例谈反比例函数解析式的求法

合集下载

初中数学求反比例函数解析式的六种方法

初中数学求反比例函数解析式的六种方法

求反比例函数解析式的六种方法名师点金:求反比例函数的解析式,关键是确定比例系数k的值.求比例系数k的值,可以根据反比例函数的定义及性质列方程、不等式求解,可以根据图象中点的坐标求解,可以直接根据数量关系列解析式,也可以利用待定系数法求解,还可以利用比例系数k的几何意义求解.其中待定系数法是常用方法.利用反比例函数的定义求解析式1.若y=(m+3)xm2-10是反比例函数,试求其函数解析式.利用反比例函数的性质求解析式2.已知函数y=(n+3)xn2+2n-9是反比例函数,且其图象所在的每一个象限内,y随x的增大而减小,求此函数的解析式.利用反比例函数的图象求解析式3.【2017·广安】如图,一次函数y=kx+b的图象与反比例函数y=mx的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求函数y=mx和y=kx+b的解析式.(2)已知直线AB 与x 轴相交于点C ,在第一象限内,求反比例函数y =m x的图象上一点P ,使得S △POC =9. (第3题)利用待定系数法求解析式4.已知y 1与x 成正比例,y 2与x 成反比例,若函数y =y 1+y 2的图象经过点(1,2),⎝⎛⎭⎫2,12,求y 与x 的函数解析式.利用图形的面积求解析式5.如图,点A 在双曲线y =1x 上,点B 在双曲线y =k x上,且AB ∥x 轴,C ,D 两点在x 轴上,若矩形ABCD 的面积为6,求点B 所在双曲线对应的函数解析式.(第5题)利用实际问题中的数量关系求解析式6.某运输队要运300 t物资到江边防洪.(1)求运输时间t(单位:h)与运输速度v(单位:t/h)之间的函数关系式.(2)运了一半时,接到防洪指挥部命令,剩下的物资要在2 h之内运到江边,则运输速度至少为多少?答案1.解:由反比例函数的定义可知⎩⎪⎨⎪⎧m 2-10=-1,m +3≠0,∴m =3. ∴此反比例函数的解析式为y =6x. 易错点拨:该题容易忽略m +3≠0这一条件,得出m =±3的错误结论.2.解:由题意得⎩⎪⎨⎪⎧n 2+2n -9=-1,n +3>0. 解得n =2(n =-4舍去).∴此函数的解析式是y =5x.3.解:(1)把点A(4,2)的坐标代入反比例函数y =m x,可得m =8, ∴反比例函数解析式为y =8x. ∵OB =6,∴B(0,-6).把点A(4,2),B(0,-6)的坐标代入一次函数y =kx +b ,可得 ⎩⎪⎨⎪⎧2=4k +b ,-6=b ,解得⎩⎪⎨⎪⎧k =2,b =-6, ∴一次函数解析式为y =2x -6.(2)在y =2x -6中,令y =0,则x =3,即C(3,0),∴CO =3,设P ⎝⎛⎭⎫a ,8a ,则由S △POC =9,可得12×3×8a=9, 解得a =43,∴P ⎝⎛⎭⎫43,6. 4.解:∵y 1与x 成正比例,∴设y 1=k 1x(k 1≠0).∵y 2与x 成反比例,∴设y 2=k 2x(k 2≠0). 由y =y 1+y 2,得y =k 1x +k 2x. 又∵y =k 1x +k 2x的图象经过(1,2)和⎝⎛⎭⎫2,12两点, ∴⎩⎪⎨⎪⎧2=k 1+k 2,12=2k 1+k 22.解此方程组得⎩⎨⎧k 1=-13,k 2=73.∴y 与x 的函数解析式是y =-13x +73x. 5.解:如图,延长BA 交y 轴于点E ,由题意可知S 矩形ADOE =1, S 矩形OCBE =k.∵S 矩形ABCD =6,∴k -1=6.∴k =7.∴点B 所在双曲线对应的函数解析式是y =7x. (第5题)6.解:(1)由已知得vt =300.∴t 与v 之间的函数关系式为t =300v(v >0). (2)运了一半物资后还剩300×⎝⎛⎭⎫1-12=150(t ), 150÷2=75(t /h ).因此剩下的物资要在2 h 之内运到江边,运输速度至少为75 t /h .。

中考数学专题复习7反比例函数及其运用(解析版)

中考数学专题复习7反比例函数及其运用(解析版)

反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。

用面积求反比例函数的解析式(初二)

用面积求反比例函数的解析式(初二)

用面积求反比例函数的解析式(初二)反比例函数是一种常见的函数形式,它表示两个变量之间的关系,其中一个变量的改变会对另一个变量产生相反的影响。

使用面积来表示反比例函数可以是一种更形象化的方式,下面是用面积求反比例函数的解析式的方法:1. 定义反比例函数反比例函数是一种二元函数,可以表示为y=k/x,其中k为常量。

2. 求解k值假设有一个平行四边形的面积为A,其中两个相邻的边长分别为x和y,那么有A=xy。

由于这是一个反比例关系,我们可以将其转化为y=k/x的形式,并代入面积公式得到A=x(k/x),化简后得到k=A。

因此,反比例函数可以表示为y=A/x。

3. 反比例函数的图像反比例函数的图像是一个双曲线,它在y轴和x轴上都有渐近线。

当x趋近于0时,y趋近于正无穷;当x趋近于正无穷时,y趋近于0。

4. 反比例函数的性质反比例函数具有以下性质:(1)在定义域内,y随x的增大而减小。

(2)当x越接近0,y越接近正无穷大;当x越接近正无穷大,y越接近0。

(3)当x>0时,y>0;当x<0时,y<0。

(4)当x>0时,y的变化率为负数;当x<0时,y的变化率为正数。

5. 反比例函数的应用反比例函数在实际生活中有着广泛的应用,例如:(1)人口密度与国土面积的关系国土面积越大,人口密度越小,可以用反比例函数来表示这种关系。

(2)电阻与电流的关系电阻越大,电流越小,可以用反比例函数来表示这种关系。

(3)运动员完成任务所需的时间与速度的关系速度越快,完成任务所需的时间越短,可以用反比例函数来表示这种关系。

总结:反比例函数是一种重要的函数形式,通过面积求其解析式可以帮助我们更好地理解这种函数的特点和应用,对于学习函数和数学建模都有一定的帮助。

在实际生活中,反比例关系也存在于很多方面,可以用来分析和解决实际问题。

浅谈反比例函数中的k值法解题

浅谈反比例函数中的k值法解题

浅谈反比例函数中的“K ”值法解题摘 要:随着新课程标准的推进,近几年,在中考试题中关于反比例函数方面的试题出现了不少新题型。

而反比例函数的“K ”值是一个最关键的因素,可以说是反比例函数的精髓所在。

接下来,让我们一起探讨一下反比例函数中利用“K ”值法解题的问题。

关键词:反比例函数 “K ”值 象限 图像所谓“K ”值法解题,就是通过反比例函数特有的“K ”值的一些性质进行分析解题。

结合近几年中考题,“K ”值主导的反比例函数习题越来越多。

这里就反比例函数的“K ”值的意义来解决问题进行例析。

以下是利用“K ”值求解关于面积、反比例函数性质、反比例函数图像及反比例函数和正比例函数相结合等方面的解法淡析。

一、“K ”值的几何意义及利用其求相关图形面积研究函数问题要透视函数的本质特征。

所以,我们先从“K ”值的本质出发对其进行精确剖析。

下面就是反比例函数的几何意义。

反比例函数y=x k (k ≠0)中,比例系数k 有一个很重要的几何意义。

那就是:过反比例函数y=xk (k ≠0)的图像上任意一点P 作x 轴,y 轴的垂线PM 、PN ,垂足为M 、N (如图1-1所示),则矩形PMON 的面积S=PM ·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所围成的矩形面积为常数k 。

从而有PNO S ∆=PMO S ∆=k 21。

在解有关反比例函数的问题时,若能灵活运用反比例函数中k 的几何意义,会给解题带来很多方便。

现举例说明。

例1.已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 。

解析:因为四边形AOBC 的面积S=CA ·CB=xy x y =∙,又因为6y x=-,所以xy k =, 即S=6-=6,故四边形AOBC 的面积为6。

例2.(03年全国初中数学联赛试题)若函数kx y =(k >0)与函数1y x=的图象相交于A 、C 两点,AB 垂直x 轴于B ,则△ABC 的面积为( )。

考点06 反比例函数应用(解析版)

考点06 反比例函数应用(解析版)

考点六反比例函数应用知识点整合一、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例引领(1)请求出v与F之间的函数关系式;(2)当它所受牵引力为2400牛时,汽车的速度为多少米【答案】(1)60000 vF =;(2)当它所受牵引力为2400牛时,汽车的速度为x(1)求k的值.(2)求恒温系统在这一天内保持大棚内温度不低于k=【答案】(1)240(2)恒温系统在一天内保持大棚里温度不低于变式拓展(1)求反比例图数的表达式,并求点(2)张老师在一节课上从第10张老师讲完这道题时,学生的注意力指标值达到多少【答案】(1)反比例函数的表达式为(2)当张老师讲完这道题时,学生的注意力指标值达到(1)求y与x之间的函数关系式:(2)求w与x之间的函数关系式,并求出当日利润为(1)分别求出材料煅烧和锻造时y (2)根据工艺要求,当材料温度低于【答案】(1)燃烧时函数解析式为()48006y x x=≥(2)4min(1)根据函数图象直接写出:血液中酒精浓度上升阶段的函数表达式为达式为;(并写出x 的取值范围)(2)求血液中酒精浓度不低于200【答案】(1)y 10004x x ≤=(<)。

初中数学求反比例函数解析式的六种方法

初中数学求反比例函数解析式的六种方法

求反比例函数解析式的六种方法名师点金:求反比例函数的解析式,关键是确定比例系数k的值.求比例系数k的值,可以根据反比例函数的定义及性质列方程、不等式求解,可以根据图象中点的坐标求解,可以直接根据数量关系列解析式,也可以利用待定系数法求解,还可以利用比例系数k的几何意义求解.其中待定系数法是常用方法.利用反比例函数的定义求解析式1.若y=(m+3)xm2-10是反比例函数,试求其函数解析式.利用反比例函数的性质求解析式2.已知函数y=(n+3)xn2+2n-9是反比例函数,且其图象所在的每一个象限内,y随x的增大而减小,求此函数的解析式.利用反比例函数的图象求解析式3.【2017·广安】如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象在第一象限交于点A(4,2),与y 轴的负半轴交于点B ,且OB =6.(1)求函数y =m x和y =kx +b 的解析式. (2)已知直线AB 与x 轴相交于点C ,在第一象限内,求反比例函数y =m x的图象上一点P ,使得S △POC =9.(第3题)利用待定系数法求解析式4.已知y 1与x 成正比例,y 2与x 成反比例,若函数y =y 1+y 2的图象经过点(1,2),⎝⎛⎭⎫2,12,求y 与x 的函数解析式.利用图形的面积求解析式5.如图,点A在双曲线y=1x上,点B在双曲线y=kx上,且AB∥x轴,C,D两点在x轴上,若矩形ABCD的面积为6,求点B所在双曲线对应的函数解析式.(第5题)利用实际问题中的数量关系求解析式6.某运输队要运300 t物资到江边防洪.(1)求运输时间t(单位:h)与运输速度v(单位:t/h)之间的函数关系式.(2)运了一半时,接到防洪指挥部命令,剩下的物资要在2 h之内运到江边,则运输速度至少为多少?答案1.解:由反比例函数的定义可知⎩⎪⎨⎪⎧m 2-10=-1,m +3≠0,∴m =3. ∴此反比例函数的解析式为y =6x. 易错点拨:该题容易忽略m +3≠0这一条件,得出m =±3的错误结论.2.解:由题意得⎩⎪⎨⎪⎧n 2+2n -9=-1,n +3>0. 解得n =2(n =-4舍去).∴此函数的解析式是y =5x.3.解:(1)把点A(4,2)的坐标代入反比例函数y =m x,可得m =8, ∴反比例函数解析式为y =8x. ∵OB =6,∴B(0,-6).把点A(4,2),B(0,-6)的坐标代入一次函数y =kx +b ,可得 ⎩⎪⎨⎪⎧2=4k +b ,-6=b ,解得⎩⎪⎨⎪⎧k =2,b =-6, ∴一次函数解析式为y =2x -6.(2)在y =2x -6中,令y =0,则x =3,即C(3,0),∴CO =3,设P ⎝⎛⎭⎫a ,8a ,则由S △POC =9,可得12×3×8a=9, 解得a =43,∴P ⎝⎛⎭⎫43,6. 4.解:∵y 1与x 成正比例,∴设y 1=k 1x(k 1≠0).∵y 2与x 成反比例,∴设y 2=k 2x(k 2≠0). 由y =y 1+y 2,得y =k 1x +k 2x. 又∵y =k 1x +k 2x的图象经过(1,2)和⎝⎛⎭⎫2,12两点, ∴⎩⎪⎨⎪⎧2=k 1+k 2,12=2k 1+k 22.解此方程组得⎩⎨⎧k 1=-13,k 2=73.∴y 与x 的函数解析式是y =-13x +73x. 5.解:如图,延长BA 交y 轴于点E ,由题意可知S 矩形ADOE =1, S 矩形OCBE =k.∵S 矩形ABCD =6,∴k -1=6.∴k =7.∴点B 所在双曲线对应的函数解析式是y =7x. (第5题)6.解:(1)由已知得vt =300.∴t 与v 之间的函数关系式为t =300v(v >0). (2)运了一半物资后还剩300×⎝⎛⎭⎫1-12=150(t ), 150÷2=75(t /h ).因此剩下的物资要在2 h 之内运到江边,运输速度至少为75 t /h .。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

.人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B. C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B. C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B. C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数 C.非正数 D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④. y随x的增大而减小的函数有().A.0个 B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数 B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.① 求B点坐标和k的值;② 当时,求点P的坐标;③ 写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数 B.符号相同 C.绝对值相等 D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.① 求点A、B、D的坐标;② 求一次函数和反比例函数的解析式.WORD格式整理版(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).① 利用图中条件,求反比例函数的解析式和m的值;② 双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)① 反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.学习好帮手。

反比例函数的定义

反比例函数的定义

反比例函数的概念及解析式的求法一、【探索新知】重点1、反比例函数的概念:数学来源于生活,下面来看两个生活中的实例:问题1 汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化。

(1)用含有v 的代数式表示t 是__________(2)利用(1)的关系式完成下表(3)速度是时间t 的函数吗?若是,写出这个函数关系式,若不是,请说明理由。

问题2、学校课外生物小组的同学准备自已动手,用旧围栏建一个面积为24平方米的矩形饲养场,假设它的一边长为x (米),求另一边的长y (米)与x 的函数关系式。

答:三、思考:上面两个问题中的函数具有怎样的共同特征?能否用一个统一的函数关系式把它们表示出来?归纳小结: 上面两个函数中,两个变量的积为一个常数,都可以写成y=x k (k 不等于零)的形式。

一般的,形如y=xk (k 不等于零)的函数叫反比例函数 重点2、正比例函数与反比例函数之间的关系(1)、把正比例函数和反比例函数进行比较,它们有哪些不同?① 从形式上看,正比例函数y=kx 是关于自变量的整式,反比例函数y=x k 是关于自变量的分式;② 从内涵上看,正比例函数y=kx 的两个变量的商是非零常数,即k x y =,k 是常数,且k ≠0;反比例函数y=xk 的两个变量积是一个非零常数;即xy =k ,k 是常数,且k ≠0. ③ 从自变量和函数值取值范围来看,正比例函数y=kx 中的自变量和函数值都可以为零,反比例函数)0(≠=k xk y 中的自变量和函数值都不能为零。

(2)、反比例函数的解析式又可以写成:1-==kx xk y ( k 是常数,k ≠0). 重点3、反比例函数解析式的求法: 由于反比例函数解析式中只有一个待定系数k ,所以只要根据条件求出了k 的值,也就可以求出反比例函数的解析式,因而通常只给出一组x 、y 的对应值或图像上一点坐标,代入k y x=中,即可求出k 的值,从而求出反比例函数的解析式。

反比例函数的坐标与解析式问题(提优)

反比例函数的坐标与解析式问题(提优)

要点一、反比例函数的定义一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.要点诠释:(1)在y=kx 中,自变量是分式kx的分母,当x=0时,分式kx无意义,所以自变量x的取值范围是x≠0;函数y的取值范围是y≠0.故函数图象与x轴、y轴无交点.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中y=kx,只有一个待定系数k,因此只需要知道一对x,y的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式y=kx中.要点三、反比例函数的图象和性质反比例函数的坐标与解析式问题1.反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x轴、y轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a,b)在反比例函数y=kx的图象上,则点(-a,-b)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数y=kx(k为常数,k≠0)中,由于x≠0且y≠0,所以两个分支都无限接近但永远不能达到x轴和y轴.2.反比例函数的性质(1)如图1,当k>0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y值随x值的增大而减小.(2)如图2,当k<0时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y值随x值的增大而增大.要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k的符号.例1.如图所示,已知A(12,y1),B(2,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x正半轴上运动,(1)当线段AP与线段BP之和达到最小时,点P的坐标是;(2)当线段AP与线段BP之差达到最大时,点P的坐标是;1.如图,点A(m,6),B(n,1)在反比例函数y=kx(x>0)的图象上,且AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)k的值为;(2)在y轴上找一点Q,使QB﹣QA最大,则点Q的坐标为.例2.如图所示,已知菱形OABC,点C在x轴上,直线y=x经过点A,菱形OABC的面积是2.若反比例函数的图象经过点B,则此反比例函数表达式为()A.y=1x B.y=2xC.y=21x+D.y=212x+1.如图,直线y=43x与双曲线y=kx(x>0)交于点A,将直线y=43x向下平移个6单位后,与双曲线y=kx(x>0)交于点B,与x轴交于点C,则C点的坐标为;若OABC=2,则k=.例3.如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.1.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为B.反比例函数y=kx上(x<0)的图象经过点C,交AB于点D已知AB=8.AC=5,B点的横坐标为m.(1)当m=﹣6时,求反比例函数的表达式;(2)若AD=AC,求m的值.1.如图,在平面直角坐标系中,直线y=2x与反比例函数y=2x(x>0)的图象交于点A.将直线y=2x沿y轴向上平移m个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则m 的值为()A.2B.32C.3D.832.如图,直线483y x=-+与x轴,y轴分别交于A,B两点,将线段AB沿x轴方向向右平移5个单位长度得到线段CD,与双曲线y=kx(k>0)交于点N,点M在线段AB上,连接MN,BC,若四边形BMNC是菱形,则k的值为()A.32B.24C.12D.83.如图,在平面直角坐标系中,AB5A在y轴正半轴上,点B的坐标为(﹣1,﹣1).把线段AB沿垂直于AB的方向平移,当点A的对应点A'在函数y=kx(k<0,x<0)的图象上时,点B的对应点B'恰好在x轴负半轴上,则k的值为.4.如图,在平行四边形OABC中,OC=22,∠AOC=45°,点A在x轴上,点D是AB的中点,反比例函数y=kx(k>0,x>0)的图象经过C、D两点.则k的值为_______;点D的坐标为________.5.如图,矩形ABCD的两边BC=4,CD=6,E是CD的中点,反比例函数y=kx的图象经过点E,与AB交于点F.(1)若点B的坐标为(﹣6,0),求k的值;(2)连接AE,若AF=AE,求反比例函数的表达式.6.如图,A(m,4)、B(n,2)在反比例函数y=kx的图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=3.(1)求反比例函数的解析式;(2)连接AB,在线段CD上求一点E,使得△ABE的面积为5;(3)在x轴上是否存在一点P,使得△ABP的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,四边形ABCD是菱形,点A(0,4),B(﹣3,0)反比例函数y=kx(k为常数,k≠0,x>0)的图象经过点D.(1)填空:k=.(2)已知在y=kx的图象上有一点N,y轴上有一点M,且四边形ABMN是平行四边形,求点M的坐标.8.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=kx的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.【经典例题1】(1)P(1.7,0);(2)P(5 2,0)【解析】解:将A(12,y1),B(2,y2)代入反比例函数y=1x中,得y1=2,y2=1 2,∴A (,2),B(2,1 2).作点B关于x轴的对称点B′(2,-1 2),连AB′交x轴于点P,点P即为所求.设直线AB′为y=kx+b(k≠0),可得5 =3176kb⎧⎪⎪⎨⎪=⎪⎩-.∴直线AB′解析式为51736y x+=-.令y=0,解得,x=1.7.则P(1.7,0);(2)延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大.设直线AB的解析式是y=ax+c(a≠0),解得=152ac⎧⎪⎨=⎪⎩-.∴直线AB的解析式是y=-x+5 2.当y=0时,x=52,即P(52,0).【举一反三1】【解析】解:(1)点A(m,6),B(n,1)在反比例函数y=kx(x>0)的图象上,∴6m=n,∵DC=5,∴n ﹣m =5,解得:m =1,n =6,∴A (1,6),B (6,1)把A (1,6)代入y =k x中,解得:k =6,故答案为6;(2)连接AB 交y 轴于Q ,此时BQ ﹣AQ =AB ,根据两边之差小于第三边,则AB 就是BQ ﹣AQ 最大值;设直线AB 的解析式为y =mx +n,∴=661m n m n +⎧⎨+=⎩,解得=17m n ⎧⎨=⎩-,∴直线AB 的解析式为y =﹣x +7,∴Q (0,7).故答案为(0,7).【经典例题2】【解析】解:∵直线y =x 过点A ,∴设A (a ,a ).∴OA 2=a 2+a 2=2a 2,即AOa .∵四边形OABC 是菱形,∴AO =OC =CB =ABa .∵菱形OABC 的面积是,a •a,得a =1.∴AB,A (1,1)∴B+1,1).设反比例函数解析式为y =k x (k ≠0),k +1.∴反比例函数解析式为y =21x.【举一反三1】(92,0);12【解析】解:据题意可知,直线BC 解析式为y =43x -6,令y =0,得43x -6=0,∴C 点坐标(92,0).∵直线y =43x 与双曲线y =k x (x >0)交于点A ,∴A (32,233).又∵y =43x -6与y =k x (x >0)交于点B ,且OA BC =2,∴B (9324+,33).将B 点坐标代入y =k x ,得(924+)3=k ,解得k =12.【经典例题3】【解析】解:(1)∵y =k x经过点D (6,1),∴6k =1,解得k =6.(2)设点C 到BD 的距离为h ,∵D (6,1),DB ⊥y 轴,∴BD =6.∴S △BCD =12×6•h =12,解得h =4.∵点C 是双曲线第三象限上的动点,∴点C 纵坐标为1-4=-3.∴6x=-3,解得x =-2.∴C (-2,-3).设直线CD的解析式为y=ax+b,解得1=22 ab⎧⎪⎨⎪=-⎩.∴直线CD的解析式为y=12x-2.(3)解:AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,∴点D的坐标为(6,1),设点C的坐标为(c,6c ).∴A(c,0),B(0,1).设直线AB的解析式为y=mx+n,解得1 =1mc n⎧⎪⎨⎪=⎩-.∴直线AB的解析式为y=1c-x+1.设直线CD的解析式为y=ex+f,解得1=6 eccfc⎧⎪⎪⎨+⎪=⎪⎩-.∴直线CD的解析式为y=1c-x+6cc+.∵AB,CD的斜率都为1 c-,∴AB∥CD.【举一反三1】【解析】解:(1)如图,作CE⊥AB,垂足为E,∵AC=BC=5,CE⊥AB,AB=8,∴AE=BE=4,在Rt△BCE中,BC=5,BE=4,∴CE==3,∵m=﹣6,∴C点的坐标为:(﹣3,4),∵点C在反比例函数y=kx的图象上,∴k=xy=﹣3×4=﹣12,∴反比例函数的表达式为y=y=12 x -;(2)∵点B的横坐标为m,AD=AC=5,∴BD=AB﹣AD=8﹣5=3,∴D(m,3),C(m+3,4),∵C,D两点都在反比例函数y=kx上,∴3m=4(m+3),∴m=﹣12.【自我检测1】C【解析】解:∵直线y=2x与反比例函数y=2x(x>0)的图象交于点A.∴解2x=2x求得x=±1,∴A的横坐标为1,∵OA=2BC,∴C的横坐标为1 2,把x=12代入y=2x得,y=4,∴C(12,4),∵将直线y=2x沿y轴向上平移m个单位长度,得到直线y=2x+m,∴把C的坐标代入得4=1+m,求得m=3,故选:C.【自我检测2】A【解析】解:对于483y x=-+,令x=0,则y=8,故点B的坐标为(0,8),由题意得:MN=5,∵四边形MNB′B是菱形,则MB=MN=5,设点M坐标为(m,48 3x-+),则MB2=m2+(483m-+﹣8)2=52,解得m=±3,(舍去﹣3),∴点M的坐标为(3,4)∴点N的坐标为(8,4),将点N的坐标代入y=kx得k=32,故选:A.【自我检测3】﹣4【解析】解:设点A坐标为(0,a),则AB=,解得a=1或a=﹣3(舍).∴点A坐标为(0,1),作BM⊥y轴于M,BN⊥x轴于N,∵B的坐标为(﹣1,﹣1).∴BM=BN=1,AM=1+1=2,∵∠ABN+∠B′BN=90°=∠ABN+∠ABM,∴∠B′BN=∠ABM,在△B′BN和△ABM中,,∴△B′BN≌△ABM(ASA),∴BN=AM=2,∴B'坐标为(﹣3,0),即点B(﹣1,﹣1)向左移动2个单位,向上移动1个单位得到B',∴将A(0,1)向左移动2个单位,向上移动1个单位得到A'(﹣2,2).∴k=﹣2×2=﹣4.故答案为:﹣4.【自我检测4】4;(4,1).【解析】解:(1)过C作CE⊥OA于E,∵OC=22,∠AOC=45°,∴OE=OC=2,∴C(2,2),∵反比例函数y=kx(k>0,x>0)的图象经过C,∴k=2×2=4,(2)作DF⊥OA于F,由平行四边形OABC可知:BC∥OA,∴B的纵坐标等于C的纵坐标2,∴DF=1,∵反比例函数y=kx(k>0,x>0)的图象经过D,∴1=4 x,∴x=4,∴D(4,1).【自我检测5】【解析】解:(1)点B 坐标为(﹣6,0),∴OB =6,∵BC =4,∴OC =2,∵CD =6,E 是CD 的中点,∴DE =CE =3,∴E (﹣2,3),∵反比例函数y =k x的图象经过点E ,∴k =﹣6;(2)如图,连接AE ,∵四边形ABCD 为矩形,∴AD =BC =4,∵DE =12CD =3,根据勾股定理,得AE 225AD DE +=,∵AF =AE =5,∴BF =AB ﹣AF =1,设点E点的坐标为(a,3)则点F的坐标为(a﹣4,1),∵E,F两点在函数y=kx的图象上,∴a﹣4=3a,解得a=﹣2,∴E(﹣2,3)∴k=﹣2×3=﹣6,∴反比例函数的表达式为y=6 x .【自我检测6】【解答】解:(1)∵A(m,4)、B(n,2)在反比例函数y=kx的图象上,∴k=4m=2n,即n=2m,∵DC=3,∴n﹣m=3,∴m=3,n=6,∴点A(3,4),点B(6,2),∴k=3×4=12,∴反比例函数的表达式为y=12 x;(2)设点E(x,0),∴DE=x﹣3,CE=6﹣x,AD=4,BC=2,∵S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=12×6×3﹣12×4(x﹣3)﹣12(6﹣x)×2=﹣x+9=5,∴x=4,∴点E(4,0);(3)∵△ABP的周长=AB+AP+BP,又∵AB是定值,∴当AP+BP的值最小时,△ABP的周长最小,如图,作点B关于x轴的对称点F(6,﹣2),连接AF交x轴于点P,此时PA+PB有最小值,设直线AF的解析式为y=kx+b,,解得,∴直线AF的解析式为y=﹣2x+10,当y=0时,x=5,∴点P(5,0).【自我检测7】【解析】解:(1)∵点A(0,4),B(﹣3,0),∴OA=4,OB=3,∴AB=5,∵四边形ABCD是菱形,∴AD=5,即点D的横坐标是5,∴点D的坐标为(5,4),∴4=,得k=20,故答案为:20;(2)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN可以看作是BM经过平移得到的,首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得点N的纵坐标为y=,∴M点的纵坐标为﹣4=,∴M点的坐标为(0,).【自我检测8】【解析】解:(1)如图,延长BC交y轴于点E,∵C(﹣4,3),∴CE=4,OE=3,∴OC==5,∴BC=5,∴B(﹣9,3),∵顶点B在反比例函数y=kx的图象上,∴k=﹣9×3=﹣27;(2)∵OA=AB,∴∠ABO=∠AOB,又∵∠DBO=90°,∴∠ADB=∠ABD,∴AD=AB=5,∴OD=10,∴D(﹣10,0),设直线解BD析式为y=kx+b,∵过D(﹣10,0),B(﹣9,3),∴,解得,直线BD解析式为:y=3x+30.。

例谈反比例函数解析式的求法

例谈反比例函数解析式的求法
反比例函数解式的求法是八年级数学教学的重要内容之一。由于反比例函数概念较为抽象,学生在具体练习时容易混淆求解思路。因此,本文总结归纳了以下几种求反比例函数解析式的方法:利用待定系数法,通过已知点求解函数解析式;利用反比例函数定义,根据函数性质求解;利用图象的对称性,通过图形变换求解;根据实际问题,建立函数关系式求解;通过开放题型,培养学生灵活运用知识求解的能力;以及利用面积法,通过几何意义求解函数解析式。这些方法在实际教学中取得了良好的效果,有助于学生更好地理解和掌握反比例函数的知识。

第一讲:反比例函数的概念和图像性质

第一讲:反比例函数的概念和图像性质

第一讲:反比例函数概念 一、一般地,形如xky =(k 为常数,且0≠k )的函数称为反比例函数。

注意:①分母中含有自变量x ,且指数为1.②比例系数0≠k③自变量x 的取值为一切非零实数。

反比例函数表达式的三种形式① xky =②kx y =1-③ k xy =二、求函数解析式的方法:待定系数法 对于解析式xky =,中只有一个待定系数,因此只需要一对对应的x 、y 的值即可。

例1:下列函数中,是反比例函数的有①x y 5=; ②x y 4.0=; ③2x y =; ④2=xy ; ⑤πx y =; ⑥xy 5-=;⑦12-=x y ; ⑧31-=xy ; ⑨)0(2≠=a a xay 为常数且; ⑩x y 52-=;例2:如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是 ;如果自变量取值为—1时,函数值为2,次反比例函数的关系式是 ; 例3:计划修建铁路1200km ,那么铺轨天数y (天)是每日铺轨量x 的反比例函数吗? 解:因为 ,所以y 是x 的反比例函数;例4:一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么,列出a 关于b 的函数关系式为例5:在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。

(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值。

思考:你还能举出哪些生活中的反比例函数例子?提升训练:1.已知:,21y y y +=1y 与2x 成正比例,2y 与x 成反比例,且当3,1==y x ;当1,1=-=y x ,求21-=x 时,y 的值?2.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值(3)y =-2时,x 的值。

3.已知y =y 1-y 2,y 1与x 成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值.第二讲:反比例函数的图像和性质 1.通过描点法画x y 2=和xy 3-=的函数图像 2.反比例函数的图像是双曲线。

「初中数学」求反比例函数解析式的六种常用方法

「初中数学」求反比例函数解析式的六种常用方法

「初中数学」求反⽐例函数解析式的六种常⽤⽅法解有关函数的习题,⾸要的⼯作应该是知道函数的解析式,每⼀类函数都有各⾃解析式的求法,那么反⽐例函数的解析式如何求解呢?下边⼀⼀介绍.⽅法⼀.利⽤反⽐利函数的定义求解析式【分析】反⽐例函数有三种表达形式:(1)y=K/x;(2)y=Kx-';(3)xy=K,其中K是常数,且K≠0.(第⼆种形式是y等于K与x的负1次⽅的积),特别要注意K≠0,1.解:由m²⼀10=⼀1,解得m=±3,⽽m=⼀3时K=(m+3)=0,∴m=3,则K=m+3=6,∴反⽐例函数解析式为y=6/x2.解:由3m²+m⼀5=⼀1,解得m=1或m=⼀4/3,⽽m=1时,K=m²⼀1=0,∴m=⼀4/3,则m²⼀1=7/9,所以反⽐例函数解析式为y=7/(9x).⽅法⼆.利⽤反⽐例函数的性质求解析式【分析】由反⽐例函数的概念知,第3题n²+2n⼀9=⼀1,由于反⽐例函数在每个象限内,y随x的增⼤⽽减⼩,所以n+3为正数;第4题m²⼀5=⼀1,⼜由于反⽐例函数的图象在每个象限内y随x值的增⼤⽽增⼤,所以m为负值.3.解:由题意得,n²+2n⼀9=⼀1,解得n=⼀4或n=2,由于其图象在每个象限内y随x值的增⼤⽽减⼩,所以n+3>0,∴n=2,则n+3=5,所以反⽐例函数图象为y=5/x.4.解:由题意得,m²⼀5=⼀1,解得m=±2,⼜由于其图象在每个象限内y随x值的增⼤⽽增⼤,所以m=⼀2,所以反⽐例函数的解析式为y=⼀2/x.⽅法三.利⽤反⽐例函数的图象求解析式5.如图,在△ABC中,AC=BC,AB⊥x轴,垂⾜为A,反⽐例函数y=K/x(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=5/2.(1)若OA=4,求反⽐例函数的解析式;(2)连接OC,若BD=BC,求OC的长.【分析】这类题的特征⼀般是通过条件求图象上某⼀点的坐标,然后根据xy=K,从⽽确定解析式.第⼀问,根据AC=BC=5/2,过C点作CE⊥AB于E,则E为AB的中点,则AE=BE=2,由于AB⊥x轴,所以C点纵坐标为2,在Rt△BEC中,求出CE的长为3/2,因为OA=4,所以C点横坐标为4⼀3/2=5/2,则C点坐标确定,所以反⽐例函数解析式可得.第⼆问,由于BD=BC=5/2,所以AD=AB⼀BD=4⼀5/2=3/2,所以D点纵坐标为3/2,⽽C点纵坐标还是2,C到AB的距离长CE=3/2,若设出A点坐标为(m,0),则C点坐标为(m⼀3/2,2),D点坐标为(m,3/2),由于C,D两点都在反⽐例函数图像上,利⽤xy=K建⽴⽅程可求得m,进⽽求得C点坐标,利⽤勾股定理可得OC的长.解:(1)过C点作CE⊥AB于E,如图,∵AC=BC,AB=4,∴AE=BE=2,在Rt△BCE中,BC=5/2,BE=2,∴CE=3/2,∵OA=4,∴C点坐标为(5/2,2),⼜C点在y=K/x的图象上,∴xy=K,即K=2×5/2=5,所以反⽐例函数的图象为y=5/x.(x>0).(2).如图,作CF⊥x轴,垂⾜为F,设A点的坐标为(m,0),∵BD=BC=5/2,AB=4,∴AD=3/2,∴D点坐标为(m,3/2),由(1)知CE=3/2,AE=BE=2,∴C点坐标为(m⼀3/2,2),∵C,D两点都在y=K/x的图象上,∴3m/2=2(m ⼀3/2),解得m=6,∴C点坐标为(9/2,2),∴OF=9/2,CF=2,在Rt△OFC中,由勾股定理可得,OC=√97/2.6.如图,矩形AOCB的两边OC,OA分别在x轴,y轴上,点B的坐标为(⼀20/3,5),D是AB上的⼀点,将△ADO沿直线OD翻折,使A点恰好落在对⾓线OB上的点E处,若点E在⼀反⽐例函数的图象上,求该反⽐例函数的解析式.【分析】求反⽐例函数解析式,实质上是求系数K,那么就只需要⼀个条件,⼤多数是求图象上点的坐标,本题只要求出E点坐标即可,由于折叠A点落在E处,则OA=BC=OE=5,过E作EF⊥x轴于F,则△OEF∽△OBC,则OE/OB=EF/BC=OF/OC,由题意知BC=5,OC=20/3,则OB=25/3,可求出OF,EF,则E点坐标求出,反⽐例函数解析式可求出.当然也可⽤三⾓函数求E点坐标.解:如图,过E点作EF⊥x轴于F,设过E点的反⽐例函数解析式为y=K/x,(K≠0).由矩形AOCB知BC⊥x轴,∴△OEF∽△OBC,∴OE/OB=EF/BC=OF/OC,∵B点坐标为(⼀20/3,5),∴BC=5,OC=20/3,由于△ADO沿OD翻折,A点落在OB上E处,∴OE=OA=BC=5,在Rt△BCO中,由勾股定理求得OB=25/3,∴可求得,EF=3,OF=4,∴E点坐标为(⼀4,3),代⼊y=K/x,得K=⼀12,所以反⽐例函数解析式为y=⼀12/x.⽅法四,利⽤待定系数法求解析式7.已知y1与x成正⽐例,y2与x成反⽐例,若y=y1+y2的图象经过点(1,2),(2,1/2),求y与x的函数解析式.【分析】这种题型,根据题意,设出对应的函数解析式,利⽤条件列⽅程组,解出相应的待定系数即可,注意待定系数在不同的函数中应⽤不同的字母.解:∵y1与x成正⽐例,∴设y1=Kx(K≠0),∵y2与x成反⽐例,∴设y2=m/x(m≠0),由y=y1+y2得,y=Kx⼗m/x,⼜∵y=Kx+m/x的图象经过(1,2)和(2,1/2)两点,∴可得8.已知y=y1+y2,y1与x成正⽐例,y2与x²成反⽐例,且x=2与x=3时,y的值都等于19,求y与x 间的函数关系式解∵y1与x成正⽐例,∴设y1=Kx(K≠0),∵y2与x²成反⽐例,∴设y2=m/x²(m≠0),∴y=y1+y2=Kx⼗m/x,∵当x=2时y=19,当x=3时y=19,∴可得⽅法五.利⽤图形的⾯积求解析式9.如图,点A在双曲线y=1/x上,点B在双曲线y=K/x上,且AB∥x轴,C,D两点在x轴上,若矩形ABCD的⾯积为6,求点B所在双曲线对应的函数解析式.【分析】反⽐例函数y=K/x的系数K具有⼀定的⼏何意义,|K|等于图象上任意⼀点向两坐标轴所作垂线与坐标轴所围成的矩形的⾯积.如图|K|=S矩形AEOC=S矩形BFOD,|K|/2=2S△AOC=2S△BOD=2S△AOE=S△BOF.灵活运⽤K的⼏何意义,通过⾯积求出K,也就求得解析式.所以延长BA交y轴于点E,则四边形AEOD,BEOC 均为矩形,则由题意得,S矩形AEOD=1,S矩形BEOC=|K|,∴|K|=1+6=7,由于反⽐例函数图象在第⼀,三象限,K>0,∴K=7,∴反⽐例函数解析式为y=7/x.如图.解:延长BA交y轴于点E,由题意可知S矩形AEOD=1,S矩形BEOC=K,∵S矩形ABCD=6,∴K ⼀1=6,K=7,∴B点所在双曲线对应的函数解析式是y=7/x.10.如图,A,B是双曲线y=K/x(K≠0)上的两点,过A点作AC⊥x轴,交OB于D点,垂⾜为C,若△ADO的⾯积为1,D为OB的中点,求反⽐例函数的解析式.【分析】反⽐例函数有些与⾯积有关的习题,灵活运⽤|K|的⼏何意义,结合题中的条件建⽴关于K的⽅程,是这类题的常见的解法,本题过B作BE⊥x轴于E,由于D为OB的中点,则BE=2CD,AD=AC⼀CD=AC⼀BE/2,OE=2OC,如图,设A点坐标为(x,K/x),(K>0),∵C,A两点横坐标都为x,则B点横坐标2x,∴B点坐标为(2x,K/2x),∴CD=k/4x,AD=K/x⼀K/4x,∵S△AOD=1,即1/2(K/x⼀K/4x)x=1,解得K=8/3.所以反⽐例函数解析式为y=8/3x.(反⽐例函数有这样的优势,通过设坐标,引进系数K,也就引进了⾯积,这⼀点同学们多体会⼀下).⽅法六.利⽤实际问题的关系求解析式11.某运输队要运300t物资到江边防洪.(1)运输时间t(单位:h)与运输速度v(单位:t/h)之间有怎样的函数关系?(2)运了⼀半时,接到防洪指挥部命令,剩下的物资要在2h之内运到江边,则运输速度⾄少为多少?【分析】实际问题往往通过具体的量的关系,抽象为数学模型,⽤对应模型的数学知识解决实际问题.(1)本题数量关系为:物资总量=运输时间×运输速度,由于物资总量300t⼀定,所以运输时间与运输速度成反⽐例关系即t=300/v.(2)运输物资剩下⼀半即150t时,剩下的要在2h运到江边,所以运输速度⾄少为150÷2=75(t/h).(实际问题中的数量关系求反⽐例函数解析式,必须是a×b=c,c⼀定的数学模型).12.某汽车的功率P(单位:W)为⼀定值,它的速度v(单位:m/s)与它所受的牵引⼒F(单位:N)有关系:v=P/F,且当F=3000时,v=20.(1)这辆汽车的功率是多少⽡?请写出这⼀函数的解析式.(2)当它所受的牵引⼒为2500N时,汽车的速度为多少?(3)若限定汽车的速度不超过30m/s,则牵引⼒在什么范围?解:(1)由v=P/F,得P=Fv=3000×20=60000所以这辆汽车的功率为60000W,此函数解析式为v=60000/F.(2)当F=2500N时,代⼊v=60000/F,得v=60000÷2500=24,所以汽车的速度为24m/s.(3)由v≤30m/s,∴60000÷F≤30,∵F>0,∴F≥2000,所以牵引⼒⼤于或等于2000N.【总结】求反⽐例函数解析式,⼀般不太难,同学们把常见的⽅法掌握好,求出解析式为进⼀步攻克难题打下基础关.。

函数解析式的8种求法

函数解析式的8种求法

函 数 解 析 式 的 八 种 求 法一.待定系数法:(已知函数类型如:一次、二次函数、反比例函数等)若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。

【例1】已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x -1)=2x +17,求f(x )的解析式。

分析:所求的函数类型已定,是一次函数。

设f(x)=ax+b(a≠0)则f(x+1)=?,f(x-1)=?解:设f(x)=ax+b(a≠0),由条件得:3[a(x+1)+b]-2[a(x-1)+b]=ax+5a+b=2x+17,∴f(x)=2x+7 【例2】求一个一次函数f(x),使得f{f[f(x)]}=8x+7分析:所求的函数类型已定,是一次函数。

设f(x)=ax+b(a≠0)则f{f[f(x)]}=f{f[ax+b]}=f[a(ax+b)+b]=? 解:设f(x)=ax+b (a≠0),依题意有a[a(ax+b)+b]+b=8x+7 ∴x a 3+b(2a +a+1)=8x+7,∴f(x)=2x+1例 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设bax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 例、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式。

分析:二次函数的解析式有三种形式: ① 一般式:)0()(2≠++=a c bx ax x f② 顶点式:()为函数的顶点点其中k h a kh x a x f ,,0)()(2≠++=③ 双根式:的两根是方程与其中0)(,0))(()(2121=≠--=x f x x a x x x x a x f解法1:设)0()(2≠++=a cbx ax x f ,则由y 轴上的截距为1知:1)0(=f ,即c=1 ① ∴ 1)(2++=bx ax x f由)2()2(--=-x f x f 知:1)2()2(1)2()2(22+--+--=+-+-x b x a x b x a 整理得:0)4(=-x b a , 即: 04=-b a ②由被x 轴截得的线段长为22知,22||21=-x x , 即84)()(21221221=-+=-x x x x x x . 得:814)(2=--aab .整理得: 2284a a b =- ③ 由②③得: 2,21==b a , ∴ 1221)(2++=x x x f .解法2:由)2()2(--=-x f x f 知:二次函数对称轴为2-=x ,所以设)0()2()(2≠++=a kx a x f ;以下从略。

反比例函数及解析式

反比例函数及解析式

x1
x2
0
x3

则 y1 , y2 , y3 的大小关系是( )
A. y1 y2 y3 B. y2 y1 y3
C. y3 y1 y2
D. y3 y2 y1
4.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图 4 所示,设小矩形的长和宽分别为 x、y,剪
去部分的面积为 20,若 2≤x≤10,则 y 与 x 的函数图像是( )
4
4.在同一坐标系中,函数 y k 和 y kx 3 的图象大致是( ) x
1.反比例函数的图象有 k 的符号确定其分布的象限,同时也决定了图象离原点距离的远近情况; 2.运用反比例函数的性质来比较反比例函数值大小比较时一定注意得函数自变量是否为同一象限里.
(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数
注意三点: ① xy 0
②y 是 x 的反比例函数中分母中不含有关于 x 的多项式,也就是说分母、商均为单项式
③ y k xy k y kx1 x
2. 反比例系数 k: 求法→ k xy
3. 待定系数法求反比例函数解析式: 一设→二代→三解→四结论
4.若 y b 与 1 成反比例,则 y 与 x 的函数关系式是( ) xa
A. 正比例 B. 反比例
C.一次函数 D.二次函数
1.已知函数 y m ,当 x 1 时, y 6 ,则函数的解析式是

x
2
2.已知变量 y 与 x -5 成反比例,且当 x =2 时 y =9,则 y 与 x 之间的函数解析式是
3. 已知□ABCD 中,AB = 4,AD = 2,E 是 AB 边上的一动点,设 AE= x ,DE 延长线交 CB 的延长线于 F,设 CF = y ,

反比例函数讲义(知识点+典型例题)

反比例函数讲义(知识点+典型例题)

变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

反比例函数解析式求法大展示(数学人教九年级下册)

反比例函数解析式求法大展示(数学人教九年级下册)

第 1 页 共 2 页 反比例函数解析式求法展示反比例函数解析式y=k x (k≠0)中,只有一个待定系数k ,因此只需一对对应值或函数图象上任意一点的坐标,用待定系数法就可以确定k 的值,进而求出反比例函数的解析式.确定反比例函数的解析式是近几年中考命题的一个突出亮点,现归纳如下,供同学们学习时参考.一、定义型例1 如果函数y=(k+1)22k x -是反比例函数,那么该反比例函数的解析式为 .解析:根据反比例函数的定义,可得k 2-2=-1且k+1≠0,解得k=1.所以该反比例函数的解析式为y=1x. 点评:本题考查了反比例函数的定义,解题关键是将反比例函数的一般式y =k x (k≠0)转化为y=kx -1(k≠0)的形式.二、一点型例2 若一个反比例函数图象过点A (-2,-3),则该反比例函数的解析式为 .解析:设该反比例函数的解析式为y=k x .将A (-2,-3)代入,得2k -=-3,解得k=6.所以该反比例函数的解析式为y=6x .故填y=6x. 点评:本题考查了用待定系数法求反比例函数的解析式,反比例函数y=k x (k≠0)图象上一点P (x ,y )的横、纵坐标的积为定值k ,即xy=k .三、图象型例3 某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了安全、迅速地通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.已知木板对地面的压强p (Pa )是木板面积S (m 2)的反比例函数,其图象如图1所示.请写出p 关于S 的函数解析式及自变量的取值范围.图1解析:因为木板对地面的压强p (Pa )是木板面积S (m 2)的反比例函数,设p=k S. 将A (1.5,400)代入,得1.5k =400,解得k=600.所以p 关于S 的函数解析式为p=600S (S >0). 点评:由图象求反比例函数的解析式,关键是找到(或确定)图象上某一点的坐标.四、开放型例4 已知一个反比例函数的图象位于第二、四象限,请写出一个符合条件的反比例函数的解析式为 . 解析:根据反比例函数的性质,反比例函数的图象位于二、四象限,则k <0.所以答案不唯一,只需写一个k <0的反比例函数的解析式即可,如y=-1x. 点评:本题考查了由反比例函数的性质确定解析式,关键是明确图象的位置与系数k 的对应关系,这类问题的答案一般不唯一.五、面积型例5 如图2,反比例函数y=kx的图象经过矩形AOBC的边AC的中点E,与另一边BC交于点D,连接DE.若S△ECD=2,则该反比例函数的解析式为()A.y=2xB.y=4xC.y=8xD.y=16x 图2解析:设点E的坐标为(m,n),则点C的坐标为(2m,n).所以点D的横坐标为2m.因为点E,点D均在反比例函数的y=kx的图象上,所以点D的纵坐标为2mnm=2n.所以点D的坐标为22nm⎛⎫⎪⎝⎭,.因为S△ECD=CE•CD=12m•2nn⎛⎫-⎪⎝⎭=2,所以mn=8.所以该反比例函数的解析式为y=8x.故选C.点评:本题主要考查了反比例函数系数k的几何意义,在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|.六、实际问题型例6近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x之间的函数解析式为_________.解析:由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,故设y=kx(k≠0).将(0.2,400)代入y=kx,解得k=80.所以眼镜度数y与镜片焦距x之间的函数解析式为y=80x.故填y=80x.点评:本题考查了根据实际问题列反比例函数解析式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的解析式.第 2 页共2 页。

初中数学 反比例函数解析式的几种常用求法

初中数学 反比例函数解析式的几种常用求法

反比例函数解析式的几种常用求法确定反比例函数解析式是反比例函数部分考查的一个重要知识点,也是进一步求解反比例函数问题的需要,那么怎样确定反比例函数的解析式呢?下面介绍几种常用的求解方法. 一、利用反比例函数图象上的点的坐标来确定例1 已知反比例函数的图象经过点(-3,1),则此函数的解析式为________.析解:设此反比例函数的解析式为ky x=(k 为常数,k ≠0).因为点(-3,1)在反比例函数的图象上,所以直接将这个点的坐标代入反比例函数的解析式ky x=,得k =-3,由此可得这个反比例函数的解析式为3y x=-.二、利用反比例函数的性质确定例2 写出一个图象位于第一、三象限内的反比例函数解析式________.析解:这是一道关于求反比例函数解析式的开放型试题,因该函数的图象经过第一、三象限,由反比例函数的性质可知其解析式中的k >0,因此,k 的取值可以为所有正数.如,可随意取k =4,由此可得对应的函数解析式为4y x=. 三、根据图形的面积确定例3 如图1,过反比例函数图象上一点A 分别向两坐标轴作垂线,则垂线与坐标轴围成的矩形ABOC 的面积是8,则该反比例函数的解析式为________.析解:设点A 的坐标为(x ,y ),又根据矩形ABOC 的面积和点A (x ,y )的关系可得: S矩形ABOC =|xy |=|k |=8,解得k =±8,又因该函数的图象在第一、三象限,故根据反比例函数的性质可得k =8,由此得这个反比例函数的解析式为8y x=. 四、根据反比例函数和一次函数图象的交点坐标确定 例4 直线y =k 1x +b 与双曲线2k y x=只有一个交点A (1,2),且与x 轴、y 轴分别交于B ,C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的解析式.析解:因点A (1,2)在2k y x=上,将点A (1,2)代入该式可得k2=2,则所求双曲线的解析式为2 yx=,又由AD垂直平分OB可得OD=1,OB=2,则B点坐标为(2,0),又因点A、B都在直线y=k1x+b上,故将其坐标代入直线y=k1x+b得11220.k bk b+=⎧⎨+=⎩,.解得124.kb=-⎧⎨=⎩,故所求过A、B两点的直线的解析式为y=-2x+4.跟踪练习:1.写出一个图象位于第二、四象限的反比例函数的解析式是________.2.如图3,Rt△ABD的顶点A在双曲线kyx=上,DB=OB,S△ABO=1,则此双曲线的解析式为________.参考答案:1.答案不惟一,如,6yx=-2.4yx=教你确定函数关系式反比例函数的关系式)0(≠=k xky 中只有一个待定系数k ,确定了k 的值,也就确定了反比例函数的关系式.下面介绍几种借助不同的问题情境,确定反比例函数关系式的方法.一、借助定义来确定 例1 已知函数43m y mx+=是反比例函数,试求出m 的值,并写出函数关系式.解析:此类问题,一般采用反比例函数的另一种表达方式)0(1≠=-k kx y 来列式求解. 由题意得:m+4=-1,解得m =-5.将m 值代入得函数关系式15y x=-. 二、借助一点坐标来确定例2 已知反比例函数的图象经过点(-3,4),则此函数关系式是 . 解析:将点(-3,4)代入xky =,得k =-12,所以此函数关系式为.12x y -=三、借助图象来确定例3 如图(1)所示的函数图象的关系式可能是 ( ). A . y =x B . y x1=C . y =x 2D . y =||1x解析:由图象知,x >0或x <0时,y >0,只有D 符合,故选D . 四、借助面积来确定例4 一个反比例函数在第三象限的图象如图(2),若A 是图象上任意一点,AM ⊥x 轴于M ,O 是原点,如果△AOM 的面积是5,求这个反比例函数的解析式.解析:此题除了利用△AOM 的面积等于||21k 外,还要用双曲线的 位置确定k 的符号.因为||21k =5,所以|k |=10,又因为双曲线在第三 象限,所以k >0,所以k =10.所以xy 10=.五、借助一次函数来确定例 5 正比例函数y =x 的图象与反比例函数xky =的图象有一个交点的纵坐标是2, 求反比例函数的解析式.解析:由题意将y =2代入y =x 中求出x =2,得出交点(2,2),将(2,2)代入xk y =图(1)AO M4.y得k=4,所以反比例函数解析式为x。

反比例函数问题的求解方法

反比例函数问题的求解方法

反比例函数问题的求解方法摘要:反比例函数的相关问题不但题型特别且较为新颖,并且解决问题的方法众多。

本文对反比例函数相关问题的求解方法进行了归纳,希望为更多的业内人员提供有价值的借鉴与参考。

关键词:反比例函数;求解;方法前言:所有问题的解决都不止一种有效的方式,唯有依照这类思路或是方法进行解题,所有复杂的问题都会变得较为简单。

下列是作者充分结合自身多年的工作经验,对一个设点坐标的方法进行反比例函数问题的相关处理,旨在为相关人士提供参考。

1坐标元法举例:图1所示,在平面直角的坐标体系中,反比例函数的图像和边长为6的正方形OABC的AB、BC两个边分别交汇于M,N两个点上,△OMN的面积是10,如果动点P处于x轴中,则PM+PN的最小值为()题型分析:依照图形存在的特点,预设点为M,点N的坐标,通过△OMN的面积能够明确为k值,此问题主要通过轴对称的性质,寻找最短的线段,并求解。

解题:例如图1所示,过点N就是ND⊥x轴,垂足就是D,和OM相交于G。

由于正方形OABC的边长为6,因此,点M的横坐标与点N的纵坐标都是6。

如果设点M(6,a),点N(b,6)。

因为,点M,N都处于反比例函数的图像中,所如图2所示,M关于x轴的对称点为Mˊ。

和NMˊ相交x轴与P,而NMˊ的长就是的最小值。

本题解题的重要点主要有:第一,通过性质,利用三角形的面积明确k;第二,通过轴对称,明确最小的距离,并准确确定图形。

2线段长度元法对此图展开分析:首先通过一次函数的解析式,明确A,B的坐标,进而明确线段AO,BO,的长度,从而明确∠BAO的大小,进而为之后的解题提供已知条件;之后将等腰三角形相等的腰当做等量传递的中心,分别对点D,C的坐标进行表示,最后在依照反比例函数的性质进行求解就可以了。

在对本题进行解题时应该重视下列关键点:第一,加强明确直线和坐标轴的交点坐标;第二,对坐标和线段长度之间的转换关系进行准确的处理;第三,科学有效的引入未知数也属于解题的重要技能;第四,需要对勾股定理以及30°角的性质进行熟练的利用。

求解反比例函数解析式的方法例析

求解反比例函数解析式的方法例析

求解反比例函数解析式的方法例析
陶千春
【期刊名称】《数理天地:初中版》
【年(卷),期】2022()12
【摘要】初中数学知识中,求解反比例函数的解析式是教学中的重点知识之一,求解反比例函数解析式的题目经常出现在填空题和选择题中,因为反比例函数的定义与其他函数相比更加具有抽象性,导致很多学生在解答相关题目时容易摸不清求解它的解析式的思路,针对这个问题,本文将会对求解反比例函数的解析式的方法进行归纳总结,以期帮助学生尽快理清求解反比例函数的解析式的思路.
【总页数】2页(P4-5)
【作者】陶千春
【作者单位】云南省保山市施甸县大楼中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.二次函数在闭区间上的最值问题两类轴对称问题的辨析小议辅助角公式的求解策略抽象函数问题分类例析均值不等式的应用与分析对称问题中参数范围的一种求解策略关于解不等式问题的若干策略简化解析几何计算的若干策略“定”,“动”相宜——二次函数在闭区间上的最值问题
2.反比例函数解析式的几种求解策略
3.由一道中考题引发的思考——反比例函数解析式求解的若干问题
4.一次函数、反比例函数解析式的确定
5.反比例函数解析式求解方法
因版权原因,仅展示原文概要,查看原文内容请购买。

反比例函数解析式的几种常用求法

反比例函数解析式的几种常用求法

阅读材料:反比例函数解析式的几种常用求法确定反比例函数解析式是反比例函数部分考查的一个重要知识点,也是进一步求解反比例函数问题的需要,那么怎样确定反比例函数的解析式呢?下面介绍几种常用的求解方法.一、利用反比例函数图象上的点的坐标来确定例1 已知反比例函数的图象经过点(-3,1),则此函数的解析式为________.析解:设此反比例函数的解析式为k y x=(k 为常数,k ≠0).因为点(-3,1)在反比例函数的图象上,所以直接将这个点的坐标代入反比例函数的解析式k y x =,得k =-3,由此可得这个反比例函数的解析式为3y x =-. 二、借助定义来确定例2. 已知函数43m y mx +=是反比例函数,试求出m 的值,并写出函数关系式.解析:此类问题,一般采用反比例函数的另一种表达方式)0(1≠=-k kx y 来列式求解.由题意得:m+4=-1,解得m =-5.将m 值代入得函数关系式15y x=-. 三、利用反比例函数的性质确定例3 写出一个图象位于第一、三象限内的反比例函数解析式________.析解:这是一道关于求反比例函数解析式的开放型试题,因该函数的图象经过第一、三象限,由反比例函数的性质可知其解析式中的k >0,因此,k 的取值可以为所有正数.如,可随意取k =4,由此可得对应的函数解析式为4y x =. 四、根据图形的面积确定例4 如图1,过反比例函数图象上一点A 分别向两坐标轴作垂线,则垂线与坐标轴围成的矩形ABOC 的面积是8,则该反比例函数的解析式为________.析解:设点A 的坐标为(x ,y ),又根据矩形ABOC 的面积和点A (x ,y )的关系可得: S 矩形ABOC =|xy |=|k |=8,解得k =±8,又因该函数的图象在第一、三象限,故根据反比例函数的性质可得k =8,由此得这个反比例函数的解析式为8y x=. 五、根据反比例函数和一次函数图象的交点坐标确定例5 直线y =k 1x +b 与双曲线2k y x=只有一个交点A (1,2),且与x 轴、y 轴分别交于B ,C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的解析式.析解:因点A (1,2)在2k y x =上,将点A (1,2)代入该式可得k 2=2,则所求双曲线的解析式为2y x=,又由AD 垂直平分OB 可得OD =1,OB =2,则B 点坐标为(2,0),又因点A 、B 都在直线y =k 1x +b 上,故将其坐标代入直线y =k 1x +b 得11220.k b k b +=⎧⎨+=⎩,.解得124.k b =-⎧⎨=⎩, 故所求过A 、B 两点的直线的解析式为y =-2x +4.跟踪练习:1.如图(1)所示的函数图象的关系式可能是 ( ).A . y =x B . y x 1=C . y =x 2D . y =||1x 2.写出一个图象位于第二、四象限的反比例函数的解析式是________.3.如图3,Rt △ABD 的顶点A 在双曲线k y x=上,DB =OB ,S △ABO =1,则此双曲线的解析式为________.4 .一个反比例函数在第三象限的图象如图(2),若A 是图象上任意一点,AM ⊥x 轴于M ,O是原点,如果△AOM 的面积是5,求这个反比例函数的解析式.5. 正比例函数y =x 的图象与反比例函数xk y的图象有一个交点的纵坐标是2, 求反比例函数的解析式.课堂反馈1.若关于x 、y 的函数y =5x 25k -是反比例函数,则k =________.2.若反比例函数的图象过点(-2,1),则此函数的解析式为________.3、反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .4 4.已知关于x 的一次函数y =mx +3n 和反比例函数y=25m n x +的图象都过点(1,-2),求一次函数和反比例函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档