微积分的通俗解释

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分的通俗解释
初等数学是常量的数学,⽐如中⼩学的数学,涉及的都是常量。

在⼗七世纪以前,虽然数学中有⼀些研究变量的萌芽,但并没有形成⼀门独⽴的数学分⽀。

随着⼗七世纪⼯业⾰命的来临,越来越多的变量问题进⼊科学领域,⽐如变速运动的瞬间速度、不均匀物质的密度、不规则形状的体积、变⼒的做功等等,都是初等数学⽆法解答的。

随着笛卡尔将函数引⼊坐标系,科学的巨⼈们相继建⽴起微积分的初步思想,其中⽜顿、莱布尼兹是最著名的两位。

微积分就是研究变量的数学,可以说微积分建⽴以前,数学研究的是“数”,⽽微积分研究的才是“量”。

微积分其实是微分和积分的统称,微分就是研究变量在微⼩的局部(数学⽤语叫区间)的性质,⽐如曲线上某点的切线、瞬时速度等,它是通过在⾃变量的微⼩改变(⽆穷⼩),函数值相应发⽣变化,这种函数值对⾃变量的变化率来研究函数性质的。

积分是求变量在⼀段区域(依然叫区间)内累积形成的结果,⽐如曲线的长度、曲线围成的⾯积、变⼒在⼀定时间的做功等等。

积分的基本思想是把不规则的区间分割成若⼲规则的⼩块,这些⼩块越⼩越好,直⾄⽆穷⼩,再把所有⼩块加起来(规则的⼩块是容易计算的),就是总的结果。

说得再明⽩⼀些,微分和积分都就是⽤局部代替整体的思想,从⽽化曲为直,化变量为常量。

微分是求商,积分是求积(和)。

恩格斯说:有了微积分,辩证法进⼊了数学。

伟⼤的⽜顿和莱布尼兹建⽴了著名的微积分基本定理(也叫⽜顿-莱布尼兹公式),证明了微分和积分是互逆运算。

从此微积分进⼊实⽤领域,后来若⼲数学加对微积分添砖加⽡,使之成为数学的重要分⽀(叫做数学分析)。

微积分是⾼等数学的⼊门课,是最基础的⾼等数学,不管学习什么专业,微积分都是应该掌握的(理⼯科就更别说了,不懂微积分⼨步难⾏)。

(转载)。

相关文档
最新文档