江城区第四中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江城区第四中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 在ABC ∆中,2
2
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
2. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,
),则f (x )的图象的一个对
称中心是( )
A .(﹣,0)
B .(﹣,0)
C .(,0)
D .(,0)
3. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,﹣4) C .(4,﹣2)
D .(4,2)
4. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式
为( )
A .y=x+2
B .y=
C .y=3x
D .y=3x 3
5. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件
6. 一空间几何体的三视图如图所示,则该几何体的体积为(
A .12
B .6
C .4
D .2
7. 执行如图所示的程序框图,输出的z 值为( )
A .3
B .4
C .5
D .6
8. 已知函数x x x f 2sin )(-=,且)2(),3
1(log ),23(ln 3.02f c f b f a ===,则( )
A .c a b >>
B .a c b >>
C .a b c >>
D .b a c >>
【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.
9. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )
A .T=π,
B .T=π,A=2
C .T=2π,
D .T=2π,A=2
10.已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )
A .k
B .﹣k
C .1﹣k
D .2﹣k
11.设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}
B .{﹣1,4}
C .{﹣1,2}
D .{2,4}
12.设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )
A .(﹣∞,﹣1]
B .[﹣1,+∞)
C .(﹣1,+∞)
D .(﹣∞,﹣1)
二、填空题
13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 . 14.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .
15.已知||=1,||=2,与的夹角为,那么|+||﹣|= .
16.如果椭圆
+
=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .
17.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .
18.已知tan()3αβ+=,tan()24
π
α+
=,那么tan β= .
三、解答题
19.已知函数f (x0=

(1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f (x ﹣1)≤﹣.
20.如图,在Rt △ABC 中,∠ACB=
,AC=3,BC=2,P 是△ABC 内一点.
(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;
(2)若∠BPC=
,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.
21.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆
22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.
(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.
22.如图所示,已知在四边形ABCD 中,AD ⊥CD ,AD=5,AB=7,BD=8,∠BCD=135°. (1)求∠BDA 的大小 (2)求BC 的长.
23.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x ) (1)判断函数f (x )﹣g (x )的奇偶性,并予以证明. (2)求使f (x )﹣g (x )<0成立x 的集合.
24.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).
(Ⅰ)证明:数列{+}是等比数列;
(Ⅱ)令b n=,数列{b n}的前n项和为S n.
①证明:b n+1+b n+2+…+b2n<
②证明:当n≥2时,S n2>2(++…+)
江城区第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D 【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B =⇒=,即s
i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或
2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题.
2. 【答案】 B
【解析】解:由函数图象可知:A=2,由于图象过点(0,),
可得:2sin φ=,即sin φ=
,由于|φ|<

解得:φ=

即有:f (x )=2sin (2x+).
由2x+
=k π,k ∈Z 可解得:x=
,k ∈Z ,
故f (x )的图象的对称中心是:(,0),k ∈Z
当k=0时,f (x )的图象的对称中心是:(,0),
故选:B .
【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.
3. 【答案】C
【解析】解:复数z 满足iz=2+4i ,则有z=
=
=4﹣2i ,
故在复平面内,z 对应的点的坐标是(4,﹣2), 故选C .
【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.
4. 【答案】 C
【解析】解:模拟程序框图的运行过程,得; 该程序运行后输出的是实数对
(1,3),(2,9),(3,27),(4,81);
这组数对对应的点在函数y=3x
的图象上.
故选:C .
【点评】本题考查了程序框图的应用问题,是基础题目.
5. 【答案】A
【解析】解:由“|x ﹣2|<1”得1<x <3,
由x 2
+x ﹣2>0得x >1或x <﹣2,
即“|x ﹣2|<1”是“x 2
+x ﹣2>0”的充分不必要条件,
故选:A .
6. 【答案】D
【解析】11
=2(2+1)2232
V ⨯⨯⨯⨯=正四棱锥. 7. 【答案】D
【解析】解:执行循环体前,S=1,a=0,不满足退出循环的条件,执行循环体后,S=1×20=20
,a=1, 当S=2°,a=1,不满足退出循环的条件,执行循环体后,S=1×21=21
,a=2 当S=21,a=2,不满足退出循环的条件,执行循环体后,S=21×22=23
,a=3 当S=23,a=3,不满足退出循环的条件,执行循环体后,S=23×23=26
,a=4 当S=26
,a=4,满足退出循环的条件,
则z=
=6
故输出结果为6 故选:D
【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果
参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.
8.【答案】D
9.【答案】B
【解析】解:由三角函数的公式化简可得:
=2()
=2(sin2xcos+cos2xsin)=2sin(2x+),
∴T==π,A=2
故选:B
10.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
11.【答案】A
【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.
故选:A.
【点评】本题考查交集的运算法则的应用,是基础题.
12.【答案】B
【解析】解:∵M={x|x≥﹣1},N={x|x≤k},
若M∩N≠¢,
则k≥﹣1.
∴k的取值范围是[﹣1,+∞).
故选:B.
【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.
二、填空题
13.【答案】12
【解析】
考点:分层抽样
14.【答案】2.
【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,
即q2﹣q﹣2=0,解得q=2或q=﹣1,
又各项为正数,则q=2,
故答案为:2.
【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.
15.【答案】.
【解析】解:∵||=1,||=2,与的夹角为,
∴==1×=1.
∴|+||﹣|====.故答案为:.
【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
16.【答案】x+4y﹣5=0.
【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),
由中点坐标公式知x1+x2=2,y1+y2=2,
把P (x 1,y 1),Q (x 2,y 2)代入x 2+4y 2
=36,
得, ①﹣②,得2(x 1﹣x 2)+8(y 1﹣y 2)=0,

k=
=
﹣,
∴这条弦所在的直线的方程y ﹣1=
﹣(x ﹣1),
即为x+4y ﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y ﹣5=0.
故答案为:x+4y ﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
17.【答案】 0.6 .
【解析】解:随机变量ξ服从正态分布N (2,σ2
), ∴曲线关于x=2对称,
∴P (ξ>0)=P (ξ<4)=1﹣P (ξ>4)=0.6, 故答案为:0.6.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.
18.【答案】43
【解析】
试题分析:由1tan tan()24
1tan π
ααα++
=
=-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβα
αβα
+-=++
1
34313133-
=
=+⨯
. 考点:两角和与差的正切公式.
三、解答题
19.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为 (﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.20.【答案】
【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,
∴∠PCB=,PC=,
∵∠ACB=,∴∠ACP=,
在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,
整理得:PA=;
(2)在△PBC中,∠BPC=,∠PCB=θ,
∴∠PBC=﹣θ,
由正弦定理得:
=
=,

PB=
sin θ,
PC=
sin

﹣θ),
∴△PBC 的面积S (θ)
=PB •
PCsin
=sin

﹣θ)sin θ
=sin (2θ
+
)﹣,θ∈(0
,),
则当θ
=
时,△PBC
面积的最大值为

【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
21.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3
)6. 【解析】
试题分析:(1)利用2CD =,得圆心到直线的距离2d =
2=,再进行化简,即可求
解()()44a b --的值;(2)设点P 的坐标为(),x y ,则2
2
a x
b y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨
迹方程;(3)将面积表示为()()()1
1
4482446224
ADP b S a a b a b a b
∆==+
-=+-=-+-+,再利用基本
不等式,即可求得ADP ∆的面积的最小值.
(3)()()()
11
448244
666224
ADP b S a a b a b a b ∆=
=+-=+-=-+-+≥=,
∴当4a b ==+, 面积最小, 最小值为6.
考点:直线与圆的综合问题.
【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446ADP S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题. 22.【答案】
【解析】(本题满分为12分)
解:(1)在△ABC 中,AD=5,AB=7,BD=8,由余弦定理得…
=

∴∠BDA=60°… (2)∵AD ⊥CD , ∴∠BDC=30°…
在△ABC 中,由正弦定理得
,…
∴. …
23.【答案】 【解析】解:(1)设h (x )=f (x )﹣g (x )=lg (2016+x )﹣lg (2016﹣x ),h (x )的定义域为(﹣2016,2016);
h (﹣x )=lg (2016﹣x )﹣lg (2016+x )=﹣h (x );
∴f (x )﹣g (x )为奇函数; (2)由f (x )﹣g (x )<0得,f (x )<g (x );
即lg (2016+x )<lg (2016﹣x );


解得﹣2016<x<0;
∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).
【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.24.【答案】
【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),
∴na n=3(n+1)a n+4n+6,
两边同除n(n+1)得,,
即,
也即,
又a1=﹣1,∴,
∴数列{+}是等比数列是以1为首项,3为公比的等比数列.
(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,
∴,
原不等式即为:<,
先用数学归纳法证明不等式:
当n≥2时,,
证明过程如下:
当n=2时,左边==<,不等式成立
假设n=k时,不等式成立,即<,
则n=k+1时,左边=
<+
=<,
∴当n=k+1时,不等式也成立.
因此,当n≥2时,,
当n≥2时,<,
∴当n≥2时,,
又当n=1时,左边=,不等式成立
故b n+1+b n+2+…+b2n<.
(ⅱ)证明:由(i)得,S n=1+,
当n≥2,=(1+)2﹣(1+)2
=
=2﹣,


=2•,
将上面式子累加得,﹣,
又<
=1﹣
=1﹣,
∴,
即>2(),
∴当n≥2时,S n2>2(++…+).
【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.。

相关文档
最新文档