望都县四中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

望都县四中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )
A .(0,1)
B .(﹣∞,﹣2)
C .(﹣2,0)
D .(﹣∞,﹣2)∪(0,1)
2. 如果执行如图所示的程序框图,那么输出的a=( )
A .2
B .
C .﹣1
D .以上都不正确
3. 已知全集U R =,{|239}x
A x =<≤,{|02}
B y y =<≤,则有( ) A .A ØB B .A
B B =
C .()R A B ≠∅ð
D .()R A B R =ð
4. 若将函数y=tan (ωx+
)(ω>0)的图象向右平移
个单位长度后,与函数y=tan (ωx+
)的图象
重合,则ω的最小值为( )
A .
B .
C .
D .
5. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )
A .
B .﹣
C .2
D .﹣2
6. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足
的x 的范围为( )
A .(﹣∞,)∪(2,+∞)
B .(,1)∪(1,2)
C .(,1)∪(2,+∞)
D .(0,)∪(2,+∞)
7. 设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β
8. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2
')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012,(--∞
B 、)0,2012(-
C 、)2016,(--∞
D 、)0,2016(-
9. 函数
是( )
A .最小正周期为2π的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
10.如果a >b ,那么下列不等式中正确的是( ) A .
B .|a|>|b|
C .a 2>b 2
D .a 3>b 3
11.偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 12.设命题p :,则
p 为( )
A .
B .
C .
D .
二、填空题
13.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .
14.已知集合
,若3∈M ,5∉M ,则实数a 的取值范围是 .
14.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .
15.椭圆C : +
=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .
16.已知函数f (x )=,若f (f (0))=4a ,则实数a= .
17.已知双曲线的一条渐近线方程为y=x ,则实数m 等于 .
18.不等式的解为 .
三、解答题
19.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
20.已知函数
,(其中常数m >0)
(1)当m=2时,求f (x )的极大值;
(2)试讨论f (x )在区间(0,1)上的单调性;
(3)当m ∈[3,+∞)时,曲线y=f (x )上总存在相异两点P (x 1,f (x 1))、Q (x 2,f (x 2)),使得曲线y=f (x )在点P 、Q 处的切线互相平行,求x 1+x 2的取值范围.
21.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;
(2)若a =5c =,求.
22.如图,在四棱柱中,底面,,,.
(Ⅰ)求证:平面;
(Ⅱ)求证:;
(Ⅲ)若,判断直线与平面是否垂直?并说明理由.
23.设函数f(x)=lnx﹣ax+﹣1.
(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
24.(本小题满分12分)
设p :实数满足不等式39a ≤,:函数()()32331
932
a f x x x x -=++无极值点.
(1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;
(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛
⎫-+++> ⎪ ⎪⎝⎭⎝
⎭,若是t ⌝的必要不充分
条件,求正整数m 的值.
望都县四中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),
∴A ∩B=(﹣∞,﹣2)∪(0,1),
故选:D .
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
2. 【答案】 B
【解析】解:模拟执行程序,可得 a=2,n=1
执行循环体,a=,n=3
满足条件n ≤2016,执行循环体,a=﹣1,n=5 满足条件n ≤2016,执行循环体,a=2,n=7
满足条件n ≤2016,执行循环体,a=,n=9 …
由于2015=3×671+2,可得:
n=2015,满足条件n ≤2016,执行循环体,a=,n=2017
不满足条件n ≤2016,退出循环,输出a 的值为. 故选:B .
3. 【答案】A
【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 4. 【答案】D
【解析】解:y=tan (ωx+),向右平移
个单位可得:y=tan[ω(x ﹣
)+
]=tan (ωx+



ω+k π=
∴ω=k+(k ∈Z ), 又∵ω>0
∴ωmin =.
故选D.
5.【答案】A
【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,
∴α=,即f(x)=,
故f(2)==,
故选:A.
6.【答案】D
【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,
∵函数f(x)是偶函数,
∴不等式等价为f(||)<,
即||>,即>或<﹣,
解得0<x<或x>2,
故x的取值范围是(0,)∪(2,+∞)
故选:D
【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
7.【答案】B
【解析】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;
对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,
且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,
故命题B正确.
对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;
对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.
故选B.
【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.
8.【答案】C.
【解析】由,得:,
即,令,则当时,,
即在是减函数,,
,,
在是减函数,所以由得,,
即,故选
9.【答案】B
【解析】解:因为
=
=cos(2x+)=﹣sin2x.
所以函数的周期为:=π.
因为f(﹣x)=﹣sin(﹣2x)=sin2x=﹣f(x),所以函数是奇函数.
故选B.
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
10.【答案】D
【解析】解:若a>0>b,则,故A错误;
若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;
若a>0>b且a,b互为相反数,则a2>b2,故C错误;
函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;
故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
11.【答案】D
【解析】解:∵f(x+2)为奇函数,
∴f(﹣x+2)=﹣f(x+2),
∵f(x)是偶函数,
∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),
即﹣f(x+4)=f(x),
则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),
即函数f(x)是周期为8的周期函数,
则f(89)=f(88+1)=f(1)=1,
f(90)=f(88+2)=f(2),
由﹣f(x+4)=f(x),
得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),
则f(2)=0,
故f(89)+f(90)=0+1=1,
故选:D.
【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.
12.【答案】A
【解析】【知识点】全称量词与存在性量词
【试题解析】因为特称命题的否定是全称命题,p为:。

故答案为:A
二、填空题
13.【答案】6.
【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,
f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,
令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
14.【答案】0.3.
【解析】离散型随机变量的期望与方差.
【专题】计算题;概率与统计.
【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).
【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,
∴正态分布曲线的对称轴为x=500,
∵P(400<ξ<450)=0.3,
∴根据对称性,可得P(550<ξ<600)=0.3.
故答案为:0.3.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.
15.【答案】.
【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,
可得c=2,2a==8,可得a=4,
b2=a2﹣c2=12,可得b=2,
椭圆的短轴长为:4.
故答案为:4.
【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.
16.【答案】2.
【解析】解:∵f(0)=2,
∴f(f(0))=f(2)=4+2a=4a,
所以a=2
故答案为:2.
17.【答案】4.
【解析】解:∵双曲线的渐近线方程为y=x,
又已知一条渐近线方程为y=x ,∴ =2,m=4,
故答案为4.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y=x ,是解题
的关键.
18.【答案】 {x|x >1或x <0} .
【解析】解:

即x (x ﹣1)>0 解得x >1或x <0
故答案为{x|x >1或x <0}
【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解
以解集形式写出
三、解答题
19.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】

题解析: (1)()2a
f'x x b x =+-
,所以(1)251(1)106
f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2
()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =,
当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212
ln ln ()x x b x x x x -=
-+-. 1
'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202
x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211
121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥
⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设211x t x =>,2(1)()ln 1
t h t t t -=-+,
∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =, ∴()0h t >,又
21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 20.【答案】
【解析】解:(1)当m=2
时,
(x >0)
令f ′(x )<0,可得或x >2; 令f ′(x )>0,可得,
∴f (x
)在和(2,+∞
)上单调递减,在
单调递增

(2

(x >0,m >0)
①当0<m <1
时,则
,故x ∈(0,m ),f ′(x )<0;
x ∈(m ,1)时,f ′(x )>0
此时f (x )在(0,m )上单调递减,在(m ,1)单调递增; ②当m=1
时,则
,故x ∈(0,1
),有
恒成立,
此时f (x )在(0,1)上单调递减; ③当m >1
时,则,

时,f ′(x )<0

时,f ′(x )>0
此时f (x )在上单调递减,在单调递增
(3)由题意,可得f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2)


∵x 1≠x 2,由不等式性质可得恒成立,
又x 1,x 2,m >0
∴⇒
对m ∈[3,+∞)恒成立

,则
对m ∈[3,+∞)恒成立
∴g (m )在[3,+∞)上单调递增,


从而“
对m ∈[3,+∞)恒成立”等价于“

∴x 1+x 2的取值范围为
【点评】运用导数,我们可解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键
21.【答案】(1)6
B π
=;(2)b =
【解析】1111]
(2)根据余弦定理,得
2222cos2725457
b a
c ac B
=+-=+-=,
所以b=
考点:正弦定理与余弦定理.
22.【答案】
【解析】【知识点】垂直平行
【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.
因为,平面,平面,
所以平面.
又因为,
所以平面平面.
又因为平面,
所以平面.
(Ⅱ)证明:因为底面,底面,
所以.
又因为,,
所以平面.
又因为底面,
所以.
(Ⅲ)结论:直线与平面不垂直.
证明:假设平面,
由平面,得.
由棱柱中,底面,
可得,,
又因为,
所以平面,
所以.
又因为,
所以平面,
所以.
这与四边形为矩形,且矛盾,
故直线与平面不垂直.
23.【答案】
【解析】解:函数f(x)的定义域为(0,+∞),(2分)
(Ⅰ)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,,
∴f′(1)=0,∴f(x)在x=1处的切线方程为y=﹣2(5分)
(Ⅱ)=(6分)
令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2
故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).
(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,
∴函数f(x)在[1,2]上的最小值为f(1)=(9分)
若对于∀x 1∈[1,2],∃x 2∈[0,1]使f (x 1)≥g (x 2)成立,等价于g (x )在[0,1]上的最小值不大于f (x )在(0,
e]上的最小值(*) (10分)

,x ∈[0,1]
①当b <0时,g (x )在[0,1]上为增函数,与(*)矛盾
②当0≤b ≤1时,,由
及0≤b ≤1得,
③当b >1时,g (x )在[0,1]上为减函数,,
此时b >1(11分)
综上,b 的取值范围是
(12分)
【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x 1∈[1,2],∃x 2∈[0,1]使f (x 1)≥g (x 2)成立,转化为g (x )在[0,1]上的最小值不大于f (x )在(0,e]上的最小值.
24.【答案】(1){}
125a a a <<≤或;(2)1m =.
【解析】
(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题.
若p 为真命题,为假命题,则2
115a a a a ≤⎧⇒<⎨
<>⎩
或.………………………………5分 若为真命题,p 为假命题,则2
2515a a a >⎧⇒<≤⎨
≤≤⎩
.……………………………………6分 于是,实数的取值范围为{}
125a a a <<≤或.……………………………………7分
考点: 1、不等式;2、函数的极值点;3、命题的真假;4、充要条件.。

相关文档
最新文档