复数单元测试题含答案 百度文库(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题
1.i =( )
A .i -
B .i
C i -
D i 2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限 3.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )
A B C .3 D .5 4.已知i 是虚数单位,则复数
41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限 5.已知i 为虚数单位,若复数()12i z a R a i +=
∈+为纯虚数,则z a +=( )
A B .3 C .5 D .6.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i -
B .3i --
C .3i +
D .3i -+ 7.若复数
2i 1i a -+(a ∈R )为纯虚数,则1i a -=( )
A B C .3 D .5
8.在复平面内,复数z 对应的点是()1,1-,则
1z z =+( ) A .1i -+ B .1i + C .1i --
D .1i -
9.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )
A .1
B
C .2
D .4
10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )
A B .2 C .10 D 11.已知2021(2)i z i -=,则复平面内与z 对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 12.设复数z 满足41i z i =
+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
13.已知复数z 满足()1+243i z i =+,则z 的虚部是( )
A .-1
B .1
C .i -
D .i
14.若i 为虚数单位,,a b ∈R ,且
2a i b i i +=+,则复数a bi -的模等于( )
A B C D 15.若复数11i z i ,i 是虚数单位,则z =( ) A .0 B .12 C .1 D .2
二、多选题
16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )
A .z =-1+2i
B .|z |=5
C .12z i =+
D .5z z ⋅=
17.已知复数2020
11i z i
+=-(i 为虚数单位),则下列说法错误的是( )
A .z 的实部为2
B .z 的虚部为1
C .z i =
D .||z =18.已知复数cos sin 2
2z i ππθθθ⎛⎫=+-
<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( ) A .复数z 在复平面上对应的点可能落在第二象限 B .z 可能为实数
C .1z =
D .1z 的虚部为sin θ 19.下面是关于复数21i z =
-+的四个命题,其中真命题是( )
A .||z =
B .22z i =
C .z 的共轭复数为1i -+
D .z 的虚部为1-
20.已知复数122z =-,则下列结论正确的有( )
A .1z z ⋅=
B .2z z =
C .31z =-
D .202012z =-+ 21.下面关于复数的四个命题中,结论正确的是( )
A .若复数z R ∈,则z R ∈
B .若复数z 满足2z ∈R ,则z R ∈
C .若复数z 满足1R z
∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 22.设复数z 满足
1z i z +=,则下列说法错误的是( ) A .z 为纯虚数 B .z 的虚部为1
2
i -
C .在复平面内,z 对应的点位于第三象限
D .2
z = 23.下列关于复数的说法,其中正确的是( )
A .复数(),z a bi a b R =+∈是实数的充要条件是0b =
B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠
C .若1z ,2z 互为共轭复数,则12z z 是实数
D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称
24.下列结论正确的是( )
A .已知相关变量(),x y 满足回归方程ˆ9.49.1y
x =+,则该方程相应于点(2,29)的残差为1.1
B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好
C .若复数1z i =+,则2z =
D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥
25.已知i 为虚数单位,则下列选项中正确的是( )
A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-
D .对任意的复数z ,都有20z
26.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )
A .若z 为纯虚数,则实数a 的值为2
B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122
- C .实数12
a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2
27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).
A .38z =
B .z
C .z 的共轭复数为1
D .24z =
28.已知i 为虚数单位,下列说法正确的是( )
A .若,x y R ∈,且1x yi i +=+,则1x y ==
B .任意两个虚数都不能比较大小
C .若复数1z ,2z 满足2212
0z z +=,则120z z ==
D .i -的平方等于1
29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .5
30.已知i 为虚数单位,下列命题中正确的是( )
A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==
B .2(1)()a i a +∈R 是纯虚数
C .若2212
0z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数
【参考答案】***试卷处理标记,请不要删除
一、复数选择题
1.B
【分析】
由复数除法运算直接计算即可.
【详解】
.
故选:B.
解析:B
【分析】
由复数除法运算直接计算即可.
【详解】
(
)
211i i i i
++==--. 故选:B. 2.D
【分析】
先由复数的运算化简复数z ,再运用复数的几何表示可得选项.
【详解】
由已知得,
所以复数z 在复平面上所对应的点为,在第四象限,
故选:D.
解析:D
【分析】
先由复数的运算化简复数z ,再运用复数的几何表示可得选项.
由已知得()()()()312317171+21+212555
i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为1
7,55⎛⎫-
⎪⎝⎭,在第四象限, 故选:D.
3.D
【分析】
求出复数,然后由乘法法则计算.
【详解】
由题意,

故选:D .
解析:D
【分析】
求出复数z ,然后由乘法法则计算z z ⋅.
【详解】 由题意12122i z i i i
-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.
故选:D .
4.A
【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.
【详解】
,所以复数对应的坐标为在第一象限,
故选:A
解析:A
【分析】
利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限.
【详解】
44(1)2(1)12
i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A
5.A
【分析】
根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义
【详解】
由复数为纯虚数,则,解得
则 ,所以,所以
故选:A
解析:A
【分析】
根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a +
【详解】
()()()()()()2221222121122111
i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101
a a a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--
,所以z a +=
故选:A
6.A
【分析】
根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.
【详解】
因为,
所以,
复数的共扼复数是,
故选:A
解析:A
【分析】
根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解.
【详解】
因为313i z i ⋅=-, 所以()13133i z i i i i
-==-=+-, 复数z 的共扼复数是3z i =-,
故选:A
7.B
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.
【详解】

复数()为纯虚数,则 ,则
所以
故选:B
解析:B
【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.
【详解】 由()()()()
()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202
a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =
所以112ai i -=-=故选:B
8.A
【分析】
由得出,再由复数的四则运算求解即可.
【详解】
由题意得,则.
故选:A
解析:A
【分析】
由()1,1-得出1i z =-+,再由复数的四则运算求解即可.
【详解】
由题意得1i z =-+,则
1i 1i i 111i 1i i i 1
z z -----+==⋅==-++-. 故选:A 9.B
【分析】
由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.
因为的实部为,所以可设复数,
则其共轭复数为,又,
所以由,可得,即,因此.
故选:B.
解析:B
【分析】
由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.
【详解】
因为z ,所以可设复数(),z yi x R y R =∈∈,
则其共轭复数为z yi =,又z z =,
所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此
z =
故选:B. 10.D
【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.
【详解】
因为,
所以,,
所以,
故选:D.
解析:D
【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.
【详解】
因为1z i =+, 所以1z i =-,12z i +=+,
所以()()()1123z z i i i ⋅+=-⋅+=-==
故选:D.
11.C
【分析】
由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.
【详解】
由题意,,
∴,对应点,在第三象限.
故选:C .
解析:C
【分析】 由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论.
【详解】 由题意2021(2)i z i
i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255
z i =--,对应点12(,)55--,在第三象限. 故选:C .
12.D
【分析】
先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案
【详解】
解:因为,
所以,
所以共轭复数在复平面内的对应点位于第四象限,
故选:D
解析:D
【分析】 先对41i z i
=
+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】 解:因为244(1)4(1)=2(1)22221(1)(1)2
i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-, 所以共轭复数z 在复平面内的对应点位于第四象限,
故选:D
13.B
【分析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求.
【详解】
由,
得,

则的虚部是1.
故选:.
解析:B
【分析】 利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求.
【详解】
由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5
i i i i z i i i i ++--====-++-, ∴2z i =+, 则z 的虚部是1.
故选:B .
14.C
【分析】
首先根据复数相等得到,,再求的模即可.
【详解】
因为,所以,.
所以.
故选:C
解析:C
【分析】
首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.
【详解】
因为()21a i b i i bi +=+=-+,所以1a =-,2b =.
所以12a bi i -=--=
=
故选:C 15.C
【分析】
由复数除法求出,再由模计算.
【详解】
由已知,
所以.
故选:C .
解析:C
【分析】
由复数除法求出z ,再由模计算.
【详解】
由已知21(1)21(1)(1)2
i i i z i i i i ---====-++-, 所以1z i =-=.
故选:C .
二、多选题
16.AD
【分析】
因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量,
所以,,|z|=,,
故选:AD
解析:AD
【分析】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,
所以12z i =-+,12z i =--,|z 5z z ⋅=,
故选:AD
17.AC
【分析】
根据复数的运算及复数的概念即可求解.
【详解】
因为复数,
所以z 的虚部为1,,
故AC 错误,BD 正确.
故选:AC
解析:AC
【分析】
根据复数的运算及复数的概念即可求解.
【详解】 因为复数2020450511()22(1)11112
i i i z i i i i +++=====+---,
所以z 的虚部为1,||z =
故AC 错误,BD 正确.
故选:AC
18.BC
【分析】
分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.
【详解】
对于AB 选项,当时,,,此时复数在复平面内的点
解析:BC
【分析】 分02θπ-<<、0θ=、02
πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数
1z ,利用复数的概念可判断D 选项的正误. 【详解】
对于AB 选项,当02θπ-
<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;
当0θ=时,1z R =-∈; 当02π
θ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.
A 选项错误,
B 选项正确;
对于C 选项,1z ==,C 选项正确;
对于D 选项,()()
11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数
1z
的虚部为sin θ-,D 选项错误. 故选:BC. 19.ABCD
【分析】
先根据复数的除法运算计算出,再依次判断各选项.
【详解】

,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.
【点睛】
本题考查复数的除法
解析:ABCD
先根据复数的除法运算计算出z ,再依次判断各选项.
【详解】
()()()2121111i z i i i i --===---+-+--,
z ∴==,故A 正确;()2
212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;
故选:ABCD.
【点睛】
本题考查复数的除法运算,以及对复数概念的理解,属于基础题.
20.ACD
【分析】
分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.
【详解】
因为,所以A 正确;
因为,,所以,所以B 错误;
因为,所以C 正确; 因为,所以,所以D 正确
解析:ACD 【分析】 分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.
【详解】
因为111312244
z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;
因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭
=,12z =,所以2z z ≠,所以B 错误;
因为32
11122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;
因为633
1z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,
故选:ACD.
【点睛】
本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.
【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.
【详解】
A 选项,设复数,则,因为,所以,因此,即A 正确;
B 选项,设复数,则,
因为,所,若,则;故B 错;
C 选项,设
解析:AC
【分析】
根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.
【详解】
A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;
B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,
因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;
C 选项,设复数(,)z a bi a b R =+∈,则
22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z
∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,
则()()()()12z z a bi c di ac bd ad bc i =++=-++,
因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨
=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.
故选:AC.
【点睛】
本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.
22.AB
【分析】
先由复数除法运算可得,再逐一分析选项,即可得答案.
【详解】
由题意得:,即,
所以z 不是纯虚数,故A 错误;
复数z 的虚部为,故B 错误;
在复平面内,对应的点为,在第三象限,故C 正确
【分析】 先由复数除法运算可得1122
z i =-
-,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122
z i i -=
=---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12
-,故B 错误; 在复平面内,z 对应的点为1
1(,)22--,在第三象限,故C 正确;
2
z ==,故D 正确. 故选:AB
【点睛】
本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.
23.AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于:复数是实数的充要条件是,显然成立,故正确;
对于:若复数是纯虚数则且,故错误;
对于:若,互为共轭复数
解析:AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;
对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;
对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2
122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;
【点睛】
本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.
24.ABD
【分析】
根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.
【详解】
当时,,则该方程相应于点(2,29)的残差为,则A 正确;
在两个变量
解析:ABD
【分析】
根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.
【详解】
当2x =时,ˆ9.429.127.9y
=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;
在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;
1z i =-,z ==C 错误;
由否定的定义可知,D 正确;
故选:ABD
【点睛】
本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 25.AB
【分析】
求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.
【详解】
解:对于,复数的模,故正确;
对于,若复数,则,在复平面内对应的点的坐标为,在第四
解析:AB
【分析】
求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.
【详解】
解:对于A ,复数34z i =+的模||5z ==,故A 正确;
对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;
对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,
则223402240m m m m ⎧+-=⎨--≠⎩
,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.
故选:AB .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 26.ACD
【分析】
首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
∴选项A :为纯虚数,有可得,故正确
选项B
解析:ACD
【分析】
首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
()(12)2(12)z a i i a a i =++=-++
∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩
可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨
+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12
a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确
故选:ACD
【点睛】
本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及
性质、相等关系等确定参数的值或范围
27.AB
【分析】
利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.
【详解】
解:,且,
复数在复平面内对应的点位于第二象限
选项A:
选项B: 的虚部是
选项C:
解析:AB
【分析】
利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.
【详解】
解:z a =+,且2z =224a +∴=,=1a ±
复数z a =+在复平面内对应的点位于第二象限1a ∴=-
选项A : 3323(1)(1)+3(1)+3())8-+=---+=
选项B : 1z =-
选项C : 1z =-的共轭复数为1z =--
选项D : 222(1)(1)+2()2-+=--=--
故选:AB .
【点睛】
本题考查复数的四则运算及共轭复数,考查运算求解能力.
求解与复数概念相关问题的技巧:
复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.
28.AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,且,根据复数相等的性质,则,故正确;
对于选项B ,
解析:AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;
对于选项B ,∵虚数不能比较大小,故正确;
对于选项C ,∵若复数1=z i ,2=1z 满足2212
0z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2
=1i --,故不正确;
故选:AB .
【点睛】
本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.ABC
【分析】
设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设,∴,
∴,
∴,解得:,
∴实数的值可能是.
故选:ABC.
【点
解析:ABC
【分析】
设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方
程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222
223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩
, ∴2
44(3)04
a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.
故选:ABC.
【点睛】
本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.
30.BD
【分析】
选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入
,验证结果是纯虚数,所以正确.
【详解】
取,,则,
但不满足,故A 错误;
,恒成
解析:BD
【分析】
选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以
正确;选项C :取1z i =,21z =,2212
0z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.
【详解】
取x i =,y i =-,则1x yi i +=+,
但不满足1x y ==,故A 错误;
a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,
故B 正确;
取1z i =,21z =,则2212
0z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,
故D 正确.
故选:BD .
【点睛】
本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

相关文档
最新文档