基于点云协方差描述子的多机器人目标识别与编队跟踪

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于点云协方差描述子的多机器人目标识别与编队跟踪
宗群;刘朋浩;董琦;田栢苓
【期刊名称】《天津大学学报》
【年(卷),期】2017(050)011
【摘要】To deal with the problem of object recognition and formation tracking with multi-robot,an object recognition method based on point cloud covariance descriptors was proposed,and a new formation tracking control method was designed.In order to reduce the load on the robot,the network architecture based on the WebSocket protocol was built.Firstly,a point cloud covariance descriptor was introduced to perform object detection,and the offline modeling was performed using support vector machine(SVM).Then,combining SVM classifier with Kullback-Leibler Divergence(KLD)-Sampling adaptive particle filter,the problem of online matching and recognition under partial occlusion was solved effectively,and online recognition was accomplished to obtain object point cloud tracking position information.Finally,a multi-robot formation tracking controller was designed based on potential field function and directed rigid graph theory.The multi-robot object tracking is realized and validated by physical platform.The experimental results show that compared with the traditional method,the tracking convergence time is shortened by 4,s and the tracking precision is improved by 2.5%,,which proves that the proposed algorithm can effectively solve the problem of
multi-robot formation object tracking by carrying a limited number of sensors.%针对多移动机器人目标识别及编队跟踪问题,提出一种基于点云协方差描述子的目标识别方法及编队跟踪控制方法.为降低机器人端机载处理器负荷,基于WebSocket协议搭建网络架构.在此基础上,通过引入点云协方差描述子进行目标检测,并利用支持向量机完成离线建模.结合支持向量机分类器与Kullback-Leibler Diver-gence(KLD)-Sampling自适应粒子滤波算法,实现目标部分遮挡下的在线识别,得到目标点云跟踪位置信息.利用势场函数和有向刚性图论综合设计编队跟踪控制器,实现多机器人编队目标跟踪.最后通过实物平台进行实验,结果表明,所提出的基于点云协方差描述子的多机器人目标识别与编队跟踪算法,与传统方法相比,跟踪收敛时间缩短4,s,跟踪精度提高约2.5%,,通过搭载有限数量传感器,可以更有效地解决多机器人编队目标跟踪问题.
【总页数】9页(P1160-1168)
【作者】宗群;刘朋浩;董琦;田栢苓
【作者单位】天津大学电气自动化与信息工程学院,天津 300072;天津大学电气自动化与信息工程学院,天津 300072;天津大学电气自动化与信息工程学院,天津300072;天津大学电气自动化与信息工程学院,天津 300072
【正文语种】中文
【中图分类】TP242
【相关文献】
1.基于协方差描述子稀疏表示的前视红外建筑物目标跟踪锁定 [J], 杨春伟;王仕成;廖守亿;刘华平
2.多机器人编队跟踪航迹控制研究 [J], 程慧芳;马丽艳;贾东力
3.基于协方差交集的多机器人协作目标跟踪算法 [J], 伍明;李琳琳;李承剑
4.基基于三维激光点云的目标识别与跟踪研究 [J], 徐国艳; 牛欢; 郭宸阳; 苏鸿杰
5.基于协方差描述子的红外目标粒子滤波跟踪算法 [J], 芦鸿雁;赵方舟
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档