绥宁县第三中学校2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绥宁县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 定义运算:,,a a b
a b b a b ≤⎧*=⎨>⎩
.例如121*=,则函数()sin cos f x x x =*的值域为( )
A
.22⎡-⎢⎣⎦
B .[]1,1- C
.2⎤⎥⎣⎦ D
.1,2⎡-⎢⎣⎦ 2.
已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则
数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列 C .公比为a 的等比数列
D
.公比为的等比数列
3. 某几何体的三视图如图所示,则该几何体的表面积为(

A .
8+2 B .
8+8 C .
12+4 D .
16+4
4. 已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )
A .10个
B .9个
C .8个
D .1个
5. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )
A .﹣1<a <2
B .﹣3<a <6
C .a <﹣3或a >6
D .a <﹣1或a >2
6. 已知数列{}n a 的各项均为正数,
12a =,114
n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n 项和为5,
则n =( )
A .35
B . 36
C .120
D .121
7. 如果a >b ,那么下列不等式中正确的是( ) A .
B .|a|>|b|
C .a 2>b 2
D .a 3>b 3
8. 下列结论正确的是( )
A .若直线l ∥平面α,直线l ∥平面β,则α∥β.
B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.
C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2
D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α
9. 下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
10.已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )
A .
B .或36+
C .36﹣
D .或36﹣
11.方程x 2+2ax+y 2=0(a ≠0)表示的圆( )
A .关于x 轴对称
B .关于y 轴对称
C .关于直线y=x 轴对称
D .关于直线y=﹣x 轴对称
12.设x ,y ∈R ,且满足,则x+y=( )
A .1
B .2
C .3
D .4
二、填空题
13.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .
14.已知圆C 的方程为22
230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .
15.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;
③若实数x ,y 满足x 2+y 2=1,则
的最大值为

④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且

=5,则△ABC 的形状是直角三角形.
16.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .
17.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )
A .2
B .3
C .2
D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.
18.阅读如图所示的程序框图,则输出结果S 的值为 .
【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.
三、解答题
19.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问
题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.
(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;
(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
20.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.
(1)求证:BC1∥平面A1CD;
(2)若四边形BCC
B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.
1
21.求下列各式的值(不使用计算器):
(1);
(2)lg2+lg5﹣log21+log39.
22.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为

(1)求f(x)的对称轴方程和单调递增区间;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.
23.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,
该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?
24.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一
次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指
数不低于70,说明孩子幸福感强).
(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留
(2)从5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式:
2
2
()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
附表:
绥宁县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】
考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
2.【答案】A
【解析】解:∵,
∴a n=S(n)﹣s(n﹣1)=
=
∴a n﹣a n﹣1==a
∴数列{a n}是以a为公差的等差数列
故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
3.【答案】D
【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA
=2,AB=2,高为,
1
根据三视图得出侧棱长度为=2,
∴该几何体的表面积为2×(2×+2×2+2×2)=16,
故选:D
【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.4.【答案】A
【解析】解:作出两个函数的图象如上
∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数
∴函数y=f(x)在区间[0,10]上有5次周期性变化,
在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,
在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,
且函数在每个单调区间的取值都为[0,1],
再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,
且当x=1时y=0;x=10时y=1,
再结合两个函数的草图,可得两图象的交点一共有10个,
故选:A.
【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.
5.【答案】C
【解析】解:由于f (x )=x 3+ax 2
+(a+6)x ﹣1,
有f ′(x )=3x 2
+2ax+(a+6).
若f (x )有极大值和极小值,
则△=4a 2
﹣12(a+6)>0,
从而有a >6或a <﹣3, 故选:C .
【点评】本题主要考查函数在某点取得极值的条件.属基础题.
6. 【答案】C
【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114
n n n n
a a a a ++-=
+得
2214n n a a +-=,∴{}
2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >

n a =
111
2n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n
项和为
1111
1)(1)52222
n +++==,∴120n =,选C . 7. 【答案】D
【解析】解:若a >0>b ,则
,故A 错误;
若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误; 若a >0>b 且a ,b 互为相反数,则a 2>b 2,故C 错误; 函数y=x 3在R 上为增函数,若a >b ,则a 3>b 3,故D 正确; 故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
8. 【答案】B
【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确; B 选项中,垂直于同一平面的两个平面平行,正确;
C 选项中,直线与直线相交、平行、异面都有可能,故不正确;
D 中选项也可能相交. 故选:B .
【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.
9. 【答案】B
【解析】
考点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 10.【答案】D
【解析】
【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.
【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与
三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或

故选D
11.【答案】A
【解析】解:方程x2+2ax+y2=0(a≠0)可化为(x+a)2+y2=a2,圆心为(﹣a,0),
∴方程x2+2ax+y2=0(a≠0)表示的圆关于x轴对称,
故选:A.
【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.
12.【答案】D
【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,
∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,
∵(y﹣2)3+2y+sin(y﹣2)=6,
∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,
设f(t)=t3+2t+sint,
则f(t)为奇函数,且f'(t)=3t2+2+cost>0,
即函数f(t)单调递增.
由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2, 即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),
∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D . 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性
质.
二、填空题
13.【答案】﹣2
≤a ≤2
【解析】解:原命题的否定为“∀x ∈R ,2x 2
﹣3ax+9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立, 只需△=9a 2
﹣4×2×9≤0,解得:﹣2
≤a ≤2.
故答案为:﹣2≤a ≤2
【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.
14.【答案】30x y -+= 【解析】
试题分析:由圆C 的方程为2
2
230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距
,小于圆的半径,所以点()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时
11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.
考点:直线与圆的位置关系的应用.
15.【答案】 :①②③
【解析】解:对于①函数y=2x 3
﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x 0,y 0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x 0,2﹣y 0)也满足函数的解析式,则①正确; 对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;
对于③若实数x ,y 满足x 2+y 2
=1,则
=
,可以看作是圆x 2+y 2
=1上的点与点(﹣2,0)连线
的斜率,其最大值为,③正确;
对于④若△ABC 为锐角三角形,则A ,B ,π﹣A ﹣B 都是锐角,
即π﹣A﹣B<,即A+B>,B>﹣A,
则cosB<cos(﹣A),
即cosB<sinA,故④不正确.
对于⑤在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,
∵=|,

则,


又BC=5
则有
由余弦定理可得cosC<0,
即有C为钝角.
则三角形ABC为钝角三角形;⑤不正确.
故答案为:①②③
16.【答案】.
【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,
∵mn﹣m﹣n=3,
∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),
∴(m﹣1)+(n﹣1)≥2,
∴m+n≥6,
则d=≥3.
故答案为:.
【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.
17.【答案】A
【解析】
18.【答案】
2017
2016
【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=5
32
312S
=
-++-+-=⨯+)2017120151()5131()311(201720152 20172016
. 三、解答题
19.【答案】
【解析】【知识点】随机变量的期望与方差随机变量的分布列 【试题解析】(Ⅰ)的可能取值为



分布列为:
(Ⅱ)设先回答问题,再回答问题
得分为随机变量,则的可能取值为.



分布列为:

应先回答所得分的期望值较高.
20.【答案】
【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,
∵D为AB的中点,
∴DO∥BC1,
∵BC1⊄平面A1CD,DO⊂平面A1CD,
∴BC1∥平面A1CD.
解:∵底面△ABC是边长为2等边三角形,D为AB的中点,
四边形BCC
B1是正方形,且A1D=,
1
∴CD⊥AB,CD==,AD=1,
∴AD2+AA12=A1D2,∴AA1⊥AB,
∵,∴,
∴CD⊥DA1,又DA1∩AB=D,
∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,
∵矩形BCC1B1,∴BB1⊥BC,
∵BC∩CD=C∴BB1⊥平面ABC,
∵底面△ABC是等边三角形,
∴三棱柱ABC﹣A1B1C1是正三棱柱.
以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,
B(2,0,0),A(1,0,),D(,0,),A1(1,2,),
=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),
设直线A1D与平面CBB1C1所成角为θ,
则sinθ===.
∴直线A1D与平面CBB1C1所成角的正弦值为.
21.【答案】
【解析】解:(1)
=4+1﹣﹣
=1;
(2)lg2+lg5﹣log21+log39
=1﹣0+2
=3.
【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.
22.【答案】
【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,
∴ω=2,f(x)=cos(2x+).
令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.
令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,
可得函数的增区间为,k∈Z.
(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.
当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.
∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};
f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.
23.【答案】
【解析】 解:由条件=
,设
,
在中,由余弦定理得
.
=.
在中,由正弦定理,得


(分钟)
答到火车站还需15分钟.
24.【答案】(1)有95%的把握认为孩子的幸福感强与是否留守儿童有关;(2)35
. 【解析】
∴2
40(67918)4 3.84115252416
K ⨯⨯-⨯=
=>⨯⨯⨯. ∴有95%的把握认为孩子的幸福感强与是否留守儿童有关.
(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:1a ,2a ;幸福感强的孩子3人,记作:1b ,2b ,
3b .
“抽取2人”包含的基本事件有12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,12(,)b b ,
13(,)b b ,23(,)b b 共10个.
事件A :“恰有一人幸福感强”包含的基本事件有11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)
a b
共6个.
故63
P A==.
()
105
考点:1、茎叶图及独立性检验的应用;2、古典概型概率公式.。

相关文档
最新文档