山东省滕州市张汪二中2019-2020学年第二学期假期作业九年级数学试题(无答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度山东省滕州市张汪二中第二学期假期作业
九年级数学试题
一、单选题
1.如果在第二象限,那么点在第()象限
A.一B.二C.三D.四
2.下列说法错误的是()
A.平行四边形的对边相等B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形、又是中心对称图形3.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是( )
A.或B.或
C.或D.或
4.关于的一元二次方程无实数根,则实数的取值范围是()
A .B.C.D.
5.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()
A.B.C.D.
6.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于( )
A.55°B.70°C.110°D.125°
7.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()
A.2 B.4 C.6 D.3
8.如图,正方形ABCD和等边△AEF都内接于圆O,EF与BC、CD别相交于点G、H.若AE=6,则EG 的长为()
A.B.3﹣C.D.2﹣3
9.在平面直角坐标系中,直线的图象不动,将坐标系向上平移个单位后得到新的平面直角坐标系,此时该直线的解析式变为( )
A.B.C.D.
10.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于D,AE∥BD交CB延长线于点E,若∠AEB=25°,则∠ADB的度数为()
A.50°B.70°C.75°D.80°
11.如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP′,连接DP′,则DP′的最小值是()
A.2-2 B.4﹣2C.2﹣D.-1
12.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD 于点E,若AB=3,则△AEC的面积为()
A.3 B.1.5 C.2D.
13.已知x1,x2是方程的两根,则x12+x22的值为()
A.3 B.5 C.7 D.4
14.如图,在矩形ABCD中,AD=5,AB=3,点E时BC上一点,且AE=AD,过点D做DF⊥AE于F,则tan∠CDF的值为()
A.B.C.D.
15.某快递公司甲、乙两名快递员7月上旬10天里派送快递,乙比甲晚工作一段时间,工作期间快递员甲因事停工3天,各自的工作效率一定,他们各自的工作量(件)随工作时间(天)变化的图像如图所示.则有下列说法:①甲工人的工作效率为60件/天;②乙工人每天比甲工人少送10件;③甲工人
一共送420件;④乙比甲少工作2天.其中正确的个数是()
A.1个B.2个C.3个D.4个
二、填空题
16.已知A(-1,6)与B(2,m-3)是反比例函数图象上的两个点,则m的值是_______.17.使函数有意义的x的取值范围是_____.
18.不等式组的整数解的个数是_________.
19.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为_______.
20.使得关于x的不等式组有且只有4个整数解,且关于x的分式方程
+=-8的解为正数的所有整数a的值之和为________.
21.如图,O为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y=(x>0)的图象经过AB的中点F和DE的中点G,则k的值为____.
三、解答题
22.(1)计算:.
(2)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.
23.先化简,再求值:,其中a,b满足.
24.某校七年级10个班的300名学生即将参加学校举行的研究旅行活动,学校提出以下4个活动主题:A.赤水丹霞地貌考察;B.平塘天文知识考察;C.山关红色文化考察;D.海龙电土司文化考察,为了解学生喜欢的活动主题,学生会开展了一次调查研究,请将下面的过程补全
(1)收集数据:学生会计划调查学生喜欢的活动主题情况,下面抽样调查的对象选择合理的是______.(填序号)
①选择七年级3班、4班、5班学生作为调查对象
②选择学校旅游摄影社团的学生作为调查对象
③选择各班学号为6的倍数的学生作为调查对象
(2)整理、描述数据:通过调査后,学生会同学绘制了如下两幅不完整的统计图,请把统计图补充完整某校七年级学生喜欢的活动主题条形统计图某校七年级学生喜欢的活动主题扇形统计图
(3)分析数据、推断结论:请你根据上述调查结果向学校推荐本次活动的主题,你的推荐是______(填
A-D的字母代号),估算全年级大约有多少名学生喜欢这个主题活动
(4)若在5名学生会干部(3男2女)中,随机选取2名同学担任活动的组长和副组长,求抽出的两名同学恰好是1男1女的概率.
25.如图,某汽车司机在平坦的公路上行驶,前面出现两个建筑物,在A处司机能看到甲建筑物一部分(把汽车看成一个点),这时视线与公路夹角为30°;
(1)汽车行驶到什么位置时,司机刚好看不到甲建筑物?请在图中标出这个D点;
(2)若CF的高度40米,当刚好看不到甲建筑物时,司机的视线与与公路夹角为45°,请问汽车行驶了多少米?
26.如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C
作⊙O的切线CE,交OF于点
A.
(1)求证:EC=ED;
(2)如果OA=4,EF=3,求弦AC的长.
27.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.
(1)求抛物线的解析式;
(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G 点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q的横坐标比点P 的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.。