2014-2015学年度八年级数学第一学期期末试题

合集下载

2014-2015学年八年级(上)期末数学综合检测(一)及答案

2014-2015学年八年级(上)期末数学综合检测(一)及答案

2014-2015学年八年级(上)期末数学综合检测(一)(120分钟120分)一、选择题(每小题3分,共30分)1. (2014•泰州中考)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B. 1,1,C. 1,1,D. 1,2,2. (2014•荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm3.(2014•湘潭中考)下列各数中是无理数的是()1A.B.﹣2 C.0 D.74.(2014•德州中考)下列计算正确的是()A.﹣(﹣3)2=9 B.=3 C.﹣(﹣2)0=1 D.|﹣3|=﹣35. (2014•资阳中考)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限6. (2014•天津中考)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁7.(2014•汕尾中考)如图,能判定EB∥AC的条件是()A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE8.(2014•新疆中考)“六•一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是 ( ) A . B .C .D .9.(2014•孝感中考)下列二次根式中,不能与合并的是 ( ) A .B .C .D .10.(2014·昆明中考)如图,在△ABC 中,∠A =50°,∠ABC =70°,BD 平分∠ABC ,则∠BDC 的度数是 ( )A. 85°B. 80°C. 75°D. 70° 二、填空题(每小题3分,共24分)11.(2014•梅州中考)4的平方根是 .12.(2013•常州中考)已知点P (3,2),则点P 关于y 轴的对称 点P 1的坐标是 ,点P 关于原点O 的对称点P 2的坐标是 .13.(2014•汕尾中考)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为 ,平均数为 .14.( 2014•泉州中考)如图,直线a ∥b ,直线c 与直线a ,b 都相交,∠1=65°,则∠2= °.15. (2013•宁夏中考)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种. 16.(2014•泰州中考)点A (﹣2,3)关于x 轴的对称点A ′的坐标为 . 17.(2014•自贡中考)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则的值是 .DCBA18.(2014•汕尾)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.三、解答题(共66分)19. (8分) 计算:(1)(2014•新疆中考)(﹣1)3++(﹣1)0﹣.(2)(2014•孝感中考)(﹣)﹣2+﹣|1﹣|20.(6分) (2014•湖州中考)解方程组.21. (8分) (2014•益阳中考)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.22. (9分) (2014•珠海中考)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?23. (8分) (2014•湘潭中考)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.24. (7分) (2014•广东中考)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.(10分) (2013•鄂州中考)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).26. (10分) (2014•天津中考)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?答案及解析4【解析】选B.A、﹣(﹣3)2=9此选项错,B、=3,此项正确,C、﹣(﹣2)0=1,此项正确,D、|﹣3|=﹣3,此项错.故选B.7【解析】选D.A和B中的角不是三线八角中的角;C中的角是同一三角形中的角,故不能判定两直线平行.D中内错角∠A=∠ABE,则EB∥AC.故选D.8【解析】选B.设购买A型童装x套,B型童装y套,由题意得,.故选B.13【解析】6出现的次数最多,故众数为6,平均数为:=6.答案:6,6.14【解析】∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,答案:65.15【解析】选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.答案:3.16【解析】∵点A(﹣2,3)关于x轴的对称点A′,∴点A′的横坐标不变,为﹣2;纵坐标为﹣3,∴点A关于x轴的对称点A′的坐标为(﹣2,﹣3).答案:(﹣2,﹣3).(2)原式=+2﹣|﹣2|=4+2﹣2 =4.20【解析】①+②得:5x=10,即x=2,21【解析】∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.24【解析】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.25【解析】(1)根据图象信息:货车的速度V货==60(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);(3)设轿车从甲地出发x小时后再与货车相遇.∵V货车=60千米/时,V轿车==110(千米/时),∴110(x﹣4.5)+60x=300,解得x≈4.68(小时).答:轿车从甲地出发约4.68小时后再与货车相遇.26【解析】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.。

2014-2015学年度第一学期初二数学期末试卷及答案

2014-2015学年度第一学期初二数学期末试卷及答案
„„„„„„„„„„密„„„„封„„„„线„„„„内„„„„不„„„„要„„„„答„„„„题„„„„„„„„„„
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D

八年级上册2014-2015期末测试10套题

八年级上册2014-2015期末测试10套题

2014-2015年新人教版八年级数学上册期末测试(一)班级 姓名一、选择题:(3′×10=30′)1.如图所示,图中不是轴对称图形的是( )A B C D 2.三角形中,到三边距离相等的点是( ) A .三条高线的交点 B .三条中线的交点 C .三条角平分线的交点 D .三边垂直平分线的交点 3. 下列各式是完全平方式的是()A . 412+-x x B . 241x + C. 22b ab a ++ D. 122-+x x4. 若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 5. 若一个多边形的每一个外角都等于60°,则它的内角和等于( ) A 、180° B 、720° C 、1080° D 、540° 6. 下列命题中,正确的说法有( )①两个全等三角形合在一起是一个轴对称图形; ②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. A .1个 B .2个 C .3个 D .4个7. 若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是( ) A .0 B .5 C .-5 D .-5或58. 一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9. 如图:已知∠A O P =∠B O P =15°,P C ∥O A ,P D ⊥O A ,若P C=4,则P D 的长为( )A .4B .3C .2D .1PA ECBD9题 10题10. 如图:等边三角形AB C 中,B D =CE ,A D 与B E 相交于点P ,则∠AP E 的度数是( ) A .45° B .55° C .60° D .75°二、填空题:(3′×10=30′) 11. 已知51=+x x ,那么221xx +=_______。

2014-2015八年级上册数学期末试卷

2014-2015八年级上册数学期末试卷

2014—2015学年上期期末质量调研试题八年级数学参考答案一、选择题(每小题3分,共24分) 1. A 2. B 3.A 4.C 5. C 6.D 7.C 8.D 二、填空题(每小题3分,共21分)9. 6a 4b 4 10.20 11. 70 12. (3)(3)mn m m +- 13. 75° 14. 2 15.22015α三、解答题(本大题共8小题,满分75分) 16.解:23xy -…………………………………………………………5分(2)22()()b a a b ----或……………………………………………………5分17. (8分)解;(1)作出射线DN ………………………4分(2)ADF △是等腰直角三角形. ………8分18. (8分)解:原式=2(1)1(2)(2)2a a a aa a a a --∙=--++又由于为使分式有意义,a 不能取1、±2、0;则在﹣3<a <3范围内,整数a 只能取﹣1;…………………………6分 当a=﹣1时,原式==﹣1.…………………………………8分19. (9分) 解:解(1)A ′(2,3),B ′(3,2),C ′(1,1);……………6分 (2)点P 如图所示.…………………………9分20. (9分) 解:依题意可得:132xx-=- ……………………………………2分 去分母得:1﹣x =3(2﹣x ),去括号得:1﹣x =6﹣3x , 移项得:﹣x +3x =6﹣1, 解得:x =………………………………………………7分经检验,x =是原方程的解.………………………………………8分 因此x 的值是.…………………………………………9分 21.(10分)(1)证明:∵以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD′E,∴AD=AD′,……………………………………2分 ∵在△ABD 和△ACD′中,∴△ABD≌△ACD′;……………………………………5分(2)解:∵△ABD≌△ACD′, ∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°………………………………7分∵以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD′E, ∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.…………………………………………………………10分 22.(10分)11122x x(+)=1,…………………………………………………………2分解得:x =18,经检验得出:x =18是原方程的解, 则乙车单独运完此堆垃圾需运:2x =36,答:甲车单独运完需18趟,乙车单独运完需36趟;…………………………5分(2)设甲车每一趟的运费是a 元,由题意得: 12a +12(a ﹣200)=4800,解得:a =300.………………………………………………………………7分 则乙车每一趟的费用是:300﹣200=100(元), 单独租用甲车总费用是:18×300=5400(元), 单独租用乙车总费用是:36×100=3600(元), 3600<5400,故单独租用一台车,租用乙车合算.答:单独租用一台车,租用乙车合算……………………………………10分 23.(11分).解:(1)90°. ·················································································································· 3分 (2)①180αβ+=°. ········································································································ 4分 ∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠. 即BAD CAE ∠=∠.又AB AC AD AE ==,, ∴ABD ACE △≌△. ········································································································ 7分 ∴B ACE ∠=∠.∴B ACB ACE ACB ∠+∠=∠+∠. ∴B ACB β∠+∠=. ∵180B ACB α+∠+∠=°,∴180αβ+=°. ················································································································· 9分 ②当点D 在射线BC 上时,180αβ+=°. ······································································ 10分 当点D 在射线BC 的反向延长线上时,αβ=. ······························································ 11分。

山东省滨州市2014—2015学年度第一学期期末考试八年级数学试题(含详细解答)

山东省滨州市2014—2015学年度第一学期期末考试八年级数学试题(含详细解答)

山东省滨州市2014—2015学年度第一学期期末考试八年级数学试题第Ⅰ卷 选择题一、选择题:(本大题共12小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内) 1.下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 2.已知图中的两个三角形全等,则∠α度数是( )A. 50°B. 58°C. 60°D. 72°3.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或804.下列计算中,结果正确的是 ( ) A .236a a a =· B .()()26a a a =·3 C .()326a a = D .623a a a ÷=5.下列图形中,不是轴对称图形的是( )6.使分式14-x 有意义,则x 的取值范围是( ) A .x ≠ 1 B.x >1 C .x <1 D .x ≠-17.如图,画△ABC 中AB 边上的高,下列画法中正确的是( ) A. B. C. D.8.下列判定两个直角三角形全等的方法,错误的是 ( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两锐角对应相等9.下列运用平方差公式计算,错误..的是( )。

A .22))((b a b a b a -=-+ B .1)1)(1(2-=-+x x x C .12)12)(12(2-=-+x x x D .49)23)(23(2-=--+-x x x 10.若分式112x y -=,则分式4543x xy yx xy y+---的值等于( ) A .-35 B .35 C .-45 D .4511.如图,已知△ABC,O 是△ABC 内的一点,连接OB 、OC ,将∠ABO、∠ACO 分别记为∠1、∠2,则∠1、∠2、∠A、∠O 四个角之间的数量关系是( )A .∠1+∠0=∠A+∠2B .∠1+∠2+∠A+∠O=180°C .∠1+∠2+∠A+∠O=360°D .∠1+∠2+∠A=∠O12.如图,AB=AC ,AB 的垂直平分线交AB 于D ,交AC 于E ,BE 恰好平分ABC ∠,有以下结论:(1)ED=EC ;(2)BEC ∆的周长等于2AE+EC ; (3)图中共有3个等腰三角形; (4)36A ∠=,其中正确的共有( )A .4个B .3个C .2个D .1个第Ⅱ卷 非选择题二、填空题:13.一个多边形的内角和等于其外角和的3倍,则这个多边形是 边形。

2014---2015年八年级数学期末试卷及答案

2014---2015年八年级数学期末试卷及答案

2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。

题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。

10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。

若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。

2014-2015学年人教版八年级数学上期末检测题及答案解析

2014-2015学年人教版八年级数学上期末检测题及答案解析

2014-2015学年人教版八年级数学上期末检测题及答案解析(本检测题满分:120分,时刻:120分钟)一、选择题(每小题3分,共36分)1.若点A(-3,2)关于原点对称的点是点B,点B关于轴对称的点是点C,则点C的坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-2,3)2. 下列标志中,能够看作是轴对称图形的是()3.下列讲法中错误的是()A.两个对称的图形对应点连线的垂直平分线确实是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个四边形对称D.轴对称指的是图形沿着某一条直线对折后能完全重合4.下列关于两个三角形全等的讲法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.期中正确的有()A.1个B.2个C.3个D.4个5. 如图,在△中,,平分∠,⊥,⊥,为垂足,则下列四个结论:(1)∠=∠;(2);(3)平分∠;(4)垂直平分.其中正确的有()A.1个B.2个C.3个D.4第5题图个6.若=2,=1,则2+2的值是()A.9 B.10 C.2 D.17. 已知等腰三角形的两边长,b满足532+-ba+(2+3-13)2=0,则此等腰三角形的周长为( )A.7或8B.6或10C.6或7D.7或108.如图所示,直线是的中垂线且交于,其中.甲、乙两人想在上取两点,使得,其作法如下:(甲)作∠、∠的平分线,分不交于则即为所求;(乙)作的中垂线,分不交于,则即为所求.关于甲、乙两人的作法,下列判定正确的是()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确9. 化简的结果是()A.0 B.1 C.-1 D.(+2)210. 下列运算正确的是()A.(-)•(22+)=-82-4 B.()(2+2)=3+3C.D.11. 如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥A C于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确第8题图第11题图第12题图12. 如图所示是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A.△ABD ≌△ACDB.AF 垂直平分EGC.直线BG ,CE 的交点在AF 上D.△DEG 是等边三角形 二、填空题(每小题3分,共24分)13. 多项式分解因式后的一个因式是,则另一个因式是 . 14. 若分式方程的解为正数,则的取值范畴是 .15. 如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④C D=DN .其中正确的是 (将你认为正确的结论的序号都填上).16. 如图所示,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF 交AD 于点G ,则AD 与EF 的位置关系是 .17. 如图所示,已知△ABC 和△BDE 均为等边三角形,连接AD 、CE ,若∠BAD=39°,则∠BCE= 度.18. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分不为AB 、AC 、BC 的中点,点P 为线段EF上一第17题图第18题图第15题图个动点,连接BP 、GP ,则△BPG 的周长的最小值是 .19.方程的解是x= .20. 已知一个等腰三角形两内角的度数之比为1∶4,则那个等腰三 角形顶角的度数为 . 三、解答题(共60分)21.(6分)利用乘法公式运算:(1)1.02×0.98; (2) 992.22.(6分)如图所示,已知BD=CD ,BF ⊥AC ,CE ⊥AB ,求证:点D 在∠BAC 的平分线上.23.(8分)如图所示,△ABC 是等腰三角形,D ,E 分不是腰AB 及腰AC 延长线上的一点,且BD=CE ,连接DE 交底BC 于G .求证:GD=GE .24.(8分) 先将代数式()211x x x +⨯+化简,再从-1,1两数中选取一个适当的数作为的值代入求值.25.(8分)在△ABC 中,AB=AC ,点E,F 分不在AB,AC 上,AE=AF ,BF 与CE 相交于点P ,求证:PB=PC ,并直截了当写出图中其他相等的线段.26.(8分)甲、乙两地相距,骑自行车从甲地到乙地,动身3小时20分钟后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.第22题图27. (8分)一辆汽车开往距离动身地180千米的目的地,动身后第一小时内按原打算的速度匀速行驶,一小时后以原先速度的1.5倍匀速行驶,并比原打算提早40分钟到达目的地.求前一小时的行驶速度.28. (8分)如图所示,在四边形ABCD中,AD∥BC,E为CD第28题图的中点,连接AE、BE,BE⊥AE,延长AE交BC 的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.期末检测题参考答案1.A 解析:点A (-3,2)关于原点对称的点B 的坐标是(3,-2),点B 关于轴对称的点C 的坐标是(3,2),故选A .2. D 解析:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那个图形叫做轴对称图形,只有图形D符合题意.3. C 解析:A 、B 、D 都正确;C.面积相等的两个四边形不一定全等,故不一定对称,错误.故选C .4. B 解析:①不正确,因为判定三角形全等必须有边的参与; ②正确,符合判定方法SSS ; ③正确,符合判定方法AAS ;④不正确,此角应该为两边的夹角才能符合判定方法SAS . 因此正确的讲法有2个.故选B . 5. C 解析:∵,平分∠,⊥,⊥, ∴ △是等腰三角形,⊥,,∠=∠=90°, ∴ ,∴ 垂直平分,∴(4)错误. 又∵ 所在直线是△的对称轴,∴(1)∠=∠;(2);(3)平分∠都正确. 故选C .6. B 解析:()2+2=2+2=(2+1)2+12=10.故选B .7. A 解析:由绝对值和平方的非负性可知,⎩⎨⎧=-+=+-,01332,0532b a b a 解得⎩⎨⎧==.3,2b a 分两种情形讨论:①2为底边长时,等腰三角形的三边长分不为2,3,3,2+3>3,满足三角形三边关系,现在三角形的周长为2+3+3=8;②当3为底边长时,等腰三角形的三边长分不为3,2,2,2+2>3,满足三角形三边关系,现在,三角形的周长为3+2+2=7.∴ 那个等腰三角形的周长为7或8.故选A.第8题答图8. D 解析:甲错误,乙正确.证明:∵是线段的中垂线,∴△是等腰三角形,即,∠=∠.作的中垂线分不交于,连接CD、CE,∴∠=∠,∠=∠.∵∠=∠,∴∠=∠.∵,∴△≌△,∴.∵,∴.故选D.9. B 解析:原式=÷(+2)=×=1.故选B.10. C 解析:A.应为,故本选项错误;B.应为,故本选项错误;C.,正确;D.应为,故本选项错误.故选C.11.B 解析:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP,∴△ARP≌△ASP(HL),∴AS=AR,∠RAP=∠SAP.∵AQ=PQ,∴∠QPA=∠QAP,∴∠RAP=∠QPA,∴QP∥AR.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,因此无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.12. D 解析:A.因为此图形是轴对称图形,正确;B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D.题目中没有60°条件,不能判定△DEG是等边三角形,错误.故选D.13. 解析:∵关于的多项式分解因式后的一个因式是,∴当时多项式的值为0,即22+8×2+=0,∴20+=0,∴=-20.∴,即另一个因式是+10.14.<8且≠4 解析:解分式方程,得,整理得=8-.∵>0,∴8->0且-4≠0,∴<8且8--4≠0,∴<8且≠4.15.①②③解析:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF.∴AC=AB,∠BAE=∠CAF,BE=CF,∴②正确.∵∠B=∠C,∠BAM=∠CAN,AB=AC,∴△ACN≌△ABM,∴③正确.∵∠1=∠BAE-∠BAC,∠2=∠CAF -∠BAC,又∵∠BAE=∠CAF,∴∠1=∠2,∴①正确,∴题中正确的结论应该是①②③.16.AD垂直平分EF解析:∵AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF.在Rt△AED和Rt△AFD中,∴△AED≌△AFD(HL),∴AE=AF.又AD是△ABC的角平分线,∴AD垂直平分EF(三线合一).17. 39 解析:∵△ABC和△BDE均为等边三角形,∴AB=BC,∠ABC =∠EBD=60°,BE=BD.∵∠ABD=∠ABC +∠DBC,∠EBC=∠EBD +∠DBC,∴∠ABD=∠EBC,∴△ABD≌△CBE,∴∠BCE=∠BAD =39°.18.3 解析:要使△PBG的周长最小,而BG=1一定,只要使BP+P G最短即可.连接AG交EF于M.∵△ABC是等边三角形,E、F、G分不为AB、AC、BC的中点,∴AG ⊥BC.又EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,∴当P点与E点重合时,BP+PG最小,即△PBG的周长最小,最小值是PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.19. 6 解析:方程两边同时乘(x-2)得4x-12=3(x-2),解得x=6,经检验得x=6是原方程的根.20.20°或120°解析:设两内角的度数为、4.当等腰三角形的顶角为时,+4+4=180°,=20°;当等腰三角形的顶角为4时,4++=180°,=30°,4=120°.因此等腰三角形的顶角度数为20°或120°.21. 解: (1) 原式=(1+0.02)(1-0.02)=1-0.000 4=0.999 6.(2) 原式=(100-1)2=10 000-200+1=9 801.22.分析:此题按照条件容易证明△BED≌△CFD,然后利用全等三角形的性质和角平分线的性质就能够证明结论.证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,∴△BED≌△CFD,∴DE=DF.又∵DE⊥AB,DF⊥AC,∴点D在∠BAC的平分线上.23. 分析:从图形看,GE,GD分不属于两个明显不全等的三角形:△GEC和△GBD.现在就要利用这两个三角形中已有的等量条件,结合已知添加辅助线,构造全等三角形.方法不止一种,下面证法是其中之一.证明:如图,过E作EF∥AB且交BC的延长线于F.在△GBD 及△GEF中,∠BGD=∠EGF(对顶角相等),①∠B=∠F(两直线平行,内错角相等),②又∠B=∠ACB=∠ECF=∠F,因此△ECF是等腰三角形,从而EC=EF.又因为EC=BD,因此BD=EF.③由①②③知△GBD≌△GFE (AAS),因此GD=GE.24.解:原式=(+1)×=,当=-1时,分母为0,分式无意义,故不满足;当=1时,成立,代数式的值为1.25.分析:先由已知条件按照SAS可证明△ABF≌△ACE,从而可得∠ABF=∠ACE,再由∠ABC=∠ACB可得∠PBC=∠PCB,依据等边对等角可得PB=PC.证明:因为AB=AC,因此∠ABC=∠ACB.又因为AE=AF,∠A=∠A,因此△ABF≌△ACE(SAS),因此∠ABF=∠ACE,因此∠PBC=∠PCB,因此PB=PC.相等的线段还有BF=CE,PF=PE,BE=CF.26.解:设的速度为千米/时,则的速度为千米/时.按照题意,得方程505020-=3.360x x解那个方程,得.经检验是原方程的根.因此.答:两人的速度分不为千米/时千米/时.27.解:设前一小时的速度为千米/时,则一小时后的速度为1.5千米/时, 由题意得1801802(1)1.53x x x --+=, 解那个方程得60x =.经检验,=60是所列方程的根,即前一小时的速度为60千米/时.28.分析:(1)按照AD ∥BC 可知∠ADC=∠ECF ,再按照E 是CD 的中点可证出△ADE ≌△FCE ,按照全等三角形的性质即可解答.(2)按照线段垂直平分线的性质判定出AB=BF 即可.证明:(1)∵ AD ∥BC (已知),∴ ∠ADC=∠ECF (两直线平行,内错角相等).∵ E 是CD 的中点(已知),∴ DE=EC (中点的定义).在△ADE 与△FCE 中,∠ADC=∠ECF ,DE=EC ,∠AED=∠CEF , ∴ △ADE ≌△FCE (ASA ),∴ FC=AD (全等三角形的性质).(2)∵ △ADE ≌△FCE ,∴ AE=EF ,AD=CF (全等三角形的对应边相等).又BE ⊥AE ,∴ BE 是线段AF 的垂直平分线,∴ AB=BF=BC+CF.∵ AD=CF (已证),∴ AB=BC+AD (等量代换).。

人教版2014-2015学年度八年级数学第一学期期末试题及答案

人教版2014-2015学年度八年级数学第一学期期末试题及答案

2014-2015学年度八年级第一学期期末试题数学卷一.选择题(共10小题,满分50分,每小题5分)1.下列图形是轴对称图形的是( )A .B .C .D .2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()3.如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是( )4. 如图,△ACB ≌△A ’CB ’,∠BCB ’=30°,则∠ACA ’的度数为( ) A .20° B .30°C .35°D .40°6.若分式有意义,则a 的取值范围是( )7.化简的结果是( )8. 若0a >且2x a =,3y a =,则x y a -的值为 ( )A .-1B .1C .23 D .329.如图,已知∠1=∠2,要得到△ABD ≌△ACD ,还需从下列条件中补选一个,则错误的选法是( )CABB 'A '10.图中直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的方案是A B C D二.填空题(共5小题,满分25分,每小题5分)11. 禽流感病毒的形状一般为球形,直径大约为0.000000102m ,该直径用科学记数法表示为 m .12.分解因式:x 3﹣4x 2﹣12x= _________ .13.如果分式x 1x 1--的值为零,那么x = ___ .14. 若2x 2a 3x 16+-+()是完全平方式,则a = _ _ .15.如图,Rt△ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为 __ .三.解答题(共7小题,满分75分) 16.(1). (6分)计算:220122013012 1.5201423----⨯+()()()(2). (6分)23y z 2y z z 2y --+-+()()()(3). (6分)2223322m n 3m n 4n ---÷ ()17.(8分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.18.(8分)解方程:.19.(9分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20. (10分)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.21.(10分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?22.(12分)如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,以相同的速度分别由A向B、由C向A爬行,经过t分钟后,它们分别爬行到了D、E处.设在爬行过程中DC与BE的交点为F.(1)当点D、E不是AB、AC的中点时,图中有全等三角形吗?如果没有,请说明理由;如果有,请找出所有的全等三角形,并选择其中一对进行证明.(2)问蜗牛在爬行过程中DC与BE所成的∠BFC的大小有无变化?请证明你的结论.2014-2015学年度八年级第一学期期末试题数学卷(参考答案)1.A2.B3.D4.B5.D6.C7.D8.C9.B 10.D 11.71.0210-⨯ 12. x (x+2)(x ﹣6) 13. -1 14. 7或-1 15. 10° 16 (1) 原式=4- 1.5+1=3.5(2) 23y z 2y z z 2y --+-+()()()=22223y 2yz z 4y z -+--()()=22y 6yz 4z --+(3)2223322m n 3m n 4n ---÷ () =443324m n 3m n 4n ---⋅÷=434323m n --+--()=3mn17. 解:原式=15a 2b ﹣5ab 2﹣3ab 2﹣15a 2b=﹣8ab 2,当a=,b=﹣时,原式=﹣8××=﹣. 18. 解:原方程即:.方程两边同时乘以(x+2)(x ﹣2),得x (x+2)﹣(x+2)(x ﹣2)=8.化简,得 2x+4=8.解得:x=2.检验:x=2时,(x+2)(x ﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.19. 证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB ,∴DE=AB .20. 解: ∵AD 是高 ∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°∵∠BAC=50°,∠C=70°,AE 是角平分线∴∠BAO=25°,∠ABC=60°∵BF 是∠ABC 的角平分线 ∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=125°.21. 解:(1)设这项工程的规定时间是x 天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.22. 解:(1)有全等三角形:△ACD≌△CBE;△ABE≌△BCD.证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴∠A=∠BCE=60°,CE=AD.在△ACD和△CBE中,,∴△ACD≌△CBE.(2)DC和BE所成的∠BFC的大小保持120°不变.证明:∵由(1)知△ACD≌△CBE,∠ACB=60°∴∠FBC+∠BCD=∠ACD+∠BCD=∠ACB=60°∴∠BFC=180°﹣(∠FBC+∠BCD) =120°.。

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014-2015年八年级上学期期末考试数学试卷时间90分钟 满分100分 2015、2、15一、填空题(每小题2分,共20分)1.空气的平均密度为00124.03/cm g ,用科学记数法表示为__________3/cm g . 2.计算:201510072514()[()]145-⨯= .3.分解因式:2244x xy y -+-= .4.若等腰三角形两边长分别为8,10,则这个三角形的周长为 . 5.若三角形三内角度数之比为1∶2∶3,最大边长是8,则最小边的长是 .6. 一个多边形内角和是一个四边形内角和的4倍,则这个 多边形的边数是 .7.如图,在△ABC 中,∠C =o90,∠A =o30, AB 的垂直平分线MN 交AC 于D ,CD =1cm ,连接BD ,则AC 的长为cm . 8.若ab +=7,ab =12,则22b a +=_________. 9. 如图,△ABC 中,∠BAC=120°,AD ⊥BC 于D ,且AB+BD=DC ,则∠C=______.10.若15a a+=,则4221a a a++= . 二、选择题:(每小题2分,共20分)11.下列计算正确的是( )A . 532x x x =+B .632x x x =⋅C .532)(x x =D .235x x x =÷12.下面有4个汽车标致图案,其中是轴对称图形的是 ( )① ② ③ ④A .②③④B .①②④C .①②③D .①③④13.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,则b a -的值为( ) A .-1 B .1 C .-3 D . 314.如图,△ABC ≌ΔADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25° 15.下列各式变形中,是因式分解的是( )A .1)(12222--=-+-b a b ab a B.)11(22222xx x x +=+C .4)2)(2(2-=-+x x xD .)1)(1)(1(124-++=-x x x x16.如果分式2312+--x x x 的值为零,那么x 等于( )A .-1B .1C .-1或1D .1或2 17.等腰三角形的一个角是48°,它的一个底角的度数是( )A .48°B .48°或42°C .42°或66°D .48°或66°18.下列命题中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一条中线将三角形分成两个面积相等的三角形C .两边和其中一边的对角分别相等的两个三角形全等D .三角形的三条高都在三角形内部19.不能用尺规作出唯一三角形的是 ( )A .已知两角和夹边B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角20.如图,ΔABC 中,AB =AC ,AB 的垂直平分线交AC 于P 点, 若AB =5 cm ,BC =3 cm ,则ΔPBC 的周长等于( ) A .4 cm B .6 cm C .8 cm D .10 cm三.解答题(本题7小题,共60分)21.计算:(每小题5分,共10分)(1)()2212()3xy xy -÷(2)2(2)(2)(2)4a b a b b a b a b b +-++-÷22.因式分解:(每小题5分,共10分)(1)22(2)(2)x y x y +-+(2)2()4a b ab -+23..(本题7分)先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个适当的数作为a 的值代入求值.24.(本题5分).解方程11121x x x ++=-+ 25..(本题8分)如图,在平面直角坐标系xOy A ()5,1-,B ()0,1-,C ()3,4-.(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,点,不写画法);(2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,;△ABC 的面积= .26.(本题10分)如图(1),Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D .AF平分∠CAB ,交CD 于点E ,交CB 于点F (1)求证:CE=CF .(2)将图(1)中的△ADE 沿AB 向右平移到△A ′D ′E ′的位置,使点E ′落在BC 边上,其它条件不变,如图(2)所示.试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.图(1) 图(2)27. (本题10分))水果店第一次用600元购进苹果若干斤,第二次又用600元购进苹果,但这次每斤苹果的进价是第一次进价的54倍,购进数量比第一次少了30斤.(1)求第一次苹果的进价是每斤多少元? (2)若要求这两次购进的苹果按同一价格全部销售完毕后获利不低于420元,问每斤苹果售价至少是多少元?A D CB E F A D BF C E A ′ D ′ E ′2014—2015学年上期期末考试八年级数学参考答案一、1、31.2410-⨯;2、514-;3、2(2)x y --;4、26或28;5、4;6、10;7、3;8、25; 9、020;10、24二、DCCBD ADBDC三、21、(1)解:()2212()3xy xy -÷2414()3x y xy =÷..................2分21411(4)3x y --=÷.................4分312xy =.................5分 (2)解:2(2)(2)(2)4a b a b b a b a b b +-++-÷2222424a b ab b a =-++-.................3分 2ab =.................5分 22、(1)解:22(2)(2)x y x y +-+[(2)(2)][(2)(2)]x y x y x y x y =++++-+.................2分 (33)()x y x y =+-.................4分3()()x y x y =+-.................5分(2)解:2()4a b ab -+2224a ab b ab =-++.................2分 222a ab b =++.................3分 2()a b =+.................5分23、解:22321(1)24a a a a -+-÷+- 22234()221a a a a a +--=+-+g .................2分21(2)(2)2(1)a a a a a -+-=+-g .................4分 21a a -=-.................5分 把0a =代入 原式02201-==-.................7分24、解:方程两边同乘以(2)(1)x x -+得:2(1)2(2)(1)x x x x ++-=-+.................2分解得: 14x =-.................4分检验:当14x =-时,(2)(1)0x x -+≠,所以,原方程的解为14x =-..................5分25、(1)图略,正确3分(2)(1,5)(1,0)(4,3)A B C ''',,......6分 △ABC 的面积=1537.52⨯⨯=.....8分 26、解:(1)∵∠ACB=90°,∴∠CFA=90°-∠CAF ∵CD ⊥AB ,∴∠CEF=∠AED=90°-∠EAD 又∵AF 平分∠CAB ,∴∠CAF=∠EAD∴∠CFA=∠CEF 。

2014-2015武汉市上学期期末八年级数学试卷及答案

2014-2015武汉市上学期期末八年级数学试卷及答案

2014-2015学年度第一学期期末考试八年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是( )A .线段B .角C .等腰三角形D .直角三角形 2. 分式||22x x --的值为零,则x 的值为( ) A . 0 B .2 C .-2 D .2或-2 3.若等腰三角形的两内角度数比为1:4,则它的顶角为( )度 A . 36或144 B . 20或120 C . 120 D . 20 4.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-5.下列计算错误的是( )A .33345a a a =- B .()3632b a b a =C .()()()523b a a b b a -=-- D .nm n m +=⋅6326.已知m 6x =,3nx =,则2m n x -的值为( )A .12B . 43C .9D .347.若代数式253+x 的值是负数,则x 的取值范围是( ) A . 25- x B . 52- x C . 25- x D .52- x8.一项工程需在规定的日期完成,如果甲队单独做,就要超规定的日期1天,如果乙队单独做,要超过规定的日期4天,现在由甲、乙两队各做3天,剩下的工程由乙队单独做,刚好在规定的日期完成,则规定日期为( )天.A. 6B. 7C. 8D. 99.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB+BC=BE ,则∠B 的度数是( )A .45°B .50°C . 55°D .60°10. 如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时, ∠OPM=50°,则∠AOB=( )A.40°B. 45°C. 50°D.55°.PA第Ⅱ卷(非选择题 共90分)二、填空题:(每题3分,共18分)11.若 ,则 的值是____________12. 计算: =____________ 13. 如图,△ABC 中,∠ACB=90°,CD 是高,若∠A=30°,BD=1,则AD=____________ 14. 若 则=____________ 15. 观察:l ×3+1=22 2×4+1=32 3×5+1=424×6+1=52……,请把你发现的规律用含正整数n (n≥2)的等式表示为____________ (n=2时对应第1个式子,……)16. 在平面直角坐标系中,A (4,0),B (0,4),D 在第一象限,且DO=DB,△DOA 为等腰三角形,则∠OBD 的度数为_____________三、解答题 (共72分)17.(本题满分6分)解分式方程:1712112-=-++x x x 18.(本题满分6分)(1) 分解因式 p p p 3)1)(4(++- (2)利用因式分解计算:22255755-19.(本题满分6分)如图,在△ABC 中,AB=AC ,D 为BC 边上一点,∠B=30°,∠DAB=45°. (1)求∠DAC 的度数;(2)证明:AB=CD . 20.(本题满分7分)计算(1) 24244422-+∙++-x x x x x (2)29631a a --+ 21.(本题满分7分)已知,41=+xx 求(1)221x x + (2)2)2(-x22.(本题满分8分)某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km , 提速后比提速前多行驶50km ,求动车提速后的平均速度.23.(本题满分10分)如图23-1,P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且PA=CQ ,连PQ 交AC 边于D.(1)证明:PD=DQ.(2)如图23-2,过P 作PE ⊥AC 于E ,若AB=2,求DE 的长.24.(本题满分10分)若一个四边形的一条对角线(相对顶点的连线段)把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.(1)如图24-1,在四边形ABCD 中,AD ∥BC ,∠BAD=120°,∠C=75°,BD 平分∠ABC .求证:BD 是四边形第19题图D CBA第13题图第23-1图第23-2图,211-=-yx yxy x y xy x ---+232)23)(32m n n m -+(6,5==-xy y x 22xy y x -ABCD 的和谐线;(2)如图24-2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC ,点A 、B 、C 均在格点上,请在扇形内外各找一个格点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线(分别标在答题卷给出的两个网格图上),并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,请画出图形,并直接写出∠BCD 的度数.25.(本题满分12分)四边形ACBD 是由等边△ABC 和顶角为120°的等腰△ABD 拼成,将一个60°角顶点放在D 处,将60°角绕D 点旋转,该60°角两边分别交直线BC 、AC 于M 、N .交直线AB 于E 、F 两点. (1) 当E 、F 分别在边AB 上时,如图25-1,求证:BM+AN=MN ;(2) 当E 边BA 的延长线上时,如图25-2,直接写出线段BM 、AN 、MN 之间的等量关系; (3) 在(1)的条件下,若AC=5,AE=1,求BM 的长.2014-2015学年八年级第一学期数学期末考试参 考 答 案一、选择 二、填空11、30; 12、2249m n -; 13、3;14、7; 15、21)1)(1(n n n =++-; 16、15°或45°或60°. 三、解答题17、去分母…… 1分 去括号…… 2分 解方程…… 4分 验最简公分母是否为0……5分 交代方程的根……6分18、(1)展开、整理、分解各1分 (2)用平方差1分,计算2分19、(1)求出中间量∠CDA=75°或∠CAB=120°……2分 求出∠DAC=75°……4分 (2) 证明AC=CD ……5分 AB=CD ……6分20、 (1)三项因式分解各1分,结果=2 1分 (2)最简公分母找对1分,通分后分子正确1分,结果=31-a 1分第25-2图第25-1图第24-1图第24-2图21、(1)2)11222-+=+xx x x (……2分 代值=14……3分 (2)条件变形为0142=+-x x ……5分结论展开为442+-x x ……6分 结果=3 ……7分22.解:提速前动车的速度为xkm/h ,则提速后动车的速度为(x+50)km/h .…1分5050150++=x …… 3分 解得x=150, …… 5分经检验知x=150是原方程的解, ...... 6分 则x+50=200, ...... 7分 所以提速后动车的速度为200km/h. (8)分 作PG ∥BC ,交AC 于G ,……1分 易知△APG 23.(1)是等边三角形,……2分∴AP=PG ,∵AP=CQ ,∴PG=CQ ,……3分可证∴△PGD ≌△QCD ,……4分 ∴PD=DQ ……5分(2)∵PE⊥A C ,△APG 是等边三角形, ∴EG=AE=AG/2,……7分由△PGD≌△QCD,有DG=CD=CG/2,……9分∴DE=EG+DG=AG/2+CG/2=AC/2=1……10分24.解:(1)证明△ADB 是等腰三角形.……1分 证明△BCD 为等腰三角形.……2分∴BD 是梯形ABCD 的和谐线.……3分(2)由题意作图为:图2,图3(图2……4分 图3……6分)(3)如图4,当AD=AC 时,∴∠BCD=60°+75°=135°.如图5,当AD=CD 时,∴∠BCD=90°如图6,当AC=CD 时,∴∠BCD=15°×3=45°. 一种情况给一分,图形全画对给一分。

20142015武汉市上学期期末八年级数学试卷及答案

20142015武汉市上学期期末八年级数学试卷及答案

2014-2015学年度第一学期期末考试八年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.下列几何图形不一定是轴对称图形的是( )A .线段B .角C .等腰三角形D .直角三角形 2. 分式||22x x --的值为零,则x 的值为( ) A . 0 B .2 C .-2 D .2或-2 3.若等腰三角形的两内角度数比为1:4,则它的顶角为( )度 A . 36或144 B . 20或120 C . 120 D . 20 4.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)(B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-5.下列计算错误的是( )A .33345a a a =- B .()3632b a b a = C .()()()523b a a b b a -=-- D .nm n m +=⋅6326.已知m 6x =,3nx =,则2m n x -的值为( )A .12B . 43C .9D .347.若代数式253+x 的值是负数,则x 的取值范围是( ) A . 25- x B . 52- x C . 25- x D .52- x8.一项工程需在规定的日期完成,如果甲队单独做,就要超规定的日期1天,如果乙队单独做,要超过规定的日期4天,现在由甲、乙两队各做3天,剩下的工程由乙队单独做,刚好在规定的日期完成,则规定日期为( )天.A. 6B. 7C. 8D. 99.如图,在△ABE 中,∠A=105°,AE 的垂直平分线MN 交BE 于点C ,且AB+BC=BE ,则∠B 的度数是( )A .45°B .50°C . 55°D .60°10. 如图,P 为∠AOB 内一定点,M 、N 分别是射线OA 、OB 上一点,当△PMN 周长最小时, ∠OPM=50°,则∠AOB=( )A.40°B. 45°C. 50°D.55°第Ⅱ卷(非选择题 共90分)二、填空题:(每题3分,共18分)11.若 ,则 的值是____________12. 计算: =____________ 13. 如图,△ABC 中,∠ACB=90°,CD 是高,若∠A=30°,BD=1,则AD=____________ 14. 若 则=____________ 15. 观察:l×3+1=22 2×4+1=32 3×5+1=424×6+1=52……,请把你发现的规律用含正整数n (n ≥2)的等式表示为____________ (n=2时对应第1个式子,……)16. 在平面直角坐标系中,A (4,0),B (0,4),D 在第一象限,且DO=DB,△DOA 为等腰三角形,则∠OBD 的度数为_____________三、解答题 (共72分)17.(本题满分6分)解分式方程:1712112-=-++x x x 18.(本题满分6分)(1) 分解因式 p p p 3)1)(4(++- (2)利用因式分解计算:22255755-19.(本题满分6分)如图,在△ABC 中,AB=AC ,D 为BC 边上一点,∠B=30°,∠DAB=45°..PABO第10题图第19题图D CBA第13题图 第9题图,211-=-yx yxy x yxy x ---+232)23)(32m n n m -+(6,5==-xy y x 22xyy x -(1)求∠DAC 的度数;(2)证明:AB=CD .20.(本题满分7分)计算(1) 24244422-+∙++-x x x x x (2)29631a a --+21.(本题满分7分)已知,41=+xx 求(1)221x x + (2)2)2(-x22.(本题满分8分)某次动车平均提速50km/h.用相同的时间,动车提速前行驶150km , 提速后比提速前多行驶50km ,求动车提速后的平均速度.23.(本题满分10分)如图23-1,P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且PA=CQ ,连PQ 交AC 边于D. (1)证明:PD=DQ.(2)如图23-2,过P 作PE ⊥AC 于E ,若AB=2,求DE 的长.24.(本题满分10分)若一个四边形的一条对角线(相对顶点的连线段)把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.(1)如图24-1,在四边形ABCD 中,AD ∥BC ,∠BAD=120°,∠C=75°,BD 平分∠ABC .求第23-1图第23-2图证:BD 是四边形ABCD 的和谐线;(2)如图24-2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC ,点A 、B 、C 均在格点上,请在扇形内外各找一个格点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线(分别标在答题卷给出的两个网格图上),并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,请画出图形,并直接写出∠BCD 的度数.25.(本题满分12分)四边形ACBD 是由等边△ABC 和顶角为120°的等腰△ABD 拼成,将一个60°角顶点放在D 处,将60°角绕D 点旋转,该60°角两边分别交直线BC 、AC 于M 、N .交直线AB 于E 、F 两点.(1) 当E 、F 分别在边AB 上时,如图25-1,求证:BM+AN=MN ;(2) 当E 边BA 的延长线上时,如图25-2,直接写出线段BM 、AN 、MN 之间的等量关系; (3) 在(1)的条件下,若AC=5,AE=1,求BM 的长.2014-2015学年八年级第一学期数学期末考试参 考 答 案一、选择 第25-2图第25-1图第24-1图第24-2图二、填空11、30; 12、2249m n -; 13、3;14、7; 15、21)1)(1(n n n =++-; 16、15°或45°或60°. 三、解答题17、去分母…… 1分 去括号…… 2分 解方程…… 4分 验最简公分母是否为0……5分 交代方程的根……6分18、(1)展开、整理、分解各1分 (2)用平方差1分,计算2分19、(1)求出中间量∠CDA=75°或∠CAB=120°……2分 求出∠DAC=75°……4分 (2) 证明AC=CD ……5分 AB=CD ……6分20、 (1)三项因式分解各1分,结果=2 1分 (2)最简公分母找对1分,通分后分子正确1分,结果=31-a 1分 21、(1)2)11222-+=+xx x x (……2分 代值=14……3分(2)条件变形为0142=+-x x ……5分结论展开为442+-x x ……6分 结果=3 ……7分22.解:提速前动车的速度为xkm/h ,则提速后动车的速度为(x+50)km/h .…1分5050150++=x …… 3分 解得x=150, …… 5分经检验知x=150是原方程的解, …… 6分 则x+50=200, …… 7分所以提速后动车的速度为200km/h. …… 8分23.(1)作PG ∥BC ,交AC 于G ,……1分 易知△APG 是等边三角形,……2分 ∴AP=PG ,∵AP=CQ ,∴PG=CQ ,……3分可证∴△PGD ≌△QCD ,……4分 ∴PD=DQ ……5分(2)∵PE⊥A C ,△APG 是等边三角形, ∴EG=AE=AG/2,……7分由△PGD≌△QCD,有DG=CD=CG/2,……9分∴DE=EG+DG=AG/2+CG/2=AC/2=1……10分24.解:(1)证明△ADB是等腰三角形.……1分证明△BCD为等腰三角形.……2分∴BD是梯形ABCD的和谐线.……3分(2)由题意作图为:图2,图3(图2……4分图3……6分)(3)如图4,当AD=AC时,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴∠BCD=90°如图6,当AC=CD时,∴∠BCD=15°×3=45°.一种情况给一分,图形全画对给一分。

山东省滨州市2014—2015学年八年级上期末考试数学试题及答案

山东省滨州市2014—2015学年八年级上期末考试数学试题及答案

山东省滨州市2014—2015学年度第一学期期末考试八年级数学试题第Ⅰ卷 选择题一、选择题:(本大题共12小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内) 1.下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 2.已知图中的两个三角形全等,则∠α度数是( )A. 50°B. 58°C. 60°D. 72°3.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或804.下列计算中,结果正确的是 ( ) A .236a a a =· B .()()26a a a =·3 C .()326a a = D .623a a a ÷=5.下列图形中,不是轴对称图形的是( )6.使分式14-x 有意义,则x 的取值范围是( ) A .x ≠ 1 B.x >1 C .x <1 D .x ≠-17.如图,画△ABC 中AB 边上的高,下列画法中正确的是( ) A. B. C. D.8.下列判定两个直角三角形全等的方法,错误的是 ( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两锐角对应相等9.下列运用平方差公式计算,错误..的是( )。

A .22))((b a b a b a -=-+ B .1)1)(1(2-=-+x x x C .12)12)(12(2-=-+x x x D .49)23)(23(2-=--+-x x x 10.若分式112x y -=,则分式4543x xy yx xy y+---的值等于( ) A .-35 B .35 C .-45 D .4511.如图,已知△ABC,O 是△ABC 内的一点,连接OB 、OC ,将∠ABO、∠ACO 分别记为∠1、∠2,则∠1、∠2、∠A、∠O 四个角之间的数量关系是( )A .∠1+∠0=∠A+∠2B .∠1+∠2+∠A+∠O=180°C .∠1+∠2+∠A+∠O=360°D .∠1+∠2+∠A=∠O12.如图,AB=AC ,AB 的垂直平分线交AB 于D ,交AC 于E ,BE 恰好平分ABC ∠,有以下结论:(1)ED=EC ;(2)BEC ∆的周长等于2AE+EC ; (3)图中共有3个等腰三角形; (4)36A ∠=,其中正确的共有( )A .4个B .3个C .2个D .1个第Ⅱ卷 非选择题二、填空题:13.一个多边形的内角和等于其外角和的3倍,则这个多边形是 边形。

人教版2014-2015八年级数学上期末试卷【精选3套】

人教版2014-2015八年级数学上期末试卷【精选3套】

一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB=A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。

)9、若1=x,21=y,则2244yxyx++的值是()A.2 B.4 C.23D.2110、把多项式322x x x-+分解因式结果正确的是()A.2(2)x x x-B.2(2)x x-C.(1)(1)x x x+-D.2(1)x x-11、如图,在△ABC中,∠C=错误!未找到引用源。

2014--2015八年级数学上期末测试(一)

2014--2015八年级数学上期末测试(一)

2014--2015八年级数学上期末测试(一)一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=16.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x+ A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+68.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x= _________ .14.(4分)(2012•攀枝花)若分式方程:有增根,则k= _________ .15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________ .(只需填一个即可)16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_________ 度.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________ .三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)(2012•咸宁)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________ .2014--2015八年级数学上期末测试(一)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属基础题5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.点评:此题考查了整式的有关运算公式和性质,属基础题.6.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因分解,也叫做分解因式.8.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则熟知以上知识是解答此题的关键.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用15分钟,利用时间得出等式方程即可.解答:解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出等关系中的各个部分,把列方程的问题转化为列代数式的问题.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.点评:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,SSA无法证明三角形全等.二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.解答:解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).点评:此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因再利用其它方法分解,注意分解要彻底.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=1或2.考点:分式方程的增根.专题:计算题.分析:把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=求出k的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较的题目.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)考点:全等三角形的判定.专题:开放型.分析:要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,用SAS可证全等.(也可添加其它条件).解答:解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).点评:本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图上的位置进行选取.16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.考点:三角形的外角性质;等腰三角形的性质.分析:根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计即可得解.解答:解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础熟记性质并准确识图是解题的关键.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.考点:平方差公式的几何背景.分析:根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.考点:整式的加减—化简求值.分析:首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.点评:熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:提公因式法与公式法的综合运用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a 2.20.(8分)(2012•咸宁)解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:.(1分)方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.(4分)化简,得2x+4=8.解得:x=2.(7分)检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.(8分)点评:此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判定.分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得论.(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.解答:解:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)垂直.延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.点评:利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理题目比较典型,难度适中.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?考点:分式方程的应用.专题:应用题.分析:(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.解答:解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.点评:本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思解答.24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.考点:轴对称-最短路线问题.分析:(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E 与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解答:解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小求出DP+PE的最小值即可是解题关键.-2014八年级数学上期末测试(一)一.选择题(共12小题,满分36分,每小题3分) 1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( ) A . B .C .D .2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )A . 0根B . 1根C . 2根D .3根 3.(3分)如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是( )A . A B=ACB . ∠BAE=∠CADC .B E=DCD . A D=DE 4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A . 180°B . 220°C . 240°D . 300° 5.(3分)(2012•益阳)下列计算正确的是( )A . 2a+3b=5ab B. (x+2)2=x 2+4 C . (ab 3)2=ab 6 D . (﹣1)0=1 6.(3分)(2012•柳州)如图,给出了正方形ABCD 的面积的四个表达式,其中错误的是( )A . (x+a )(x+a )B . x 2+a 2+2axC . (x ﹣a )(x ﹣a )D . (x+a )a+(x+a )x7.(3分)(2012•济宁)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣D.x2﹣5x+6=(x+2)(x5x+68.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=_________.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=_________.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________.(只需填一个即可)16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A= _________度.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)(2012•咸宁)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________.2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2014-2015学年度八年级数学第一学期期末试题
1.若分式 2a a b
+中的a 、b 的值同时扩大到原来的10倍,则分式的值( )。

A .是原来的20倍, B .是原来的10倍 C .是原来的110
, D .不变 2.0(2014)π-的计算结果是( )。

A .2013-π
B .π-2013
C .0
D .1 3.若分式 21x x -+的值为0,则x 的值为( )
A .-1
B .2
C .0
D .1-,2
4.若点P (m ,2013)与点Q (2014,n )关于y 轴对称,则( )。

A .m=-2014,n=2013
B .m=2014,n=-2013
C .m=2014,n=2013
D .m=-2014,n=-2013
5.下列运算中正确的是( )。

A .523)(x x =
B .52-a ·832a a =
C .9
132=- D .x x x 2)3(623=-÷ 6.下列运用平方差公式计算,错误..的是( )。

A .22))((b a b a b a -=-+ B .1)1)(1(2-=-+x x x
C .12)12)(12(2-=-+x x x
D .49)23)(23(2
-=--+-x x x
7.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )。

A .25
B .25或32
C .32
D .19
8.已知k x x ++162是完全平方式,则常数k 等于( )。

A .64 B .32 C .16 D .8
9.若分式
x
--25的值为负数,则x 的取值范围为( )。

A .2<x B .2>x C .2≠x D .5>x 10.一个长方形的面积为x xy x +-22
,长是x ,则这个长方形的宽是( )。

A .y x 2-
B .y x 2+
C .12--y x
D .12+-y x
第18题 11.化简6
296222-+÷+--x y x x x y x 的结果是( )。

A .3--x y x B . 3
2-x C .32--x y x D .322--x y x 12.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )。

A .120°
B .125°
C .130°
D .140°
13.如图点A 、D 、C 、E 在同一条直线上,AB ∥EF ,AB=EF ,∠B=∠F ,AE=10,AC=7,则CD 的长为( )。

A .5.5
B .4
C .4.5
D .3
14.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )。

二、用心填一填(每小题4分,共16分)
15.0.000608用科学记数法表示为 。

16.分解因式:=-22273b a 。

17.一个多边形内角和是一个四边形内角和的4倍,则这个
多边形的边数是 。

18.如图,在△ABC 中,∠BAC=50°,AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,则∠
第13题 A
. C .
D .
B . 第12题
三、耐心解一解(本大题满分62分)
19.计算(每小题5分,共10分)。

(1))2)(2()(22x y y x y x +-+-- (2)
21)2444(22+-÷+--+-x x x x x x x
20.解下列分式方程(每小题5分,共10分)。

(1)x x 352=- (2)631041245-+=+--x x x x
21.(11分)如图,在平面直角坐标系中,每个小正方形的边长为1,点A 的坐标为(-3,
2)。

请按要求分别完成下列各小题:
(1)把△ABC 向下平移4个单位得到△111C B A ,
画出△111C B A ,点1A 的坐标是 ;(4分)
(2)画出△ABC 关于y 轴对称的△222C B A ;
点2C 的坐标是 ;(4分)
(3)求△ABC 的面积。

(3分)
第21题
22.(8分)如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E。

求证:∠B=∠D.
第22题
23.(11分)某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同。

(1)篮球和足球的单价各是多少元?(7分)
(2)该校打算用1000元购买篮球和足球,恰好用完1000元,问有哪几种购买方案?(4分)
24.(12分)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;(8分)
(2)当∠A=40°时,求∠DEF的度数。

(4分)
第24题。

相关文档
最新文档