重庆市第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 下列哪组中的两个函数是相等函数( )
A .()()4
f x x =
g B .()()24
=
,22
x f x g x x x -=-+
C .()()1,01,1,0
x f x g x x >⎧==⎨
<⎩ D .()()=f x x x =,g 2. 已知2,0
()2, 0
ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )
A .716-
B .916-
C .12-
D .14
-
3. 已知函数2
()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( )
A .
14 B .1
2
C .
D . 4. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图
形面积为,则函数()S f t =的图像大致为( )
5. 在ABC ∆中,60A =,1b =sin sin sin a b c
A B C
++++等于( )
A
. B
C
D
6. 已知函数f (x )=2x

+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等
差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0 B .f ′(x 0)=0
C .f ′(x 0)>0
D .f ′(x 0)的符号无法确定
7. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 8. 函数f (x )
=
有且只有一个零点时,a 的取值范围是( )
A .a ≤0
B .0<a
< C
.<a <1 D .a ≤0或a >1
9. 已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
10.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )
A .123S S S <<
B .123S S S >>
C .213S S S <<
D .213S S S >> 11.已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
B.2
C. D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.
12.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:
由2()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
算得
2
2
500(4027030160)
9.967
20030070430
K
⨯⨯-⨯
==
⨯⨯⨯
附表:
参照附表,则下列结论正确的是()
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”;
②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”;
③采用系统抽样方法比采用简单随机抽样方法更好;
④采用分层抽样方法比采用简单随机抽样方法更好;
A.①③B.①④C.②③D.②④
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.
14.已知各项都不相等的等差数列{}n a,满足223
n n
a a
=-,且2
6121
a a a
=∙,则数列
1
2
n
n
S
-
⎧⎫
⎨⎬
⎩⎭
项中
的最大值为_________.
15.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.16.在直角坐标系xOy中,已知点A(0,1)和点B(﹣3,4),若点C在∠AOB的平分线上且||=2,则=.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.(本小题满分12分)已知
12
,F F分别是椭圆C:
22
22
1(0)
x y
a b
a b
+=>>的两个焦点,且
12
||2
F F=,点
在该椭圆上.
(1)求椭圆C的方程;
(2)设直线l与以原点为圆心,b为半径的圆上相切于第一象限,切点为M,且直线l与椭圆交于P Q
、两
点,问
22
F P F Q PQ
++是否为定值?如果是,求出定值,如不是,说明理由.
3.841 6.635 10.828
k
2
() 0.050 0.010 0.001
P K k

18.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;
(1) 求实验室这一天的最大温差;
(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?
19.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交
点为A,且线段AB的中点E在直线y=x上.
(1)求直线AB的方程;
(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.
①证明:OM•ON为定值;
②证明:A、Q、N三点共线.
20.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图
所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.
21.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)
(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.
(2)求使f(x)﹣g(x)<0成立x的集合.
22.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积V;111]
(2)求该几何体的表面积S.
重庆市第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】D111] 【解析】

点:相等函数的概念. 2. 【答案】C
【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.
当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2
y ax x =+图象相切时,916
a =-,切点横坐标为83,函数2
y ax x =+图象经过点(2,0)时,12a =-,
观察图象可得1
2
a ≤-,选C . 3. 【答案】A 【解析】
试题分析:由题意知函数定义域为),0(+∞,2'
222()x x a f x x
++=,因为函数2
()2ln 2f x a x x x
=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2
()222h x x x a =++在),0(+∞恒
成立,1
0,4
a ∴∆≤∴≥,故选A. 1
考点:导数与函数的单调性. 4. 【答案】C 【解析】
试题分析:由题意得,当01t <≤时,()21
22
f t t t t =
⋅⋅=,当12t <≤时,
()1
12(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符
合,故选C.
考点:分段函数的解析式与图象. 5. 【答案】B 【解析】
试题分析:由题意得,三角形的面积011sin sin 6022S bc A bc =
===4bc =,又1b =,所
以4c =,又由余弦定理,可得222220
2cos 14214cos6013a b c bc A =+-=+-⨯⨯=,所以a =
sin sin sin sin a b c a A B C A ++===
++B . 考点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到sin sin sin sin a b c a
A B C A
++=++是解答的关键,属于中档试题.
6. 【答案】 A
【解析】解:∵函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),


∴存在x 1<a <x 2,f '
(a )=0,

,∴
,解得a=

假设x 1,x 2在a 的邻域内,即x 2﹣x 1≈0.
∵,


∴f (x )的图象在a 的邻域内的斜率不断减少小,斜率的导数为正, ∴x 0>a ,
又∵x >x 0,又∵x >x 0时,f ''
(x )递减,
∴.
故选:A .
【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.
7. 【答案】
C
8. 【答案】D
【解析】解:∵f (1)=lg1=0, ∴当x ≤0时,函数f (x )没有零点,
故﹣2x +a >0或﹣2x
+a <0在(﹣∞,0]上恒成立, 即a >2x ,或a <2x
在(﹣∞,0]上恒成立,
故a >1或a ≤0; 故选D .
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
9. 【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

10.【答案】A 【解析】

点:棱锥的结构特征. 11.【答案】B
【解析】设2
(,)4y P y
,则
2
1||||
y PF PA +=.又设
2
14
y t +=,则244y t =-,1t …
,所以||||PF PA ==,当且仅当2t =,即2y =±时,等号成立,此时点(1,2)P ±,PAF ∆的面积为11
||||22222
AF y ⋅=⨯⨯=,故选B.
12.【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635
人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=,
∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,
∴cos2α==,
∵α为锐角,sin(α+)>0,
∴sin(α+)
====

故答案为:.
14.【答案】
【解析】
考点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,
n n
a a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而
1
,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 15.【答案】
【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①
又a2,a3,a4-2成等差数列.
∴2a3=a2+a4-2,
即8k2=2k2+8k2-2.②
由①②联立得k1=-1,k2=1,
∴a n=2n-1.
答案:2n-1
16.【答案】(﹣,).
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为

解得:

又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,
可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

)17.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
18.【答案】
【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,
当t+=时,函数取得最小值为10﹣2=8,
故实验室这一天的最大温差为12﹣8=4℃。

(2)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),
由10﹣2sin(t+)>11,求得sin(t+)<﹣,即≤t+<,
解得10<t<18,即在10时到18时,需要降温。

19.【答案】
【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),
∵点A在椭圆C上,∴,
整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(2)证明:设P(x0,y0),则,
①直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
②设直线MB的方程为:y=kx﹣1(其中k==),
联立,整理得:(1+2k2)x2﹣4kx=0,
∴x Q=,y Q=,
∴k AN===1﹣,k AQ==1﹣,
要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,
将k=代入,即证:x M•x N=,
由①的证明过程可知:|x M|•|x N|=,
而x M与x N同号,∴x M•x N=,
即A、Q、N三点共线.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.
20.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,
∴∠MFE为二面角M﹣BC﹣D的平面角,
设∠CAM=θ,∴
EM=2sinθ,EF=,
∵tan∠MFE=1,∴,∴tan=,∴,
∴CM=2.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
21.【答案】
【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);
h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);
∴f(x)﹣g(x)为奇函数;
(2)由f(x)﹣g(x)<0得,f(x)<g(x);
即lg(2016+x)<lg(2016﹣x);
∴;
解得﹣2016<x<0;
∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).
【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.
22.【答案】(12)6 .
【解析】
(2)由三视图可知,
该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD
C 均为矩形,
2(11112)6S =⨯++⨯=+ 1
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键.。

相关文档
最新文档