八年级数学全册全套试卷(提升篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学全册全套试卷(提升篇)(Word 版 含解析) 一、八年级数学三角形填空题(难)
1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.
【答案】1.5或5或9
【解析】
【分析】
分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.
【详解】
如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .
∵△APE 的面积等于6,∴S △APE =
12AP •CE =12
AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12
•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.
【点睛】
本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.
2.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC=1
2
∠ACD−
1
2
∠ABC=
1
2
∠A=21°.
故答案为21°.
3.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.
【答案】2
【解析】
由D是AC的中点且S△ABC=12,可得
11
126
22
ABD ABC
S S
∆∆
==⨯=;同理EC=2BE即
EC=1
3
BC,可得
1
124
3
ABE
S

=⨯=,又,
ABE ABF BEF ABD ABF ADF
S S S S S S
∆∆∆∆∆∆
-=-=等量
代换可知S△ADF-S△BEF=2
4.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD=____°.
【答案】19°.
【解析】
【分析】
根据三角形内角和定理求得∠BAC,再由AE平分∠BAC,可求得∠EAC,最后由
∠ADC=90°,∠C=78°,可求得∠DAC,即∠EAD可求.
【详解】
解:∵∠B=40°,∠C=78°
∴∠BAC=180°-∠B-∠C=62°
∵AE平分∠BAC,
∴∠EAC=1
31
2
BAC
∠=,
∵AD是BC边上的高
∴∠ADC=90°
∴∠DAC=90°-78°=12°
∴∠EAD=∠EAC-∠DAC=19°
故答案为:19°.
【点睛】
本题考查三角形内角和定理;三角形角平分线性质.
5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.
【答案】40°
【解析】
【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.
【详解】∵∠ADE=60°,
∴∠ADC=120°,
∵AD⊥AB,
∴∠DAB=90°,
∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,
故答案为40°.
【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.
6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为_____.
【答案】10°
【解析】
【分析】
根据直角三角形两锐角互余求出∠B ,根据翻折变换的性质可得∠CA′D=∠A ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
∵∠ACB =90°,∠A =50°,
∴∠B =90°﹣50°=40°,
∵折叠后点A 落在边CB 上A ′处,
∴∠CA ′D =∠A =50°,
由三角形的外角性质得,∠A ′DB =∠CA ′D ﹣∠B =50°﹣40°=10°.
故答案为:10°.
【点睛】
本题考查了翻折变换,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,翻折前后对应边相等,对应角相等.
二、八年级数学三角形选择题(难)
7.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )
A .80°
B .60°
C .40°
D .20°
【答案】C
【解析】
【分析】 连接FB ,根据三角形内角和和外角知识,进行角度计算即可.
【详解】
解:如图连接FB ,
∵AEF AFE ∠=∠,CFD CDF ∠=∠,
∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠
∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,
即AFE CFD EFD EBD ∠+∠=∠+∠,
又∵180AFE EFD DFC ∠+∠+∠=︒,
∴2180EFD EBD ∠+∠=︒,
∵100ABC ∠=︒,
∴180100=402
EFD ︒-︒∠=
︒, 故选:C .
【点睛】
此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.
8.如图,在△ABC 中,点D 、E 分别是边AC,AB 的中点,BD,CE 相交于点O,连接O 在AO 上取一点F,使得OF=12
AF 若S △ABC =12,则四边形OCDF 的面积为( )
A .2
B .83
C .3
D .103
【答案】B
【解析】
【分析】 重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.
【详解】
解:∵点D 、E 分别是边AC,AB 的中点,
∴O 为△ABC 的重心,
∴13AOC S
=ABC S =4, ∴12DOC DOA S S ==AOC S =2,
∵OF=
12AF , ∴13DOF S =AOD S =23
,
∴S 阴=DOC S +DOF S =8
3
. 故选:B.
【点睛】
本题考查了重心及重心定理,熟练掌握相关定理是解题关键.
9.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为( )
A .56
B .64
C .72
D .90
【答案】D
【解析】
【分析】
根据题意找出规律得到第n 个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.
【详解】
第1个图形的花盆个数为:(1+1)(1+2);
第2个图形的花盆个数为:(2+1)(2+2)=12;
第3个图形的花盆个数为:(3+1)(3+2)=20;

第n 个图形的花盆个数为:(n+1)(n+2);
则第7个图形中花盆的个数为:(7+1)(7+2)=72.
故选:C.
【点睛】
本题考查图形规律题,解此题的关键在于根据题中图形找到规律.
10.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )
A .60︒
B .65︒
C .70︒
D .75︒
【答案】C
【解析】
【分析】
先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°. 【详解】
设直线n 与AB 的交点为E 。

∵AED ∠是BED ∆的一个外角,
∴1AED B ∠=∠+∠,
∵45B ∠=︒,125∠=︒,
∴452570AED ∠=︒+︒=︒,
∵m n ,
∴270AED ∠=∠=︒.
故选C .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.
11.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )
A .14
B .16
C .90α-
D .44α-
【答案】A
【解析】 分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.
详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:
∠3=∠1+30°,∴∠1=44°﹣30°=14°.
故选A .
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.
12.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )
A .40º
B .50º
C .60º
D .70º
【答案】D
【解析】
【分析】 依据平行线的性质,即可得到∠1=∠DFG =40°,再根据三角形外角性质,即可得到∠2的度数.
【详解】
∵DF ∥EG ,
∴∠1=∠DFG =40°,
又∵∠A =30°,
∴∠2=∠A +∠DFG =30°+40°=70°,
故选D .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.
三、八年级数学全等三角形填空题(难)
13.如图,AD ⊥BC 于 D ,且 DC =AB +BD ,若∠BAC =108°,则∠C 的度数是______度.
【答案】24
【解析】
【分析】
在DC 上取DE=DB .连接AE ,在Rt △ABD 和Rt △AED 中,BD=ED ,AD=AD .证明
△ABD ≌△AED 即可求解.
【详解】
如图,在DC 上取DE=DB ,连接AE .
在Rt △ABD 和Rt △AED 中,
BD ED ADB ADE AD AD =⎧⎪∠=∠⎨⎪=⎩
∴△ABD ≌△AED (SAS ).
∴AB=AE ,∠B=∠AED .
又∵CD=AB+BD ,CD=DE+EC
∴EC=AB
∴EC=AE ,
∴∠C=∠CAE
∴∠B=∠AED=2∠C
又∵∠B+∠C=180°-∠BAC=72°
∴∠C=24°,
故答案为:24.
【点睛】
本题考查了全等三角形的判定与性质及三角形内角和定理,属于基础图,关键是巧妙作出辅助线.
14.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是
______.
【答案】(-4,2)或(-4,3)
【解析】
【分析】
【详解】
把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.
故答案为(-4,2)或(-4,3).
15.如图,ABE
△,BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,连接OB,下列结论正确的有_________.
①AD EC
=;②BM BN
=;③MN AC;④EM MB
=;⑤OB平分AOC

【答案】①②③⑤.
【解析】
【分析】
由题意根据全等三角形的判定和性质以及等边三角形的性质和角平分线的性质,对题干结论依次进行分析即可.
【详解】
解:∵△ABE,△BCD均为等边三角形,
∴AB=BE,BC=BD,∠ABE=∠CBD=60°,
∴∠ABD=∠EBC,
在△ABD和△EBC中,
AB BE
ABD EBC
BD BC


∠∠






∴△ABD≌△EBC(SAS),
∴AD=EC,故①正确;
∴∠DAB=∠BEC,
又由上可知∠ABE=∠CBD=60°,
∴∠EBD=60°,
在△ABM和△EBN中,
MAB NEB
AB BE
ABE EBN
∠∠



⎪∠∠




∴△ABM≌△EBN(ASA),
∴BM=BN,故②正确;
∴△BMN 为等边三角形,
∴∠NMB=∠ABM=60°,
∴MN ∥AC ,故③正确;
若EM=MB ,则AM 平分∠EAB ,
则∠DAB=30°,而由条件无法得出这一条件,
故④不正确;
如图作,,BG AD BH EC ⊥⊥
∵由上可知△ABD ≌△EBC ,
∴两个三角形对应边的高相等即BG BH =,
∴OB 是AOC ∠的角平分线,即有OB 平分AOC ∠,故⑤正确.
综上可知:①②③⑤正确.
故答案为:①②③⑤.
【点睛】
本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质以及等边三角形的性质和角平分线的性质与平行线的判定是解题的关键.
16.如图,OP 平分∠AOB,∠AOP=15°,PC∥OA,PC =4,点D 是射线OA 上的一个动点,则PD 的最小值为_____.
【答案】2
【解析】
【分析】
作PE⊥OA 于E ,根据角平分线的性质可得PE =PD ,根据平行线的性质可得∠ACP=∠AOB=
30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE ,即可求得PD .
【详解】
当PD⊥OA 时,PD 有最小值,作PE⊥OA 于E ,
∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,
∴PE=PD (角平分线上的点到角两边的距离相等),
∵∠BOP=∠AOP=15°,
∴∠AOB=30°,
∵PC∥OB,
∴∠ACP=∠AOB=30°,
∴在Rt△PCE 中,PE =
12PC =12
×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),
∴PD=PE =2,
故答案是:2.
【点睛】
此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.
17.如图所示,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段上,连接EF 、CF ,则下列结论
2BCD DCE ①∠=∠;EF CF =②;3DFE AEF ③∠=∠,2BEC CEF S
S =④中一定
成立的是______ .(把所有正确结论的序号都填在横线上)
【答案】②③
【解析】
分析:由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,易得AF=FD=CD ,继而证得①∠DCF=12
∠BCD ;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系,进而得出答案.
详解:①∵F 是AD 的中点,
∴AF=FD ,
∵在▱ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=
1
2
∠BCD,
即∠BCD=2∠DCF;故此选项错误;
②延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
A FDM
AF DF
AFE DFM
∠∠



⎪∠∠





∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正确;
③设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此选项正确.④∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S △BEC <2S △EFC
故S △BEC =2S △CEF 错误;
综上可知:一定成立的是②③,
故答案为②③.
点睛:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DME 是解题关键.
18.如图,在△ABC 中,∠B =∠C ,BD =CE ,BE =CF .若∠A =40°,则∠DEF 的度数为____.
【答案】70°
【解析】
由等腰三角形的性质得出∠B=∠C=70°,再根据SAS 证得△BDE ≌△CEF ,得出∠BDE=∠CEF ,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE ,即可得出
∠DEF=∠B=70°
. 点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF ,然后根据三角形外角的性质可求解.
四、八年级数学全等三角形选择题(难)
19.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634
AOC AOB S S +=+△△.其中正确的结论是( )
A .①②③④
B .①②③⑤
C .①②④⑤
D .①②③④⑤
【答案】D
【解析】
【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;
由△OBO ′是等边三角形,可知结论②正确;
在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;
6AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;
如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.
【详解】
解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB =O ′B ,AB =BC ,
∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,
∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,
故结论①正确;
如图①,连接OO ′,
∵OB =O ′B ,且∠OBO ′=60°,
∴△OBO ′是等边三角形,
∴OO ′=OB =4.
故结论②正确;
∵△BO ′A ≌△BOC ,∴O ′A =5.
在△AOO ′中,三边长为3,4,5,这是一组勾股数,
∴△AOO ′是直角三角形,∠AOO ′=90°,
∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,
故结论③正确;
2134462AOO OBO AOBO S S S '∆'∆'=+=⨯⨯=+四边形 故结论④正确;
如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.
易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,
则2134362AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+=四边形, 故结论⑤正确.
综上所述,正确的结论为:①②③④⑤.
故选:D.
【点睛】
本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将
△AOB向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.
20.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边
BC、CD延长线上的点,∠EAF=
1
2
∠BAD,若DF=1,BE=5,则线段EF的长为()
A.3 B.4 C.5 D.6
【答案】B
【解析】
【分析】
在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.
【详解】
在BE上截取BG=DF,
∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,
∴∠B=∠ADF,
在△ADF与△ABG中
AB AD
B ADF
BG DF
=


∠=∠

⎪=


∴△ADF≌△ABG(SAS),
∴AG=AF,∠FAD=∠GAB,
∵∠EAF=
1
2
∠BAD,
∴∠FAE=∠GAE,
在△AEG与△AEF中
AG AF
FAE GAE
AE AE
=


∠=∠

⎪=


∴△AEG≌△AEF(SAS)
∴EF=EG=BE﹣BG=BE﹣DF=4.
故选:B.
【点睛】
考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.
21.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出
△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是( )
A.BC=BD;B.AC=AD;C.∠ACB=∠ADB;D.∠CAB=∠DAB
【答案】B
【解析】
根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出:
A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确;
B、补充AC=AD,不能推出△APC≌△APD,故错误;
C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确;
D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确.
故选B.
点睛:本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.
22.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠2﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【详解】 ①正确.作EM ∥AB 交AC 于M .
∵CA=CB ,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵∠CAE=∠BAE=
12
∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则ME=AM=2a ,
∴tan ∠CAE=212CE AC a a
==-+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,
∴∠PCE=∠PFE=45°,
∵∠EFA=∠ACE=90°,
∴∠PFA=∠PFE=45°,
∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确.
④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,
∴∠CPE=∠CEP ,
∴CP=CE ,故④正确,
⑤错误.∵△APC ≌△APF ,
∴S △APC =S △APF ,
假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE ,
∴S △ACD =S △AEF ,
∵S △ACD =12S △ABC ,S △AEF =S △AEC ≠12
S △ABC , ∴矛盾,假设不成立.
故⑤错误.
.
故选D.
23.如图所示,在Rt ABC
∆中,E为斜边AB的中点,ED AB
⊥,且
:1:7
CAD BAD
∠∠=,则BAC
∠=( )
A.70B.45C.60D.48
【答案】D
【解析】
根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得
∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°.
故选:D.
点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.
24.在△ABC中,∠C=90°,D为AB的中点,ED⊥AB,∠DAE=∠CAE,则∠CAB=()
A.30°B.60°C.80 °D.50°
【答案】B
【解析】
试题解析:∵D为AB的中点,ED⊥AB,
∴DE为线段AB的垂直平分线,
∴AE=BE,
∴∠DAE=∠DBE,
∴∠DAE=∠DBE=∠CAE,
在Rt△ABC中,
∵∠CAB+∠DBE=90°,
∴∠CAE+∠DAE+∠DBE=90°,
∴3∠DBE=90°,
∴∠DBE=30°,
∴∠CAB=90°-∠DBE=90°-30°=60°.
故选B.
五、八年级数学轴对称三角形填空题(难)
25.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.
【答案】
1702n -︒ 【解析】
【分析】
先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.
【详解】
解:∵在1ABA ∆中,70A ∠=︒,1AB A B =
∴170BA A A ∠==︒∠
∵1112A A A B =,1BA A ∠是121A A B ∆的外角
∴12111211703522B A A A B A BA A ︒∠=∠==
=︒∠ 同理可得,2321217017.542B A A BA A ︒∠=
==︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=
. 故答案为:
1702
n -︒ 【点睛】
本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.
26.如图,在Rt △ABC 中,∠ACB =90°,AB 的垂直平分线DE 交BC 的延长线于F ,若∠F =30°,DE =1,则EF 的长是_____.
【答案】2
【解析】
【分析】
连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.
【详解】
解:如图:连接BE
∵AB的垂直平分线DE交BC的延长线于F,
∴AE=BE,∠A+∠AED=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠F+∠CEF=90°,
∵∠AED=∠FEC,
∴∠A=∠F=30°,
∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,
∴∠CBE=∠ABC﹣∠ABE=30°,
∴∠CBE=∠F,
∴BE=EF,
在Rt△BED中,BE=2DE=2×1=2,
∴EF=2.
故答案为:2.
【点睛】
本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.
27.等腰三角形一边长等于4,一边长等于9,它的周长是__.
【答案】22
【解析】
【分析】
等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;
【详解】
解:因为4+4=8<9,0<4<9+9=18,
∴腰的不应为4,而应为9,
∴等腰三角形的周长=4+9+9=22.
故答案为22.
【点睛】
本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
28.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.
【答案】2n.
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.
【详解】
解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,
∵∠MON=30°,
∵OA2=4,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等边三角形,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32,
以此类推△A n B n A n+1的边长为 2n.
故答案为:2n.
【点睛】
本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到
OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.
29.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。

若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为_____________
【答案】2.25或3
【解析】
【分析】
分两种情况讨论:①若△BPD≌△CPQ,根据全等三角形的性质,则BD=CQ=6厘米,BP=CP=
1
2
BC=
1
2
×9=4.5(厘米),根据速度、路程、时间的关系即可求得;②若
△BPD≌△CQP,则CP=BD=6厘米,BP=CQ,得出
96
3
vt
vt t


-
⎧=

,解得:v=3.
【详解】
解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,
∴BD=6厘米,
若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=
1
2
BC=
1
2
×9=4.5(厘米),
∵点Q的运动速度为3厘米/秒,
∴点Q的运动时间为:6÷3=2(s),
∴v=4.5÷2=2.25(厘米/秒);
若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,
则有
96
3
vt
vt t


-
⎧=


解得:v=3
∴v的值为:2.25或3厘米/秒
故答案为:2.25或3.
【点睛】
本题考查了全等三角形的判定和线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.
30.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .
【答案】33
【解析】
试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,
∴点B、D关于AC对称,
连接ED,则ED就是所求的EF+BF的最小值的线段,
∵E为AB的中点,∠DAB=60°,
∴DE⊥AB,
∴ED=22
-=22
AD AE
-=33,
63
∴EF+BF的最小值为33.
六、八年级数学轴对称三角形选择题(难)
31.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()
A.7.5°B.10°C.15°D.18°
【答案】C
【解析】
根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,
根据AE=AD ,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,
即得到∠DEC=α=15°,
故选C.
点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.
32.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12
AB 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,若△ADC 的周长为14,BC=8,则AC 的长为
A .5
B .6
C .7
D .8
【答案】A
【解析】
【分析】 根据题意可得MN 是直线AB 的中点,所以可得AD=BD ,BC=BD+CD ,而△ADC 为
AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC 即可求出AC .
【详解】
根据题意可得MN 是直线AB 的中点AD BD ∴=
ADC 的周长为14AC CD AD ++=
14AC CD BD ++=∴
BC BD CD =+
14AC BC =∴+
已知8BD =
6AC ∴= ,故选B
【点睛】
本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.
33.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:
①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )
A .①②
B .①②③
C .①②④
D .①②③④
【答案】C
【解析】
【分析】 ①由角平分线的性质可知①正确;
②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12
AD ,从而可证明②正确;
③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;
④连接BD 、DC ,然后证明△EBD ≌△DFC ,从而得到BE=FC ,从而可证明④.
【详解】
解:如图所示:连接BD 、DC .
①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,
∴ED=DF .
∴①正确.
②∵∠EAC=60°,AD 平分∠BAC ,
∴∠EAD=∠FAD=30°.
∵DE ⊥AB ,
∴∠AED=90°.
∵∠AED=90°,∠EAD=30°,

ED=12
AD . 同理:DF=
12
AD . ∴DE+DF=AD .
∴②正确. ③由题意可知:∠EDA=∠ADF=60°.
假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=90°,
又∵∠E=∠BMD=90°,
∴∠EBM=90°.
∴∠ABC=90°.
∵∠ABC 是否等于90°不知道,
∴不能判定MD 平分∠EDF ,
故③错误.
④∵DM 是BC 的垂直平分线,
∴DB=DC .
在Rt △BED 和Rt △CFD 中
DE DF BD DC ⎧⎨⎩
==, ∴Rt △BED ≌Rt △CFD .
∴BE=FC .
∴AB+AC=AE-BE+AF+FC
又∵AE=AF ,BE=FC ,
∴AB+AC=2AE .故④正确.
综上所述,①②④正确,
故选:C .
【点睛】
本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.
34.如图,△ABC 中,AB =AC ,且∠ABC =60°,D 为△ABC 内一点 ,且DA =DB ,E 为△ABC 外一点,BE =AB ,且∠EBD =∠CBD ,连DE ,CE. 下列结论:①∠DAC =∠DBC ;
②BE ⊥AC ;③∠DEB =30°. 其中正确的是( )
A .①...
B .①③...
C .② ...
D .①②③
【答案】B
【解析】
【分析】
连接DC,证ACD BCD DAC DBC
∠∠
≅=
得出①,再证BED BCD
≅,得出BED BCD30
∠∠
==︒;其它两个条件运用假设成立推出答案即可.
【详解】
解:证明:连接DC,
∵△ABC是等边三角形,
∴AB=BC=AC,∠ACB=60°,
∵DB=DA,DC=DC,
在△ACD与△BCD中,
AB BC
DB DA
DC DC
=


=

⎪=

,
∴△ACD≌△BCD (SSS),
由此得出结论①正确;
∴∠BCD=∠ACD=
1
30
2
ACB
∠=︒
∵BE=AB,
∴BE=BC,
∵∠DBE=∠DBC,BD=BD,
在△BED与△BCD中,
BE BC
DBE DBC
BD BD
=


∠=∠

⎪=

,
∴△BED≌△BCD (SAS),
∴∠DEB=∠BCD=30°.
由此得出结论③正确;
∵EC∥AD,
∴∠DAC=∠ECA,
∵∠DBE=∠DBC,∠DAC=∠DBC,
∴设∠ECA=∠DBC=∠DBE=∠1,
∵BE=BA,
∴BE=BC,
∴∠BCE=∠BEC=60°+∠1,
在△BCE中三角和为180°,
∴2∠1+2(60°+∠1)=180°
∴∠1=15°,
∴∠CBE=30,这时BE 是AC 边上的中垂线,结论②才正确.
因此若要结论②正确,需要添加条件EC ∥AD.
故答案为:B.
【点睛】
本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.
35.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )
A .52
B .125
C .4
D .53
【答案】B
【解析】
【分析】
先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =
12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可. 【详解】
根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
又∵CE ⊥AB ,
∴△ECF 是等腰直角三角形,
∴EF=CE ,
又∵S △ABC =12AC∙BC=12
AB∙CE , ∴AC∙BC=AB∙CE ,
∵3AC =,4BC =,5AB =,
∴125
CE =,
∴EF
12 5 .
所以答案为B选项.
【点睛】
本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.
36.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形
AOBO′=6+33;⑤S△AOC+S△AOB=6+9
3
4
.其中正确的结论是()
A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A
【解析】
试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB=O′B,AB=BC,
∴△BO′A≌△BOC,又∵∠OBO′=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,
故结论①正确;
如图①,连接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等边三角形,
∴OO′=OB=4.
故结论②正确;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三边长为3,4,5,这是一组勾股数,
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;
S四边形AOBO′=S△AOO′+S△OBO′=1
2
×3×4+
3
4
×42=6+43,
故结论④错误;
如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,
则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=1
2
×3×4+
3
×32=6+
93

故结论⑤正确.
综上所述,正确的结论为:①②③⑤.
故选A.
七、八年级数学整式的乘法与因式分解选择题压轴题(难)
37.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()
A.6 B.7 C.8 D.9
【答案】C
【解析】
【分析】
设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.
【详解】
解:
设2为a,3为b,
则根据5张边长为2的正方形纸片的面积是5a2,
4张边长分别为2、3的矩形纸片的面积是4ab ,
6张边长为3的正方形纸片的面积是6b 2,
∵a 2+4ab+4b 2=(a+2b )2,(b >a )
∴拼成的正方形的边长最长可以为a+2b=2+6=8,
故选C .
【点睛】
此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.
38.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )
A .-1
B .b ﹣a
C .-a
D .﹣b 【答案】D
【解析】
【分析】 利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差.
【详解】
∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+--
2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+--
∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a -----
32b b b =-+=-
故选D.
【点睛】
本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.
39.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )
A .8(7a-8b )(a-b )
B .2(7a-8b )2
C .8(7a-8b )(b-a )
D .-2(7a-8b )
【答案】C
【解析】
把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)
=(7a-8b)(3a-4b-11a+12b)
=(7a-8b)(-8a+8b)
=8(7a-8b)(b-a).
故选C.
40.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b(a +c)=0,则此三角形是
( )
A .等腰三角形
B .等边三角形
C .直角三角形
D .不能确定
【答案】B
【解析】
【分析】
运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.
【详解】
∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;
∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形. 故选B .
【点睛】
本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.
41.若2149x kx ++
是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .1
3
± 【答案】C
【解析】
【分析】
本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.
【详解】
由完全平方式的形式(a±b )2=a 2±2ab+b 2可得: kx=±2•2x•
13, 解得k=±
43
. 故选:C。

相关文档
最新文档