中考数学二模试题分类汇编——直角三角形的边角关系综合及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二模试题分类汇编——直角三角形的边角关系综合及详细答案
一、直角三角形的边角关系
1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)
【答案】AB 的长约为0.6m .
【解析】
【分析】
作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可.
【详解】
解:作BF CE ⊥于F ,
在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,
3.85CF BC cos BCF ⋅∠≈=,
在Rt ADE ∆E 中,3 1.73tan 3
AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=
由勾股定理得,22BH AH 0.6(m)AB =+≈,
答:AB 的长约为0.6m .
【点睛】
考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
2.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为;
(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.
【解析】
分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;
详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,
∴BD=AF,BF=AD.
∵AC=BD,CD=AE,
∴AF=AC.
∵∠FAC=∠C=90°,
∴△FAE ≌△ACD ,
∴EF=AD=BF ,∠FEA=∠ADC .
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EHD .
∵AD ∥BF ,
∴∠EFB=90°.
∵EF=BF ,
∴∠FBE=45°,
∴∠APE=45°.
(2)(1)中结论不成立,理由如下:
如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵3BD ,3AE , ∴
3AC CD BD AE
==. ∵BD=AF , ∴
3AC CD AF AE
==. ∵∠FAC=∠C=90°,
∴△FAE ∽△ACD , ∴
3AC AD BF AF EF EF
===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EMD .
∵AD ∥BF ,
∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=
33
EF BF =, ∴∠FBE=30°,
∴∠APE=30°,
(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,
∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,
∴BE=DH ,EH=BD .
∵3BD ,3AE , ∴
3AC CD BD AE
==. ∵∠HEA=∠C=90°,
∴△ACD ∽△HEA , ∴
3AD AC AH EH
==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,
∴∠HAE+∠CAD=90°,
∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=
3AH AD = ∴∠ADH=30°,
∴∠APE=30°.
点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.
3.如图,反比例函数() 0k y k x
=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒.
(1)求k 的值及点B 的坐标;
(2)求tanC 的值.
【答案】(1)2k =,()1,2B --;(2)2.
【解析】
【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数()0k y k x
=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;
(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C tan 即可.
【详解】(1)∵点A (1,a )在2y x =上,
∴a =2,∴A (1,2),
把A (1,2)代入 k y x =
得2k =, ∵反比例函数()0k y k x
=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,
∴()1
2B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,

90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,
∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=, ∴AD 22OD 1
tanC tan AOD =∠===.
【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD是关键.
4.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)
【答案】该停车库限高约为2.2米.
【解析】
【分析】
据题意得出
3
tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可
得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】
解:由题意得,
3 tan
3
B=
∵MN∥AD,
∴∠A=∠B,
∴tan A3,
∵DE⊥AD,
∴在Rt△ADE中,tan A=DE
AD
,∵DE=3,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE=3.
在Rt△CEF中,设EF=x,CF=3x(x>0),CE=2.5,
代入得(5
2
)2=x2+3x2,
解得x=1.25,
∴CF=3x≈2.2,
∴该停车库限高约为2.2米.
【点睛】
本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.
5.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.
(1)求证:CD是⊙O的切线;
(2)若AB=6,∠ABE=60°,求AD的长.
【答案】(1)详见解析;(2)9 2
【解析】
【分析】
(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.
【详解】
证明:如图,连接OE,
∵AE平分∠DAC,
∴∠OAE=∠DAE.
∵OA=OE,
∴∠AEO=∠OAE.
∴∠AEO=∠DAE.
∴OE∥AD.
∵DC⊥AC,
∴OE⊥DC.
∴CD是⊙O的切线.
(2)解:∵AB是直径,
∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,
在Rt△ABE中,AE=AB·cos30°=6×3
=33,
在Rt△ADE中,∠DAE=∠BAE=30°,
∴AD=cos30°×AE=3×33=9 2 .
【点睛】
本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.
6.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;
(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.
【答案】(1)45
2
;(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0
秒、3
2
秒、
69
5

【解析】
【分析】
(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′=
'''''
=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115
<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可.
【详解】
解:(1)∵AB =6cm ,AD =8cm ,
∴BD =10cm ,
根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm ,
∵tan ∠B ′D ′A ′='''''
=A B CE A D CD ∴
682
=CE ∴CE =32cm , ∴S ABCE =S ABD ′﹣S CED ′=
8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <
115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =
32x 2+3x +32, ∴y =
12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43
(8﹣2x ) ∴()214y 8223x =
⨯-=83x 2﹣643x +1283
. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +
185,A ′M =NB =245, ∵AN 2+A ′N 2=36,
∴(6﹣245)2+(2x +185
)2=36,
解得:x =
95,x =95-(舍去);
③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+18
5
,A′M=NB=
24
5

∵AB2+BB′2=AN2+A′N2
∴36+4x2=(6﹣24
5)2+(2x+
18
5
)2
解得:x=3
2

综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、3
2
秒、
669
5

【点睛】
本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.
7.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)
(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.
【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =
4
3
.理由见解析. 【解析】 【分析】
(1)根据三角形判定方法进行证明即可.
(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.
(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】
(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,
ADG ABE DAG BAE AD AB ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:
则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,
∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,
EHF ABE FEH BAE AE EF ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.
(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:
由已知可得∠EAG =∠BAD =∠AEF =90°,
结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴
EH FH FH
AB BE CH
==; 在Rt △FEH 中,tan ∠FCN =
84
63
FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43
. 【点睛】
本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.
8.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .
(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.
(2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3
tan 4
F =
时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203
CF =. 【解析】 【分析】
(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;
(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;
②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=4
3
BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =3
4
,即可求出CF . 【详解】
解:(1)AB 是O e 的直径,且D 为O e 上一点,
90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,
180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.
42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴. CE DB ⊥Q , OC CF ∴⊥.
又OC Q 为O e 的半径, CF ∴为O e 的切线.
②由(1)知//CF AD ,
BAD F ∴∠=∠,
3tan tan 4
BAD F ∴∠==, 3
4
BD AD ∴
=. 6BD =Q
4
83
AD BD ∴=
=, 226810AB ∴=+=,5OB OC ==.
OC CF Q ⊥, 90OCF ∴∠=︒,
3
tan 4OC F CF ∴==,
解得203
CF =. 【点睛】
本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.
9.现有一个“Z “型的工件(工件厚度忽略不计),如图所示,其中AB 为20cm ,BC 为60cm ,∠ABC =90,∠BCD =60°,求该工件如图摆放时的高度(即A 到CD 的距离).(结果精确到0.1m ,参考数据:
≈1.73)
【答案】工件如图摆放时的高度约为61.9cm . 【解析】
【分析】
过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.
【详解】
解:如图,过点A作AP⊥CD于点P,交BC于点Q,
∵∠CQP=∠AQB,∠CPQ=∠B=90°,
∴∠A=∠C=60°,
在△ABQ中,∵AQ=(cm),
BQ=AB tan A=20tan60°=20(cm),
∴CQ=BC﹣BQ=60﹣20(cm),
在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,
∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),
答:工件如图摆放时的高度约为61.9cm.
【点睛】
本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.
10.已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=1
2
∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=3
5
,AK10CN
的长.
【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3)20
1013
. 【解析】 试题分析:
(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;
(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=1
2
∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,
由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=3
5
AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=
4
3
CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=
3AH
HK
=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP
=,可设PN=12b ,AP=9b ,由tan ∠ACG=
PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=5
13
,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:
(1)如图1,连接OG .
∵EF 切⊙O 于G ,
∴OG ⊥EF ,
∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,
∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,
∵∠FGB=
1
2
∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .
(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=3
5
AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=
4
3
CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,
∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AH
HK
=3,2210AH HK a +=, ∵10 ∴
1010a =
∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°,
在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°,
∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,
∵∠ACN=∠ABG,
∴∠AKH=∠ACN,
∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,
∴∠APN=∠CPN=90°,
在Rt△APN中,tan∠CAH=
4
3
PN
AP
=,设PN=12b,则AP=9b,
在Rt△CPN中,tan∠ACN=PN
CP
=3,
∴CP=4b,
∴AC=AP+CP=13b,∵AC=5,
∴13b=5,
∴b=5
13

∴CN=22
PN CP
+=410b⋅=20
10 13

11.关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ﹣sinαsinβ②
tan(α+β)=③
利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
tan105°=tan(45°+60°)==﹣
(2+).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.
【答案】建筑物CD的高为84米.
【解析】
分析:
如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,
∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.
详解:
如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,
CD=BE,∠ADE=60°,
∴在Rt△ABC和Rt△ADE
AB=BC•tan75°=42tan75°=,
AE=,
∴CD=AB﹣AE=(米).
答:建筑物CD的高为84米.
睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.
12.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.
(1)求AE的长及sin∠BEC的值;
(2)求△CDE的面积.
【答案】(1)52,sin∠BEC=3
5
;(2)
75
4
【解析】
【分析】
(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得
∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,
CF=BF=32,
设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;
(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得
S△CDE=S△AED=
2
4
AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求
出y,继而可求得答案.
【详解】
(1)如图,作CF⊥BE于F点,
由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,
又∵点C是OB中点,
∴OC=BC=6,2
设AE=CE=x,则222-x,
在Rt△CEF中,CE2=CF2+EF2,即x2=(2)2+(2)2,
解得:2
故可得sin∠BEC=
3
5
CF
CE
,2
(2)如图,过点E作EM⊥OA于点M,
则S△CDE=S△AED=1
2
AD•EM=
1
2
AD×AEsin∠EAM=
1
2
AD•AE×sin45°=
2
4
AD×AE,
设AD=y,则CD=y,OD=12-y,
在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,
解得:y=15
2
,即AD=
15
2

故S△CDE=S△AED=
2
4
AD×AE=
75
4

【点睛】
本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.。

相关文档
最新文档