北京市西城区第四中学数列的概念高考重点题型及易错点提醒百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题
1.数列1,3,5,7,9,--的一个通项公式为( )
A .21n a n =-
B .()1(21)n
n a n =--
C .()
1
1(21)n n a n +=--
D .()
1
1(21)n n a n +=-+
2.已知数列{}n a 的前n 项和2
23n S n n =-,则10a =( )
A .35
B .40
C .45
D .50
3.设数列{}n a 的前n 项和为n S 已知(
)*
123n n a a n n N
++=+∈且1300n
S
=,若
23a <,则n 的最大值为( )
A .49
B .50
C .51
D .52
4.已知数列{}n a 前n 项和为n S ,且满足*
112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )
A .63243a a a ≤-
B .2736+a a a a ≤+
C .7662)4(a a a a ≥--
D .2367a a a a +≥+
5.已知数列{}n a 的前n 项和为(
)*
22n
n S n =+∈N ,则3
a
=( )
A .10
B .8
C .6
D .4
6.
已知数列,21,
n -21是这个数列的( )
A .第10项
B .第11项
C .第12项
D .第21项
7

的一个通项公式是( )
A
.n a =
B
.n a =
C .n a =D
.n a =8.已知数列{}n a 满足11a =,()*11
n
n n a a n N a +=∈+,则2020a =( ) A .
1
2018
B .
1
2019 C .
1
2020
D .
1
2021
9.已知数列{}n a 满足: 12a =,11
1n n
a a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007
B .1008
C .1009.5
D .1010
10.在数列{}n a 中,11
4
a =-,1
1
1(1)n n a n a -=-
>,则2019a 的值为( ) A .
45
B .14
-
C .5
D .以上都不对
11.在数列{}n a 中,11a =,()*
1
22,21
n n a n n N a -=
≥∈-,则3
a =( )
A .6
B .2
C .
23
D .
211
12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174
B .184
C .188
D .160
13.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184
B .174
C .188
D .160
14.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,
12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被
4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24
B .26
C .28
D .30
15.已知数列{}n a 的前n 项和为n S ,若*1
n S n N n
=∈,,则2a =( ) A .12
-
B .16
-
C .
16
D .
12
16.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤
C .数列{}n a 的最小项为3a 和4a
D .数列{}n a 的最大项为3a 和4a 17.已知数列{}n a 满足2122
11
1,16,2
n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92
B .102
C .
81
82
D .112
18.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家
列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )
A .201920212S F =+
B .201920211S F =-
C .201920202S F =+
D .201920201S F =-
19.数列{}n a 满足:12a =,111n
n n
a a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-
B .1
6-
C .
16
D .6
20.在数列{}n a 中,()11
11,1(2)n
n n a a n a --==+
≥,则5a 等于
A .
3
2
B .
53 C .85
D .
23
二、多选题
21.若不等式1(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2
22.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )
A .0,2,n n a n ⎧=⎨⎩
为奇数为偶数
B .1(1)1n n a -=-+
C .2sin
2
n n a π
= D .cos(1)1n a n π=-+
23.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-
B .180S =
C .当0d >时,6140a a +>
D .当0d <时,614a a >
24.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12
d =
B .12
d =-
C .918S =
D .936S =
25.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >
D .110S >
26.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )
A .若100S =,则50a >,60a <;
B .若412S S =,则使0n S >的最大的n 为15;
C .若150S >,160S <,则{}n S 中7S 最大;
D .若89S S <,则78S S <.
27.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有
m n m n a a a +=+,则下列结论正确的是( )
A .11285a a a a +=+
B .56110a a a a <
C .若该数列的前三项依次为x ,1x -,3x ,则10103
a = D .数列n S n ⎧⎫

⎬⎩⎭
为递减的等差数列 28.已知数列{}2n
n
a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6
D .a 1,a 2,a 3可能成等差数列
29.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4
B .5
C .7
D .8
30.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
31.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-
B .310n
a n
C .2
28n S n n =- D .2
4n S n n =-
32.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的
是( ) A .110S =
B .10n n S S -=(110n ≤≤)
C .当110S >时,5n S S ≥
D .当110S <时,5n S S ≥
33.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<
B .22
415
4
a a +≥
C .15
11
1a a +> D .1524a a a a ⋅>⋅
34.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-
B .23n a n =+
C .2
23n S n n =-
D .2
4n S n n =+
35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <
D .613S S =
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.C 解析:C 【分析】
分别观察各项的符号、绝对值即可得出. 【详解】
数列1,-3,5,-7,9,…的一个通项公式()()112n
n a n =--. 故选C . 【点睛】
本题考查了球数列的通项公式的方法,属于基础题.
2.A
解析:A 【分析】
利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.
【详解】
223n S n n =-,
n 2∴≥时,1n n n a S S -=-
22(23[2(1)3(1)]n n n n )=-----=45n
1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35
故选:A. 【点睛】
本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .
(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n
12-=-便可求出当n 2

时n a 的表达式.
(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .
3.A
解析:A 【分析】
对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n
S =,发现不存在这样的偶数能满
足此式,当n 为奇数时,可得21+34
2
n n n S a -=+,再结合23a <可讨论出n 的最大值.
【详解】
当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++
(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32
n n
=,
因为22485048+34850350
1224,132522
S S ⨯+⨯====,
所以n 不可能为偶数;
当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++
1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+
2134
2
n n a +-=+
因为24911493494
12722S a a +⨯-=+=+,
25111513514
13752
S a a +⨯-=+=+,
又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】
此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.
4.C
解析:C 【分析】
由条件可得出11n n n n a a a a -+-≤-,然后可得
3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.
【详解】
因为*
112(N 3)33n n n n S S S S n n --+≤+∈≥+,,
所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,
所以3243546576a a a a a a a a a a -≤-≤-≤-≤-
所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C 【点睛】
本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到
11n n n n a a a a -+-≤-,属于中档题.
5.D
解析:D 【分析】
根据332a S S =-,代入即可得结果. 【详解】
()()3233222224a S S =-=+-+=.
故选:D. 【点睛】
本题主要考查了由数列的前n 项和求数列中的项,属于基础题.
6.B
解析:B 【分析】
根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】
令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】
该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.
7.C
解析:C 【分析】
根据数列项的规律即可得到结论. 【详解】
因为数列3,7,11,15⋯的一个通项公式为41n -,


的一个通项公式是n a = 故选:C . 【点睛】
本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.
8.C
解析:C 【分析】
根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:
11
n
n n a a a +=
+, ∴两边同时取倒数得
11111n n n n
a a a a ++==+, 即11
11n n
a a ,
即数列1n a ⎧⎫
⎨⎬⎩⎭
是公差1d =的等差数列,首项为
1
11a .
则1
1(1)1n
n n a =+-⨯=, 得1n a n
=
, 则20201
2020
a =
, 故选:C 【点睛】
本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.
9.D
解析:D 【分析】
根据题设条件,可得数列{}n a 是以3为周期的数列,且313
2122
S =+-=,从而求得2017S 的值,得到答案. 【详解】
由题意,数列{}n a 满足: 12a =,11
1n n
a a +=-

可得23411
1,121,1(1)2,22
a a a =-
==-=-=--=,
可得数列{}n a 是以3为周期的数列,且3132122
S =+-= 所以20173
672210102
S =⨯+=. 故选:D. 【点睛】
本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.
10.A
解析:A 【分析】
根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】
由114
a =-,111(1)n n a n a -=->知
211
15a a =-= 321415
a a =-
= 41311
14
a a a =-
=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴201934
5
a a == 故选:A 【点睛】
本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题
11.C
解析:C 【分析】
利用数列的递推公式逐项计算可得3a 的值. 【详解】
()*
1
22,21
n n a n n N a -=
≥∈-,1
1a =,212221
a a ∴=
=-,3222
213a a =
=-.
故选:C. 【点睛】
本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.
12.A
解析:A 【分析】
根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:
3,4,6,9,13,18,24,1,2,3,4,5,6,
所以11n n n a a -=--(2n ≥),且13a =,
所以()()()
112211n n n n n a a a a a a a a ---=-+-+
+-+
()()12213n n =-+-+
+++
()()()1111332
2
n n n n -+--=+=+.
所以191918
31742
a ⨯=+=. 故选:A 【点睛】
本小题主要考查累加法,属于中档题.
13.B
解析:B 【分析】
根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】
3,4,6,9,13,18,24,1,2,3,4,5,6,
所以()1112,3n n a a n n a --=-≥=,
所以()()()
112211n n n n n a a a a a a a a ---=-+-+
+-+
()()1213n n =-+-+
++()()()1111332
2
n n n n -+⋅--=
+=+.
所以191918
31742
a ⨯=+=. 故选:B 【点睛】
本小题主要考查数列新定义,考查累加法,属于基础题.
14.B
解析:B 【分析】
先写出新数列的各项,找到数列的周期,即得解. 【详解】
由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,
则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.
15.A
解析:A 【分析】
令1n =得11a =,令2n =得2121
2
S a a =+=可解得2a . 【详解】 因为1n S n =
,所以111
11
a S ===, 因为21212S a a =+=,所以211
122
a =-=-. 故选:A
16.C
解析:C 【分析】
令n n b na =,由已知得121n n b b n +-=+运用累加法得2
+12n b n =,从而可得
12
+
n a n n =,作差得()()()
+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<
<,
由此可得选项. 【详解】
令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113+
+122
n
n n b n --==,所以2+1212+n n
b n a
n n n n
===, 所以()()()()
+13+41212+1+
++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,
所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a ,
即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,
故选:C. 【点睛】
本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.
17.B
解析:B 【分析】
本题先根据递推公式进行转化得到
21
112n n n n a a a a +++=.然后令1n n n
a b a +=,可得出数列{}n b 是等比数列.即11322n
n n a a +⎛⎫
= ⎪⎝⎭
.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二
次函数的知识可得数列{}n a 的最大项. 【详解】
解:由题意,可知: 21
112n n n n
a a a a +++=. 令1n n n a
b a +=,则11
2
n n b b +=. 2
11
16a b a =
=, ∴数列{}n b 是以16为首项,
1
2
为公比的等比数列. 1
11163222n n
n b -⎛⎫
⎛⎫
∴== ⎪
⎪⎝⎭
⎝⎭

∴11322n
n n a a +⎛⎫= ⎪⎝⎭
. ∴1
211322a
a ⎛⎫
= ⎪⎝⎭
, 2
3
21322a a ⎛⎫
= ⎪⎝⎭

1
11322n n n a a --⎛⎫
= ⎪⎝⎭

各项相乘,可得:
121
11111(32)222n n n
a a --⎛⎫⎛⎫⎛⎫
=⋯ ⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭

(1)
2
511()22n n n --⎛⎫
= ⎪
⎝⎭ 21
15(1)
22
1122n n n
---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭
211
5522
12n n n --+⎛⎫= ⎪⎝⎭
2
1(1110)2
12n n -+⎛⎫= ⎪⎝⎭

令2()1110f n n n =-+,
则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,
()f n ∴的最小值为20-. ∴2
11
(1110)(20)10
2
2
101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭

∴数列{}n a 的最大项为102.
故选:B . 【点睛】
本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;
18.B
解析:B 【分析】
利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=++++
+++,可得
21n n F S +=+,代入2019n =即可求解.
【详解】
由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++
1211232n
n n n n n n n n F F F F F F F F F -------=+++=++++=
123211n n n n F F F F F F ---=++++
+++,
所以21n n F S +=+,令2019n =,可得201920211S F =-,
故选:B 【点睛】
关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得

21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.
19.A
解析:A 【分析】
根据递推公式推导出(
)4n n a a n N *
+=∈,且有1234
1a a a a
=,再利用数列的周期性可计算
出2018T 的值. 【详解】
12a =,()*111++=
∈-n
n n a a n N a ,212312a +∴==--,3131132
a -==-+,41
1121312a -
==+,5
1132113
a +
==-,()4n n a a n N *+∴=∈,且()123411
23123
a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,
201845042=⨯+,因此,()504
2018450421211236T T a a ⨯+==⨯=⨯⨯-=-.
故选:A. 【点睛】
本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.
20.D
解析:D 【解析】
分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解234512
2323
a a a a ==
==,,,.故选D 点睛:对于含有()1n
-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.
二、多选题 21.ABC 【分析】
根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】
根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减
解析:ABC 【分析】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n
-<恒成立,当n 为偶数时有1
2a n
<-恒成立,分别计算,即可得解. 【详解】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:1
2+a n
-<恒成立,
由12+n 递减,且1
223n
<+≤,
所以2a -≤,即2a ≥-, 当n 为偶数时有:1
2a n
<-恒成立, 由12n -
第增,且31
222n ≤-<, 所以3
2
a <
, 综上可得:322
a -≤<, 故选:ABC . 【点睛】
本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.
22.BD 【分析】
根据选项求出数列的前项,逐一判断即可. 【详解】
解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设;
选项D : ,符合题设
解析:BD 【分析】
根据选项求出数列的前4项,逐一判断即可. 【详解】
解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;
选项B :0
1(1)12,a =-+=1
2(1)10,a =-+=
23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin
2,2
a π
==22sin 0,a π==
332sin
22
a π
==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=
3cos 212,a π=+=4cos310a π=+=,符合题设.
故选:BD. 【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.
23.ABC 【分析】
因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项
解析:ABC 【分析】
因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质
961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,
140a <即可判断选项D ,进而得出正确选项.
【详解】
因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:
1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,
对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确;
对于选项B :()
()
11891018181802
2
a a a a S ++=
=
=,故选项B 正确;
对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;
对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,
所以614a a <,故选项D 不正确, 故选:ABC 【点睛】
关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.
24.BD 【分析】
由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.
因为,,所以公差. 故选:BD
解析:BD 【分析】
由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】
因为1937538a a a a +=+=+=, 所以()199998
3622
a a S +⨯=
==. 因为35a =,73a =,所以公差731
732
a a d -==--. 故选:BD
25.ABD 【分析】
转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】
因为,所以,即,
因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误
解析:ABD 【分析】
转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】
因为57S S =,所以750S S -=,即670a a +=,
因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137
131302
a a S a
+⨯==<,故C 错误; 所以()111116
111102
a a S a
+⨯=
=>,故D 正确.
故选:ABD.
26.ABD 【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】
对于A :因为正数,公差不为0,且,所以公差, 所以,即,
根据等差数列的性质可得,又, 所以,,故A 正
解析:ABD 【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】
对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()
02
a a S +=
=,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,
所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >,
所以890,0a a ><, 所以115815815()15215022a a a S a +⨯=
==>,116891616()16()
022
a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为1158
15815()15215022
a a a S a +⨯=
==>,则80a >, 116891616()16()022
a a a a S ++=
==,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;
对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】
解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.
27.AC 【分析】
令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】
令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;
解析:AC 【分析】
令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由2
56110200a a a a d -=>,可
判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛
⎫=+- ⎪⎝
⎭,根据02>d ,可判定D 错误. 【详解】
令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;
由(
)()22
2
256110111
19209200a a a a a a d d
a
a d d -=++-+=>,所以56110a a a a >,故B
错误;根据等差数列的性质,可得()213x x x -=+,所以1
3x =,213
x -=, 故101110
9333
a =
+⨯=,故C 正确;
由()111222n
n n na d
S d d n a n
n -+
⎛⎫=
=+- ⎪⎝
⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭
是递增的等差数列,故D 错误. 故选:AC . 【点睛】
解决数列的单调性问题的三种方法;
1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;
2、作商比较法:根据
1
(0n n n
a a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.
28.ACD 【分析】
利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】
因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=
解析:ACD 【分析】
利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为
1
112a =+,1(1)2
n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得1
5
d =-. 故选ACD
29.BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】
依据题意,根数从上至下构成等差
解析:BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上
一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解.
【详解】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:
()()111110022
n n n d n n S na na --=+=+= 整理得120021a n n
=+-, 因为1a *∈N ,所以n 为200的因数,
()20012n n +-≥且为偶数, 验证可知5,8n =满足题意.
故选:BD.
【点睛】
关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.
30.ACD
【分析】
由题可得,,,求出可判断A ;利用二次函数的性质可判断B ;求出可判断C ;令,解出即可判断D.
【详解】
设等差数列的公差为,则,解得,
,,且,
对于A ,,故A 正确;
对于B ,的对称
解析:ACD
【分析】
由题可得16a d =-,0d <,21322
n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d d S n n =
->,解出即可判断D. 【详解】
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-, 10a >,0d ∴<,且()21113+
222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =
-的对称轴为132
n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故49S S =,故C 正确; 对于D ,令213022n d d S n n =
->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD.
【点睛】
方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
31.AD
【分析】
设等差数列的公差为,根据已知得,进而得,故,.
【详解】
解:设等差数列的公差为,因为
所以根据等差数列前项和公式和通项公式得:,
解方程组得:,
所以,.
故选:AD.
解析:AD
【分析】
设等差数列{}n a 的公差为d ,根据已知得1145460
a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.
【详解】
解:设等差数列{}n a 的公差为d ,因为450,5S a ==
所以根据等差数列前n 项和公式和通项公式得:11
45460a d a d +=⎧⎨+=⎩, 解方程组得:13,2a d =-=,
所以()31225n a n n =-+-⨯=-,24n S n n =-.
故选:AD.
32.BC
【分析】
设公差d 不为零,由,解得,然后逐项判断.
【详解】
设公差d 不为零,
因为,
所以,
即,
解得,
,故A 错误;
,故B 正确;
若,解得,,故C 正确;D 错误;
故选:BC
解析:BC
【分析】
设公差d 不为零,由
38a a =,解得192a d =-,然后逐项判断. 【详解】
设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,
即1127a d a d +=--, 解得19
2
a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭
,故A 错误; ()()()()()()221101110910,10102222
n n n n n n d d na d n n n a n n S S d ----=+
=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭
,解得0d >,()()22510525222
n d d d n n S n S =
-=--≥,故C 正确;D 错误; 故选:BC 33.ABC
【分析】
由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项.
【详解】
由题知,只需,
,A 正确;
,B 正确;
,C 正确;
,所以,D 错误.
【点睛】
本题考查等差数列的性
解析:ABC
【分析】
由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项.
【详解】
由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩
, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;
()()2222415223644
a a d d d d +=-++=-+>≥,B 正确; 2
1511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.
【点睛】
本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.
34.AC
【分析】
由求出,再由可得公差为,从而可求得其通项公式和前项和公式
【详解】
由题可知,,即,所以等差数列的公差,
所以,.
故选:AC.
【点睛】
本题考查等差数列,考查运算求解能力.
解析:AC
【分析】
由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和
前n 项和公式
【详解】
由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232
n n n S n n --=
=-. 故选:AC.
【点睛】
本题考查等差数列,考查运算求解能力. 35.AD
【分析】
由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误.
【详解】
解:,,故正确A.
由,当时,,有最小值,故B 错误.
,所以,故C 错误.

,故D 正确.
解析:AD
【分析】
由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.
【详解】
解:1385a a S +=,111110875108,90,02
d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.
9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.
61656+5415392
d S a d d d ⨯==-+=-, 131131213+
11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD
【点睛】
考查等差数列的有关量的计算以及性质,基础题.。

相关文档
最新文档