义马市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义马市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题
1、(2分)在数轴上标注了四段范围,如图,则表示的点落在()
A. 段①
B. 段②
C. 段③
D. 段④【答案】C
【考点】实数在数轴上的表示,估算无理数的大小
【解析】【解答】解:∵2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,
∴7.84<8<8.41,
∴2.8<<2.9,
∴表示的点落在段③
故答案为:C
【分析】分别求出2.62,2.72,2.82,2.92,32值,就可得出答案。

2、(2分)的平方根是()
A. 4
B. -4
C. ±4
D. ±2
【答案】D
【考点】平方根,二次根式的性质与化简
【解析】【解答】解:=4,4的平方根是±2.
故答案为:D
【分析】首先将化简,再求化简结果的平方根。

3、(2分)小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()
A.3支笔
B.4支笔
C.5支笔
D.6支笔
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设他可以买x支笔。

则3×2+3x⩽22
解得x⩽,
∴x为整数,
∴最多可以买5支笔。

故答案为:C.
【分析】设他可以买x支笔,根据单价×数量=总价分别表示出买笔记本和笔的总价,再根据笔记本的总价+笔的总价≤22列出不等式,再求出不等式的最大整数解即可。

4、(2分)如图,下列结论正确的是()
A.
B.
C.
D.
【答案】B
【考点】实数在数轴上的表示,实数大小的比较,实数的绝对值
【解析】【解答】解:A. ,不符合题意.
B. ,符合题意.
C. ,不符合题意.
D. ,不符合题意.
故答案为:B.
【分析】A 根据数轴上表示的实数,右边的总比左边的数大即可作出判断。

B 利用分子相同的两个数,分
母大的反而小即可判断。

C 根据一个数的绝对值就是数轴上的点到原点的距离即可作出判断即可。

D 几个有理数相乘,积的符号由负因数的个数确定,当负因数的个数是偶数时,积为正,当负因数的个数是奇数时,积为负,据此作出判断即可。

5、(2分)如图,表示的点在数轴上表示时,应在哪两个字母之间()
A. C与D
B. A与B
C. A与C
D. B与C
【答案】A
【考点】实数在数轴上的表示,估算无理数的大小
【解析】【解答】解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.
故答案为:A.
【分析】本题应先估计无理数的大小,然后才能在数轴上将表示出来,因为,所以应该在C与D之间.
6、(2分)下列说法正确的个数有()
⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离
A. 0个
B. 1个
C. 2个
D. 3个
【答案】A
【考点】点到直线的距离,平行公理及推论,平面中直线位置关系
【解析】【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.
故正确的有0个.故答案为:A.
【分析】(1)当点在直线上时不能作出直线和已知直线平行;
(2)一条直线由无数个点构成,所以一条直线无数条垂线;
(3)平行线是指在同一平面内,不相交的两条直线;
(4)点到这条直线的距离是指直线外一点到这条直线的垂线段的长度。

7、(2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()
A. 20°
B. 55°
C. 20°或55°
D. 75°
【答案】C
【考点】二元一次方程组的其他应用,平行线的性质
【解析】【解答】解:∵∠A的两边与∠B的两边分别平行
∴∠A=∠B,∠A+∠B=180°
∵∠A的度数比∠B的度数的3倍少40°
∴∠A=3∠B-40°
∴或
解之:或
故答案为:C
【分析】根据∠A的两边与∠B的两边分别平行,得出∠A=∠B,∠A+∠B=180°,再根据∠A的度数比∠B 的度数的3倍少40°,建立两个二元一次方程组,解方程组,即可求得结果。

8、(2分)-2a与-5a的大小关系()
A.-2a<-5a
B.2a>5a
C.-2a=-5b
D.不能确定
【答案】D
【考点】实数大小的比较
【解析】【解答】解:当a>0时,-2a<-5a;当a<0时,-2a>-5a;当a=0时,-2a=-3a;所以,在没有确定a 的值时,-2a与-5a的大小关系不能确定.故答案为:D.
【分析】由题意分三种情况:当a>0时,根据两数相乘同号得正,异号得负,再利用两个负数绝对值大的反
而小,进行比较,然后作出判断。

当a=0时,根据0乘任何数都得0作出判断即可。

当a<0时,根据两数相乘同号得正,异号得负,再利用两个负数绝对值大的反而小,进行比较,然后作出判断。

9、(2分)某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售,但要保证利润率不低于10%,则最低折扣是()
A. 5折
B. 5.5折
C. 6折
D. 6.5折
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:设至多可以打x折
1200x-600≥600×10%
解得x≥55%,即最多可打5.5折.
故答案为:B
【分析】设至多可以打x折,根据利润=售价减进价,利润也等于进价乘以利润率,即可列出不等式,求解得出答案。

10、(2分)实数在数轴上的对应点的位置如图所示,则正确的结论是()
A. B. C. D.
【答案】C
【考点】绝对值及有理数的绝对值,实数在数轴上的表示
【解析】【解答】解:由数轴上点的位置,得:
a<−4<b<0<c<1<d.
A.a<−4,故A不符合题意;
B.bd<0,故B不符合题意;
C.|a|>|b|,故C符合题意;
D.b+c<0,故D不符合题意;
故答案为:C.
【分析】根据数轴上表示的数的特点,可知在数轴上右边的总比左边的大,即可得出a<−4<b<0<c<1<d,即可判断A是错误的,再根据有理数的加法法则,乘法法则即可判断B,D是错误的,最后根据数轴上表示的数离开原点的距离就是该数的绝对值即可判断C是正确的,综上所述即可得出答案。

11、(2分)下列说法错误的是().
A.不等式x-3>2的解集是x>5
B.不等式x<3的整数解有无数个
C.x=0是不等式2x<3的一个解
D.不等式x+3<3的整数解是0
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:A.不等式x-3>2的解集是x>5,不符合题意;
B.不等式x<3的整数解有无数个,不符合题意;
C.x=0是不等式2x<3的一个解,不符合题意;
D.不等式x+3<3的解集是x<0,故D符合题意.
故答案为:D.
【分析】解不等式x-3>2可得x>5 可判断A;整数解即解为整数,x<3的整数有无数个,可判断B;把x=0代入不等式成立,所以x=0是不等式2x<3的一个解。

即C正确;不等式x+3<3的解集是x<0,根据解和解集的区别(不等式的解是使不等式成立的一个未知数的值,而不等式的解集包含了不等式的所有解)可判断D;
12、(2分)2.﹣的绝对值是(),的算术平方根是().
A. - ;
B. ;-
C. - ;-
D. ;
【答案】D
【考点】算术平方根,实数的绝对值
【解析】【解答】解:﹣的绝对值是,的算术平方根是
【分析】根据绝对值的意义,一个负数的绝对值等于它的相反数,得出-的绝对值;再根据算数平方根的定义,,从而得出的算数平方根是。

二、填空题
13、(1分)已知:+|b﹣1|=0,那么(a+b)2016的值为________.
【答案】1
【考点】平方根
【解析】【解答】由题意得,a+2=0,b﹣1=0,
解得,a=﹣2,b=1,
则(a+b)2016=1,
故答案为:1.
【分析】由已知条件根据绝对值和算术平方根的非负性可求得a、b的值,再将a、b的值代入所求代数式即可求解.
14、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程

解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。

15、(1分)如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是________.
【答案】垂线段最短
【考点】垂线段最短,点到直线的距离
【解析】【解答】计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是垂线段最短,故答案为:垂线段最短.【分析】根据直线外一点与直线上所有点连线的线段中垂线段最短,得到D点.
16、(10分)如图,AE、BF、DC是直线,B在直线AC上,E在直线DF上,∠1=∠2,∠A=∠F.求证:∠C=∠D.
证明:因为∠1=∠2(已知),∠1=∠3________
得∠2=∠3________
所以AE//________ ________
得∠4=∠F________
因为________(已知)
得∠4=∠A
所以________//________ ________
所以∠C=∠D________
【答案】对顶角相等;等量代换;BF;同位角相等,两直线平行;两直线平行,同位角相等;∠A=∠F;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等
【考点】平行线的判定与性质
【解析】【解答】解:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换)
∴AE//BF (同位角相等,两直线平行)
∴∠4=∠F(两直线平行,同位角相等)
∵∠A=∠F (已知)
∴∠4=∠A
∴DF//AC (内错角相等,两直线平行)
∴∠C=∠D (两直线平行,内错角相等)
【分析】由对顶角相等可得∠1=∠3,所以结合已知可得∠2=∠3,根据同位角相等,两直线平行可得AE//BF,根据两直线平行,同位角相等可得∠4=∠F,于是结合已知可得∠4=∠A,根据内错角相等,两直线平行可得DF//AC,所以根据两直线平行,内错角相等可得∠C=∠D。

17、(3分)的平方根是________,的算术平方根是________,-216的立方根是________.
【答案】±

;-6
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:的平方根为:±;
=3,所以的算术平方根为:;
-216的立方根为:-6
故答案为:±;;-6
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决问题。

18、(1分)如图,将三角形ABC沿直线AB的方向向右平移至三角形BDE的位置,若∠CAB=50°,∠ABC=100°,
则∠CBE的度数为________
【答案】30°
【考点】平移的性质
【解析】【解答】解:由平移的性质知,∠CAB=∠EBD=50°,又∠ABC=100°,所以∠CBE=180°-∠ABC-∠EBD=180°-100°-50°=30°.
故答案为:30°
【分析】因为平移后的图形与原图形对应角相等,所以∠EBD=∠CAB=,利用平角的特征,可求出∠CBE 的值.
三、解答题
19、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,


把代入,得,

∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。

20、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲.
【答案】解:垂线段最短。

【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。

所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。

21、(5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.
【答案】解:∵AE平分∠BAD,
∴∠1=∠2.
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E.
∴∠2=∠E.
∴AD∥BC
【考点】平行线的判定与性质
【解析】【分析】根据角平分线的定义得∠1=∠2,由平行线的性质和等量代换可得∠2=∠E,根据平行线的判定即可得证.
22、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据
求得∠BOD。

23、(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠
BOF,∠BOE的度数。

24、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
25、(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的
度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。

26、(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
第21 页,共21 页。

相关文档
最新文档