汤阴县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汤阴县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列命题中正确的是( )
A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题
B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”
C .“
”是“
”的充分不必要条件
D .命题“∀x ∈R ,2x >0”的否定是“
”
2. 函数f (x )=﹣lnx 的零点个数为( ) A .0
B .1
C .2
D .3
3. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.15
4. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;
②x 2+y 2
=3;
③+y 2=1;
④
﹣y 2
=1.
在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )
A .①③
B .②④
C .①②③
D .②③④
5. 已知函数()21
11
x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )
A .1
B .1-
C .2
D .2-
6. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f (
)=( )
A .2或0
B .0
C .﹣2或0
D .﹣2或2
7.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2
a>),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总X N a(0
~100,
人数的1
,则此次数学考试成绩在100分到110分之间的人数约为()
10
(A)400 (B )500 (C)600 (D)800
8.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()
A.0°B.45°C.60°D.90°
9.函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0))处的切线为l:y=g(x)=f′(x0)(x﹣x0)+f(x0),F(x)=f(x)﹣g(x),如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么()
A.F′(x0)=0,x=x0是F(x)的极大值点
B.F′(x0)=0,x=x0是F(x)的极小值点
C.F′(x0)≠0,x=x0不是F(x)极值点
D.F′(x0)≠0,x=x0是F(x)极值点
10.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
11.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为
A[]
B[]
C[]
D[
]
12.设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0
D .4
二、填空题
13.设,y x 满足约束条件2110y x x y y ≤⎧⎪
+≤⎨⎪+≥⎩
,则3z x y =+的最大值是____________.
14.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫
⎨
⎬⎩⎭
项中 的最大值为_________. 15
.
= .
16.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 . 17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1; ③若实数x ,y 满足x 2+y 2=1
,则
的最大值为
;
④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC
的重心和外心,且
•
=5,则△ABC 的形状是直角三角形.
18.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范
围是 .
三、解答题
19.设函数f (x )
=lnx+,k ∈R .
(Ⅰ)若曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直,求k 值; (Ⅱ)若对任意x 1>x 2>0,f (x 1)﹣f (x 2)<x 1﹣x 2恒成立,求k 的取值范围;
(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.
20.已知函数f(x)=.
(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性;
(3)求证:f()=﹣f(x).
21.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,
(1)证明:BC1∥平面A1CD;
(2)求异面直线BC1和A1D所成角的大小;
(3)求三棱锥A1﹣DEC的体积.
22.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示
(Ⅰ)求函数f(x)的解析式
(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,其中a<c,f(A)=,且a=,b=,求△ABC
的面积.
23.已知曲线C的极坐标方程为4ρ2cos2θ+9ρ2sin2θ=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.
24.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;
(Ⅱ)当0<a<1时,解不等式f(x)>0.
汤阴县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】 D
【解析】解:若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为假命题,故A 不正确; 命题“若xy=0,则x=0”的否命题为:“若xy ≠0,则x ≠0”,故B 不正确;
“”⇒“+2k π,或,k ∈Z ”,
“”⇒“
”,
故“
”是“
”的必要不充分条件,故C 不正确;
命题“∀x ∈R ,2x
>0”的否定是“”,故D 正确.
故选D .
【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.
2. 【答案】B
【解析】解:函数f (x )=﹣lnx 的零点个数等价于
函数y=与函数y=lnx 图象交点的个数, 在同一坐标系中,作出它们的图象:
由图象可知,函数图象有1个交点,即函数的零点个数为1 故选B
3. 【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为
.
故选B .
4. 【答案】 D
【解析】解:要使这些曲线上存在点P 满足|MP|=|NP|,需曲线与MN 的垂直平分线相交.
MN 的中点坐标为(﹣,0),MN 斜率为=
∴MN 的垂直平分线为y=﹣2(x+),
∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.
②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2
﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的
垂直平分线有交点,
③中的方程与y=﹣2(x+),联立,消去y 得9x 2
﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线
有交点,
④中的方程与y=﹣2(x+),联立,消去y 得7x 2
﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有
交点, 故选D
5. 【答案】A 【解析】
试题分析:由已知得()2112x f x x x -==-,则()21
'f x x
=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 6. 【答案】D
【解析】解:由题意:函数f (x )=2sin (ωx+φ),
∵f (
+x )=f (﹣x ),
可知函数的对称轴为x=
=
,
根据三角函数的性质可知,
当x=
时,函数取得最大值或者最小值.
∴f()=2或﹣2 故选D.
7.【答案】A 【解析】
P(X≤90)=P(X≥110)=1
10
,P(90≤X≤110)=1-1
5
=4
5
,P(100≤X≤110)=2
5
,1000×2
5
=400. 故选A.
8.【答案】C
【解析】解:连结A1D、BD、A1B,
∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,
∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,
∵A1D=A1B=BD,
∴∠DA1B=60°.
∴CD1与EF所成角为60°.
故选:C.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.9.【答案】B
【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),
∴F'(x)=f'(x)﹣f′(x0)
∴F'(x0)=0,
又由a<x0<b,得出
当a<x<x0时,f'(x)<f′(x0),F'(x)<0,
当x0<x<b时,f'(x)<f′(x0),F'(x)>0,
∴x=x0是F(x)的极小值点
故选B.
【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.
10.【答案】A
【解析】解:由“|x﹣2|<1”得1<x<3,
由x2+x﹣2>0得x>1或x<﹣2,
即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,
故选:A.
11.【答案】B
【解析】当x≥0时,
f(x)=,
由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;
当a2<x<2a2时,f(x)=﹣a2;
由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。
∴当x>0时,。
∵函数f(x)为奇函数,
∴当x<0时,。
∵对∀x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:。
故实数a的取值范围是。
12.【答案】B
【解析】解:因为f(x)+f(y)=f(x+y),
令x=y=0,
则f(0)+f(0)=f(0+0)=f(0),
所以,f(0)=0;
再令y=﹣x,
则f(x)+f(﹣x)=f(0)=0,
所以,f (﹣x )=﹣f (x ), 所以,函数f (x )为奇函数. 又f (3)=4,
所以,f (﹣3)=﹣f (3)=﹣4, 所以,f (0)+f (﹣3)=﹣4. 故选:B .
【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题.
二、填空题
13.【答案】73
【解析】
试题分析:画出可行域如下图所示,由图可知目标函数在点12,
33A ⎛⎫
⎪⎝⎭
处取得最大值为73.
考点:线性规划. 14.【答案】 【解析】
考点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,
n n
a a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而
1
,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 15.【答案】2.
【解析】解:=2+lg100﹣2=2+2﹣2=2,
故答案为:2.
【点评】本题考查了对数的运算性质,属于基础题.
16.【答案】﹣2.
【解析】解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数,
得,解得:a=﹣2.
故答案为:﹣2.
17.【答案】:①②③
【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;
对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;
对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线
的斜率,其最大值为,③正确;
对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,
即π﹣A﹣B<,即A+B>,B>﹣A,
则cosB<cos(﹣A),
即cosB<sinA,故④不正确.
对于⑤在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,
∵=|,
由
则,
即
则
又BC=5
则有
由余弦定理可得cosC<0,
即有C为钝角.
则三角形ABC为钝角三角形;⑤不正确.
故答案为:①②③
18.【答案】.
【解析】解:作出不等式组对应的平面区域,
直线y=k(x+2)过定点D(﹣2,0),
由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,
由,解得,即A(1,3),此时k==,
由,解得,即B(1,1),此时k==,
故k的取值范围是,
故答案为:
【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),
∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,
∴此切线的斜率为0,
即f′(e)=0,有﹣=0,得k=e;
(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)
设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.
由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,
∴k≥(对k=,h′(x)=0仅在x=时成立),
故k的取值范围是[,+∞);
(Ⅲ)由题可得k=e,
因为M∩P≠∅,所以f(x)<在[e,3]上有解,
即∃x∈[e,3],使f(x)<成立,
即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,
令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,
g(x)min=g(e)=2e,
所以m>2e.
【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.
20.【答案】
【解析】解:(1)∵1+x2≥1恒成立,∴f(x)的定义域为(﹣∞,+∞);
(2)∵f(﹣x)===f(x),
∴f(x)为偶函数;
(3)∵f(x)=.
∴f()===﹣=﹣f(x).
即f()=﹣f(x)成立.
【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础.
21.【答案】
【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,
由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,
∴DF∥BC1,
∵BC1⊄平面A1CD,DF⊂平面A1CD,
∴BC1∥平面A1CD;…
(2)解:由(1)可得∠A1DF或其补角为异面直线BC1和A1D所成角.
DF=BC1==1,A1D==,A1F=A1C=1.
在△A1DF中,由余弦定理可得:cos∠A1DF==,
∵∠A1DF∈(0,π),∴∠A1DF=,
∴异面直线BC1和A1D所成角的大小;…
(3)解:∵AC=BC,D为AB的中点,∴CD⊥AB,
∵平面ABB1A1∩平面ABC=AB,∴CD⊥平面ABB1A1,CD==1.
∴=﹣S△BDE﹣﹣=
∴三棱锥C﹣A1DE的体积V=…
【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.
22.【答案】
【解析】解:(Ⅰ)∵由图象可知,T=4(﹣)=π,
∴ω==2,
又x=时,2×+φ=+2kπ,得φ=2kπ﹣,(k∈Z)
又∵|φ|<,
∴φ=﹣,
∴f(x)=sin(2x﹣)…6分
(Ⅱ)由f(A)=,可得sin(2A﹣)=,
∵a<c,
∴A为锐角,
∴2A﹣∈(﹣,),
∴2A﹣=,得A=,
由余弦定理可得:a2=b2+c2﹣2bccosA,可得:7=3+c2﹣2,即:c2﹣3c﹣4=0,
∵c>0,∴解得c=4.
∴△ABC的面积S=bcsinA==…12分
【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(ωx+φ)的部分图象确定其解析式等知识的应用,属于基本知识的考查.
23.【答案】
【解析】解:(Ⅰ)由4ρ2cos2θ+9ρ2sin2θ=36得4x2+9y2=36,
化为;
(Ⅱ)设P(3cosθ,2sinθ),
则3x+4y=,
∵θ∈R,∴当sin(θ+φ)=1时,3x+4y的最大值为.
【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.24.【答案】
【解析】解:(Ⅰ)由,得,
即﹣1<x<1,即定义域为(﹣1,1),
则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),
则f(x)为奇函数.
(Ⅱ)当0<a<1时,由f(x)>0,
即log a(1+x)﹣log a(1﹣x)>0,
即log a(1+x)>log a(1﹣x),
则1+x<1﹣x,
解得﹣1<x<0,
则不等式解集为:(﹣1,0).
【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.。