曲靖市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲靖市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( )
A .10个
B .15个
C .16个
D .18个
2. 已知a >b >0,那么下列不等式成立的是( )
A .﹣a >﹣b
B .a+c <b+c
C .(﹣a )2>(﹣b )2
D

3. 若函数f (x )=2sin (ωx+φ)对任意x 都有f
(+x )=f (﹣x ),则f

)=( )
A .2或0
B .0
C .﹣2或0
D .﹣2或2
4. 若1sin(
)34π
α-=
,则cos(2)3π
α+=
A 、78-
B 、14
- C 、14 D 、78
5. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )
A

B

C

D

6. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 7. 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )
(A ) 8
( B ) 4 (C ) 8
3
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
(D ) 43
8.
+(a ﹣4)0有意义,则a 的取值范围是( )
A .a ≥2
B .2≤a <4或a >4
C .a ≠2
D .a ≠4
9. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .
13 B .2
3
C .1
D .2 10.函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )
A .
B .
C .
D .
11.利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )
A .
B .
C .
D .
12.已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .k
B .﹣k
C .1﹣k
D .2﹣k
二、填空题
13.在复平面内,复数

对应的点关于虚轴对称,且,则
____.
14.i 是虚数单位,化简:
= .
15.已知x ,y 为实数,代数式222
2)3(9)2(1y x x y ++-++-+的最小值是 .
【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 16.曲线y=x+e x 在点A (0,1)处的切线方程是 .
17.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范
围是 .
18.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .
三、解答题
19.设函数f (x )=lnx+a (1﹣x ). (Ⅰ)讨论:f (x )的单调性;
(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.
20.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.
(1)证明:BC⊥AB1;
(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.
21.已知一个几何体的三视图如图所示.
(Ⅰ)求此几何体的表面积;
(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.
22.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.
(I)求证:平面BCE⊥平面A1ABB1;
(II)求证:EF∥平面B1BCC1;
(III)求四棱锥B﹣A1ACC1的体积.
23.已知f(α)=,
(1)化简f(α);
(2)若f(α)=﹣2,求sinαcosα+cos2α的值.
24.已知和均为给定的大于1的自然数,设集合,,,...,,集合
..。

,,,,...,.
(1)当,时,用列举法表示集合;
(2)设、,..。

,..。

,其中、,,,...,.证明:若,则.
曲靖市第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】B
【解析】解:a ※b=12,a 、b ∈N *

若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;
若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,
所以满足条件的个数为4+11=15个. 故选B
2. 【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2

故选C .
【点评】本题主要考查不等式的基本性质的应用,属于基础题.
3. 【答案】D
【解析】解:由题意:函数f (x )=2sin (ωx+φ),
∵f (
+x )=f (﹣x ),
可知函数的对称轴为x=
=

根据三角函数的性质可知,
当x=时,函数取得最大值或者最小值.
∴f (
)=2或﹣2
故选D .
4. 【答案】A
【解析】 选A ,解析:2
227
cos[(2)]cos(2)[12sin ()]33
38
π
ππαπαα--=--=---=-
5. 【答案】B
【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C 63
=20种,
其中恰有两个球同色C 31C 41
=12种,
故恰有两个球同色的概率为P==,
故选:B . 【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基
础题.
6. 【答案】B 【解析】

点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
7. 【答案】A
【解析】
根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于1
22322383
⨯⨯-⨯⨯⨯=
8. 【答案】B
【解析】解:∵+(a ﹣4)0有意义,


解得2≤a <4或a >4. 故选:B .
9. 【答案】 B
【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为1
12
(12)2323
⨯⨯⨯⨯=,选B . 10.【答案】B
【解析】解:根据选项可知a ≤0
a 变动时,函数y=2|x|的定义域为[a ,b],值域为[1,16],
∴2|b|
=16,b=4
故选B .
【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.
11.【答案】C
【解析】解:由ln(3a﹣1)<0得<a<,
则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,
故选:C.
12.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
二、填空题
13.【答案】-2
【解析】【知识点】复数乘除和乘方
【试题解析】由题知:
所以
故答案为:-2
14.【答案】﹣1+2i.
【解析】解:=
故答案为:﹣1+2i.
15..
【解析】
16.【答案】2x﹣y+1=0.
【解析】解:由题意得,y′=(x+e x)′=1+e x,
∴点A(0,1)处的切线斜率k=1+e0=2,
则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,
故答案为:2x﹣y+1=0.
【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.
17.【答案】.
【解析】解:作出不等式组对应的平面区域,
直线y=k(x+2)过定点D(﹣2,0),
由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,
由,解得,即A(1,3),此时k==,
由,解得,即B(1,1),此时k==,
故k的取值范围是,
故答案为:
【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.18.【答案】(3,1).
【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得
即(2x+y﹣7)m+(x+y﹣4)=0,
∴2x+y﹣7=0,①
且x+y﹣4=0,②
∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.
由①②,解得解之得:x=3 y=1 所以过定点(3,1);
故答案为:(3,1)
三、解答题
19.【答案】
【解析】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),
∴f′(x)=﹣a=,
若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,
若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调
递增,在(,+∞)上单调递减,
(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最
大值为f()=﹣lna+a﹣1,
∵f()>2a﹣2,
∴lna+a﹣1<0,
令g(a)=lna+a﹣1,
∵g(a)在(0,+∞)单调递增,g(1)=0,
∴当0<a<1时,g(a)<0,
当a>1时,g(a)>0,
∴a的取值范围为(0,1).
【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.
20.【答案】
【解析】(I)证明:由题意,因为ABB1A1是矩形,
D为AA1中点,AB=2,AA1=2,AD=,
所以在直角三角形ABB1中,tan∠AB1B==,
在直角三角形ABD中,tan∠ABD==,
所以∠AB1B=∠ABD,
又∠BAB1+∠AB1B=90°,∠BAB1+∠ABD=90°,
所以在直角三角形ABO中,故∠BOA=90°,
即BD⊥AB1,
又因为CO⊥侧面ABB1A1,AB1⊂侧面ABB1A1,
所以CO⊥AB1
所以,AB1⊥面BCD,
因为BC⊂面BCD,
所以BC⊥AB1.
(Ⅱ)解:如图,分别以OD,OB1,OC所在的直线为x,y,z轴,以O为原点,建立空间直角坐标系,则
A(0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0),
又因为=2,所以
所以=(﹣,,0),=(0,,),=(,,),=(,0,﹣),
设平面ABC的法向量为=(x,y,z),
则根据可得=(1,,﹣)是平面ABC的一个法向量,
设直线CD与平面ABC所成角为α,则sinα=,
所以直线CD与平面ABC所成角的正弦值为.…
【点评】本题考查了直线与平面垂直的性质,考查线面角,考查向量方法的运用,属于中档题.
21.【答案】
【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,
其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=×2π×2×2=4π;
S圆柱侧=2π×2×4=16π;
S圆柱底=π×22=4π.
∴几何体的表面积S=20π+4π;
(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:
则AB===2,
∴以从A点到B点在侧面上的最短路径的长为2.
22.【答案】
【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,
所以,BB1⊥BC.
又因为AB⊥BC且AB∩BB1=B,
所以,BC⊥平面A1ABB1.
因为BC⊂平面BCE,
所以,平面BCE⊥平面A1ABB1.
(II)证明:取BC的中点D,连接C1D,FD.
因为E,F分别是A1C1,AB的中点,
所以,FD∥AC且.
因为AC∥A1C1且AC=A1C1,
所以,FD∥EC1且FD=EC1.
所以,四边形FDC1E是平行四边形.
所以,EF∥C1D.
又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,
所以,EF∥平面B1BCC1.
(III)解:因为,AB⊥BC
所以,.
过点B作BG⊥AC于点G,则.
因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1
所以,平面A1ACC1⊥底面ABC.
所以,BG⊥平面A1ACC1.
所以,四棱锥B﹣A1ACC1的体积.
【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.
23.【答案】
【解析】解:(1)f(α)
=
=
=﹣tanα;…5(分)
(2)∵f(α)=﹣2,
∴tanα=2,…6(分)
∴sinαcosα+cos2α=
=
=
=.…10(分)24.【答案】
【解析】。

相关文档
最新文档