
【详解】
由已知,
,对应点为,在第一象限,
故选:A.
解析:A
【分析】
由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.
【详解】 由已知(1)(1)(1)(1)
i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,
故选:A.
14.B
【分析】
由复数除法求得,再由模的运算求得模.
【详解】
由题意,∴.
故选:B .
解析:B
【分析】
由复数除法求得z ,再由模的运算求得模.
【详解】
由题意22(1)11(1)(1)
i z i i i i +===+--+,∴z == 故选:B .
15.无
二、多选题
16.AD
【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】
解:,

z 的实部为4,虚部为,则相差5,
z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正 解析:AD
【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】 解:()()()()
351358241112i i i i z i i i i -+--====---+,
z ∴==
z 的实部为4,虚部为1-,则相差5,
z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.
17.ABCD
【分析】
先根据复数的除法运算计算出,再依次判断各选项.
【详解】

,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.
【点睛】
本题考查复数的除法
解析:ABCD
【分析】
先根据复数的除法运算计算出z ,再依次判断各选项.
【详解】
()()()2121111i z i i i i --===---+-+--,
z ∴==,故A 正确;()2
212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;
故选:ABCD.
【点睛】
本题考查复数的除法运算,以及对复数概念的理解,属于基础题.
18.ACD
【分析】
分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.
【详解】
因为,所以A 正确;
因为,,所以,所以B 错误;
因为,所以C 正确; 因为,所以,所以D 正确
解析:ACD 【分析】 分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.
【详解】
因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭
=⎝⋅,所以A 正确;
因为2
2112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;
因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭
,所以C 正确;
因为633
1z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,
故选:ACD.
【点睛】
本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.
19.BC
【分析】
根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.
【详解】
根据题意,中,
时,;
时,
;时,;
时,,
.
选项A 中,;
选项B 中,;
选项C 中,;
选项D 中,.
解析:BC
【分析】
根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.
【详解】 根据题意,{}
,n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;
()41n k k N =+∈时,
n i i =;()42n k k N =+∈时,1n i =-;
()43n k k N =+∈时,n i i =-,
{}1,1,,M i i ∴=--.
选项A 中,()()112i i M -+=∉;
选项B 中,()()()2
11111i i i i i i M --==-+-∈+; 选项C 中,()()()
2
11111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.
故选:BC.
【点睛】
此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 20.BC
【分析】
利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.
【详解】
,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.
【点睛】
本题考
解析:BC
【分析】
利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.
【详解】
()
234z i i +=+,34232i z i i
+∴=
-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.
故选:BD.
【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.
21.BD
【分析】
先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.
【详解】
设复数,
则,
所以,
则,解得或,
因此或,所以对应的点为或,
因此复
解析:BD
【分析】
先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.
【详解】
设复数(),z a bi a b R =+∈,
则2222724z a abi b i =+-=--,
所以2222724z a abi b i =+-=--,
则227224
a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,
因此复数z 对应的点可能在第二或第四象限.
故选:BD.
【点睛】
本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.
22.AD
【分析】
先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.
【详解】
,故,故A 正确.
的虚部为,故B 错,,故C 错,
在复平面内对应的点为,故D 正确.
故选:AD.
【点睛】
本题考
解析:AD
【分析】
先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.
【详解】
()()32232474725555
i i i i i z i ++++====+-,故4755i z =-,故A 正确.
z 的虚部为75,故B 错,355
z ==≠,故C 错,
z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭
,故D 正确. 故选:AD.
【点睛】
本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.
23.ACD
【分析】
首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
∴选项A :为纯虚数,有可得,故正确
选项B
解析:ACD
【分析】
首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
()(12)2(12)z a i i a a i =++=-++
∴选项A :z 为纯虚数,有20120
a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨
+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12
a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确
故选:ACD
【点睛】
本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围
24.ABCD
【分析】
利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成
立,可知正确.
【详解】
因为(1﹣i )z =
解析:ABCD
【分析】
利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.
【详解】
因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)
2i i i i i i +-+===-+-+
,所以||z ==A 正确; 所以1i z =--,故B 正确;
由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;
因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.
故选:ABCD.
【点睛】
本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.
25.BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,时,,则,故A 错误;
对于B ,若复数,则满足,解得,故B 正确;
对于C ,若复数z 为纯虚数,则满足,解得,
解析:BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,0m =
时,1z =-
,则1z =-,故A 错误;
对于B ,若复数2z =
,则满足(()212
10m m m ⎧-=⎪⎨-=⎪⎩
,解得m ,故B 正确; 对于C ,若复数z
为纯虚数,则满足(()210
10m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误;
对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故
D 正确.
故选:BD.
【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.
26.AB
【分析】
利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.
【详解】
解:,且,
复数在复平面内对应的点位于第二象限
选项A:
选项B: 的虚部是
选项C:
解析:AB
【分析】
利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.
【详解】
解:z a =+,且2z =224a +∴=,=1a ±
复数z a =+在复平面内对应的点位于第二象限1a ∴=-
选项A : 3323(1)(1)+3(1)+3())8-+=---+=
选项B : 1z =-
选项C : 1z =-的共轭复数为1z =--
选项D : 222(1)(1)+2()2-+=--=--
故选:AB .
【点睛】
本题考查复数的四则运算及共轭复数,考查运算求解能力.
求解与复数概念相关问题的技巧:
复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.
27.AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,且,根据复数相等的性质,则,故正确;
对于选项B ,
解析:AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;
对于选项B ,∵虚数不能比较大小,故正确;
对于选项C ,∵若复数1=z i ,2=1z 满足2212
0z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2
=1i --,故不正确;
故选:AB .
【点睛】
本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 28.AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式
解析:AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.
【详解】
对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,
所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;
对于B 选项,解方程210x +=得x i =±,B 选项错误;
对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.
反之,取()3f x x =,()2
3f x x '=,当()1,1x ∈-时,()0f x '≥,
此时,函数()y f x =在区间()1,1-上单调递增,
即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.
所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.
C 选项正确;
对于D 选项,()11172488
f x x x ++=
==,()1878f x x -'∴=,D 选项错误. 故选:AC.
【点睛】
本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 29.CD
【分析】
根据复数的四则运算,整理复数,再逐一分析选项,即得.
【详解】
由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一
解析:CD
【分析】
根据复数的四则运算,整理复数z ,再逐一分析选项,即得.
【详解】 由题得,复数22(2)(1)13131(1)(1)122
i i i i z i i i i i ++++====+--+-,可得
||2
z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22
,位于第一象限,则D 正确.综上,正确结论是CD.
故选:CD
【点睛】
本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.
30.BD
【分析】
选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入
,验证结果是纯虚数,所以正确.
【详解】
取,,则,
但不满足,故A 错误;
,恒成
解析:BD
【分析】
选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以
正确;选项C :取1z i =,21z =,2212
0z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.
【详解】
取x i =,y i =-,则1x yi i +=+,
但不满足1x y ==,故A 错误;
a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,
故B 正确;
取1z i =,21z =,则2212
0z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,
故D 正确.
故选:BD .
【点睛】
本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

相关文档
最新文档