三角形的稳定性测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章三角形
11.1.3 三角形的稳定性
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木条(图中的AB,CD两根木条),这样做是运用了三角形的
A.全等性B.灵活性
C.稳定性D.对称性
2.不是利用三角形稳定性的是
A.自行车的三角形车架B.三角形房架
C.照相机的三角架D.矩形门框的斜拉条
3.用五根木棒钉成如下四个图形,具有稳定性的有
A.1个B.2个
C.3个D.4个
4.我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;……,按照此规律,十二边形至少再钉上
A.11根B.10根
C.9根D.8根
二、填空题:请将答案填在题中横线上.
5.空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用的数学知识是__________.
6.如图,是边长为25 cm的活动四边形衣帽架,它应用了四边形的__________.
三、解答题:解答应写出文字说明、证明过程或演算步骤.
7.如图,ABCD是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE,小明的做法正确吗?
说说你的理由.
8.小辉用7根木条钉成一个七边形的木架,他为了使该木架稳固,想在其中加上四根木条,请你在图1、2、3中画出你的三种想法,并说明加上木条后使该木架稳固所用的数学道理.
人教版七年级上册
期末测试卷
一、选择题(每题3分,共30分)
1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )
A.-3℃B.8℃
C.-8℃D.11℃
2.下列立体图形中,从上面看能得到正方形的是( )
3.下列方程是一元一次方程的是( )
A.x-y=6 B.x-2=x
C.x2+3x=1 D.1+x=3
4.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( ) A.0.108×106B.10.8×104
C.1.08×106D.1.08×105
5.下列计算正确的是( )
A.3x2-x2=3 B.3a2+2a3=5a5
C.3+x=3x D.-0.25ab+1
4
ba=0
6.已知ax=ay,下列各式中一定成立的是( )
A.x=y B.ax+1=ay-1
C.ax=-ay D.3-ax=3-ay
7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )
A.100元B.105元
C .110元
D .120元
8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°
D .140°
9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )
A .m -n
B .m +n
C .2m -n
D .2m +n
10.下列结论:
①若a +b +c =0,且abc ≠0,则a +c 2b =-1
2

②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0;
④若|a |>|b |,则a -b
a +b
>0.
其中正确的结论是( )
A .①②③
B .①②④
C .②③④
D .①②③④
二、填空题(每题3分,共24分)
11.-⎪⎪⎪⎪⎪
⎪⎪
⎪-23的相反数是________,-15的倒数的绝对值是________.
12.若-13
xy 3与2x m -2y n +5是同类项,则n m
=________.
13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.
15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =1
2
∠AOB ,则射线OC 是∠
AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,
则小明家在学校北偏西25°方向上,其中正确的有________个.
16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上
角的日期数值为________.
17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)
△4________4△(-3)(填“>”“=”或“<”).
18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.
三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:
(1)-4+2×|-3|-(-5);
(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.
20.解方程:
(1)4-3(2-x)=5x;
(2)x -2
2
-1=
x +13-
x +8
6
.
21.先化简,再求值:2(x 2
y +xy )-3(x 2
y -xy )-4x 2
y ,其中x =1,y =-1.
22.有理数b 在数轴上对应点的位置如图所示,试化简|1-3b |+2|2+b |-|3b -2|.
23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.
24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.
(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.
(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,
并说明理由.
25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.
(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)
(2)某用户为了解日用电量,记录了9月前几天的电表读数.
该用户9月的电费约为多少元?
(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?
26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.
(1)A,B两点间的距离是________.
(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.
(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点
A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?
(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点
A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请
判断哪个结论正确,并求出正确结论的值.
(第26题)
答案一、1.D 2.A 3.D 4.D 5.D 6.D
7.A 8.D 9.C 10.B
二、11.2
3
;5 12.-8 13.-5
14.19°31′13″15.3 16.7
17.> 18.(6n+2)
三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;
(2)原式=12+(-8)÷4-1=12-2-1=9.
20.解:(1)去括号,得4-6+3x=5x.
移项、合并同类项,得-2x=2.
系数化为1,得x=-1.
(2)去分母,得3(x-2)-6=2(x+1)-(x+8).
去括号,得3x-6-6=2x+2-x-8.
移项、合并同类项,得2x=6.
系数化为1,得x=3.
21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy. 当x=1,y=-1时,
原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.
22.解:由题图可知-3<b<-2.
所以1-3b>0,2+b<0,3b-2<0.
所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.
23.解:如图所示.
24.解:(1)设∠COF=α,
则∠EOF=90°-α.
因为OF是∠AOE的平分线,
所以∠AOE=2∠EOF=2(90°-α)=180°-2α.
所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α. 所以∠BOE =2∠COF .
(2)∠BOE =2∠COF 仍成立.
理由:设∠AOC =β,
则∠AOE =90°-β,
又因为OF 是∠AOE 的平分线,
所以∠AOF =90°-β2.
所以∠BOE =180°-∠AOE =180°-(90°-β
)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+
β=12(90°+β).
所以∠BOE =2∠COF .
25.解:(1)0.5x ;(0.65x -15)
(2)(165-123)÷6×30=210(度),
210×0.65-15=121.5(元).
答:该用户9月的电费约为121.5元.
(3)设10月的用电量为a度.
根据题意,得0.65a-15=0.55a,
解得a=150.
答:该用户10月用电150度.
26.解:(1)130
(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;
若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.
故点C表示的数为-50或25.
(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.
65×4=260,260+30=290,
所以点D表示的数为-290.
(4)ON-AQ的值不变.
设运动时间为m s,
则PO=100+8m,AQ=4m.
由题意知N为PO的中点,
得ON=1
2
PO=50+4m,
所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.
故ON-AQ的值不变,这个值为50.。

相关文档
最新文档