萧县高级中学2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

萧县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体
M ABD -的外接球体积为36p , 则正方体棱长为( )
A .2
B .3
C .4
D .5
【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 2. 执行如图所示的程序框图,则输出的S 等于( )
A .19
B .42
C .47
D .89
3. 执行如图所示的程序框图,若输入的
分别为0,1,则输出的
( )
A .4
B .16
C .27
D .36
4. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.
其中正确结论的序号是( )
A.①③B.①④C.②③D.②④
5.若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值范围是()
A.[
﹣,+∞)B.(﹣∞
,﹣] C.
[,+∞)D.(﹣∞
,]
6.已知变量,x y满足约束条件
20
1
70
x y
x
x y
-+≤




⎪+-≤

,则y
x
的取值范围是()
A.
9
[,6]
5
B.
9
(,][6,)
5
-∞+∞C.(,3][6,)
-∞+∞D.[3,6]
7.下列式子中成立的是()
A.log0.44<log0.46 B.1.013.4>1.013.5
C.3.50.3<3.40.3D.log76<log67
8.设全集U={1,3,5,7,9},集合A={1,|a﹣5|,9},∁U A={5,7},则实数a的值是()
A.2 B.8 C.﹣2或8 D.2或8
9.己知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是()
A
.B


C
. D


10
.已知平面向量=(1,2
),=(﹣2,m
),且

,则=()
A.(﹣5,﹣10)B.(﹣4,﹣8) C.(﹣3,﹣6) D.(﹣2,﹣4)
11.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.3
12.命题“若α
=,则tan α=1”的逆否命题是()
A.若α
≠,则tan α≠1 B.若α
=,则tan α≠1
C.若tan α≠1,则α
≠D.若tan α≠1,则α
=
二、填空题
13.已知函数f(x)=cosxsinx,给出下列四个结论:
①若f(x1)=﹣f(x2),则x1=﹣x2;
②f(x)的最小正周期是2π;
③f(x)在区间[

,]上是增函数;
④f(x)的图象关于直线
x=对称.
其中正确的结论是 .
14.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .
15.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为
16.方程22x ﹣1=的解x= .
17.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .
18.已知双曲线
的一条渐近线方程为y=x ,则实数m 等于 .
三、解答题
19.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
20.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.
21.已知函数f(x)=log2(x﹣3),
(1)求f(51)﹣f(6)的值;
(2)若f(x)≤0,求x的取值范围.
22.(本小题满分12分)求下列函数的定义域:
(1)()
f x=;
(2)()
f x=.
23.已知m ≥0,函数f (x )=2|x ﹣1|﹣|2x+m|的最大值为3. (Ⅰ)求实数m 的值;
(Ⅱ)若实数a ,b ,c 满足a ﹣2b+c=m ,求a 2+b 2+c 2
的最小值.
24.(本小题满分10分) 已知函数()2f x x a x =++-.
(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.
萧县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】C
2.【答案】B
【解析】解:模拟执行程序框图,可得
k=1
S=1
满足条件k<5,S=3,k=2
满足条件k<5,S=8,k=3
满足条件k<5,S=19,k=4
满足条件k<5,S=42,k=5
不满足条件k<5,退出循环,输出S的值为42.
故选:B.
【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题.
3.【答案】D
【解析】【知识点】算法和程序框图
【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,
则输出的36。

故答案为:D
4.【答案】C
【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),
∵a<b<c,且f(a)=f(b)=f(c)=0.
∴a<1<b<3<c,
设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,
∵f(x)=x3﹣6x2+9x﹣abc,
∴a+b+c=6,ab+ac+bc=9,
∴b+c=6﹣a,
∴bc=9﹣a (6﹣a )<,
∴a 2
﹣4a <0,
∴0<a <4,
∴0<a <1<b <3<c ,
∴f (0)<0,f (1)>0,f (3)<0, ∴f (0)f (1)<0,f (0)f (3)>0. 故选:C .
5. 【答案】B
【解析】解:∵函数y=x 2
+(2a ﹣1)x+1的图象是方向朝上,以直线x=
为对称轴的抛物线
又∵函数在区间(﹣∞,2]上是减函数,
故2≤
解得a ≤﹣ 故选B .
6. 【答案】A 【解析】
试题分析:作出可行域,如图ABC ∆内部(含边界),y
x 表示点(,)x y 与原点连线的斜率,易得59(,)22
A ,
(1,6)B ,9
9
2552
OA
k ==,661OB k ==,所以965y x ≤≤.故选A .
考点:简单的线性规划的非线性应用.
7.【答案】D
【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立
对于B:设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5 ∴B选项不成立
对于C:设函数y=x0.3,则此函数单调递增∴3.50.3>3.40.3 ∴C选项不成立
对于D:设函数f(x)=log7x,g(x)=log6x,则这两个函数都单调递增∴log76<log77=1<log67∴D选项成立故选D
8.【答案】D
【解析】解:由题意可得3∈A,|a﹣5|=3,
∴a=2,或a=8,
故选D.
9.【答案】B
【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,
根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,
当x<0时,f(x)=x+2,
代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,
解得x<﹣,则原不等式的解集为x<﹣;
当x≥0时,f(x)=x﹣2,
代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,
解得x<,则原不等式的解集为0≤x<,
综上,所求不等式的解集为{x|x<﹣或0≤x<}.
故选B
10.【答案】B
【解析】解:排除法:横坐标为2+(﹣6)=﹣4,
故选B.
11.【答案】C
【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;
故其逆否命题也为真命题;
其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题
故其否命题也为假命题
故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个
故选C
【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.
12.【答案】C
【解析】解:命题“若α=,则tan α=1”的逆否命题是
“若tan α≠1,则α≠”.
故选:C.
二、填空题
13.【答案】③④.
【解析】解:函数f(x)=cosxsinx=sin2x,
对于①,当f(x1)=﹣f(x2)时,sin2x1=﹣sin2x2=sin(﹣2x2)
∴2x1=﹣2x2+2kπ,即x1+x2=kπ,k∈Z,故①错误;
对于②,由函数f(x)=sin2x知最小正周期T=π,故②错误;
对于③,令﹣+2π≤2x≤+2kπ,k∈Z得﹣+kπ≤x≤+kπ,k∈Z
当k=0时,x∈[﹣,],f(x)是增函数,故③正确;
对于④,将x=代入函数f(x)得,f()=﹣为最小值,
故f(x)的图象关于直线x=对称,④正确.
综上,正确的命题是③④.
故答案为:③④.
14.【答案】(﹣1,﹣).
【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,
∴,即,解得:,
综上:d的取值范围为(﹣1,﹣).
【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.15.【答案】5
【解析】解:由z=x﹣3y得y=,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=,
由图象可知当直线y=经过点C时,直线y=的截距最小,
此时z最大,
由,解得,即C(2,﹣1).
代入目标函数z=x﹣3y,
得z=2﹣3×(﹣1)=2+3=5,
故答案为:5.
16.【答案】﹣.
【解析】解:22x﹣1==2﹣2,
∴2x﹣1=﹣2,
解得x=﹣,
故答案为:﹣
【点评】本题考查了指数方程的解法,属于基础题.
17.【答案】.
【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)
∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x
﹣x3)+(x3﹣x)=.
故答案为:.
18.【答案】4.
【解析】解:∵双曲线的渐近线方程为y=x,
又已知一条渐近线方程为y=x ,∴ =2,m=4,
故答案为4.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y=x ,是解题
的关键.
三、解答题
19.【答案】(1)24y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,2
2212p p =⨯⇒=,…………2分
即抛物线C 的方程为24y x =;…………5分
20.【答案】
【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.
由条件可知各项均为正数,故q=.
由2a1+3a2=1得2a1+3a1q=1,所以a1=.
故数列{a n}的通项式为a n=.
(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,
故=﹣=﹣2(﹣)
则++…+=﹣2=﹣,
所以数列{}的前n项和为﹣.
【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n 项和的公式,会进行数列的求和运算,是一道中档题.
21.【答案】
【解析】解:(1)∵函数f (x )=log 2(x ﹣3),
∴f (51)﹣f (6)=log 248﹣log 23=log 216=4; (2)若f (x )≤0,则0<x ﹣3≤1,
解得:x ∈(3,4]
【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.
22.【答案】(1)()[),11,-∞-+∞;(2)[)
(]1,23,4-.
【解析】

点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环. 23.【答案】
【解析】解:(Ⅰ)f (x )=2|x ﹣1|﹣|2x+m|=|2x ﹣2|﹣|2x+m|≤|(2x ﹣2)﹣(2x+m )|=|m+2| ∵m ≥0,∴f (x )≤|m+2|=m+2,当x=1时取等号,
∴f (x )max =m+2,又f (x )的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a 2+b 2+c 2)[12+(﹣2)2+12]≥(a ﹣2b+c )2

∵a ﹣2b+c=m=1,∴,
当,即时取等号,∴a 2+b 2+c 2
的最小值为.
【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.
24.【答案】(1)(][),06,-∞+∞;(2)[]1,0-. 【解析】
试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上
恒成立,即10a -≤≤.
试题解析:
(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧
⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧
⎨-+-≥⎩,
解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;

点:不等式选讲.。

相关文档
最新文档