加格达奇区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加格达奇区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知集合},052|{2
Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 2. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )
A .(x ≠0)
B .(x ≠0)
C .
(x ≠0)
D .
(x ≠0)
3. 函数y=2x 2﹣e |x|
在[﹣2,2]的图象大致为( )
A .
B .
C .
D .
4. 函数y=的定义域为( )
A .(,1)
B .(,∞)
C .(1,+∞)
D .(,1)∪(1,+∞)
5. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )
A .
B .﹣
C .2
D .﹣2
6. 在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78,则此数列前12项和等于( )
A .96
B .108
C .204
D .216
7. “2
4
x π
π
-
<≤
”是“tan 1x ≤”的( ) A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 8. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
9. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .π21
C .π121-
D .π2141-
【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 10.函数y=log 3|x ﹣1|的图象是( )
A .
B .
C .
D .
11.“3<-b a ”是“圆05622
2=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件
【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.
12.已知函数f (x )满足:x ≥4,则f (x )
=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )
A

B

C

D

二、填空题
13.下列命题:
①函数y=sinx 和y=tanx 在第一象限都是增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点;
D
A
B
C
O
③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).
14
.已知线性回归方程
=9,则b= .
15.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

16.图中的三个直角三角形是一个体积为20
的几何体的三视图,则h =__________.
17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a
+≤=->在其定义域上恰有两
个零点,则正实数a 的值为______.
18.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是

三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立
平面直角坐标系,直线的参数方程是243x t
y t
=-+⎧⎨
=⎩(为参数).
(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.
20.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;
(2)求数列{}的前n 项和.
21.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC =. (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .
22.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2. (Ⅰ)求数列{a n }通项公式; (Ⅱ)设数列{b n }满足b n
=(n ∈N *
),求证:b 1+b 2+…+b n
<.
23.(本小题满分12分)已知过抛物线2
:2(0)C y px p =>的焦点,
斜率为的直线交抛物线于11A x y (,) 和22B x y (,)(12x x <)两点,且9
2
AB =
. (I )求该抛物线C 的方程;
(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.
24.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P,M,N椭圆C上的三个动点.
(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;
(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.
加格达奇区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D 【解析】
试题分析:由{}
{}1,2,025
,0522--=⎭
⎬⎫⎩⎨⎧∈<<-
=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 2. 【答案】B
【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),
∴BC=8,AB+AC=20﹣8=12,
∵12>8
∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆, ∵a=6,c=4
∴b 2
=20,
∴椭圆的方程是
故选B .
【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.
3. 【答案】D
【解析】解:∵f (x )=y=2x 2
﹣e |x|

∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|

故函数为偶函数,
当x=±2时,y=8﹣e 2
∈(0,1),故排除A ,B ;
当x ∈[0,2]时,f (x )=y=2x 2﹣e x
, ∴f ′(x )=4x ﹣e x
=0有解,
故函数y=2x 2﹣e |x|
在[0,2]不是单调的,故排除C ,
故选:D
4. 【答案】A
【解析】解:由题意知log 0.5(4x ﹣3)
>0且4x ﹣3>0,
由此可解得,
故选A .
5. 【答案】A
【解析】解:设幂函数y=f (x )=x α,把点(,
)代入可得=
α

∴α=,即f (x )=,
故f (2)=
=

故选:A .
6. 【答案】B
【解析】解:∵在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78, ∴3a 2=﹣24,3a 11=78,解得a 2=﹣8,a 11=26, ∴此数列前12项和=
=6×18=108, 故选B .
【点评】本题考查了等差数列的前n 项和公式,以及等差数列的性质,属于基础题.
7. 【答案】A
【解析】因为tan y x =在,22ππ⎛⎫
-
⎪⎝⎭
上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当
tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24
x ππ
-<≤”是“tan 1x ≤”
的充分不必要条件,故选A. 8. 【答案】C
【解析】解:设C (x ,y ,z ),
∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,
∴,解得x=4,y=﹣3,z=1,
∴C (4,﹣3,1). 故选:C .
9. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12

,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 10.【答案】B
【解析】解:当x ﹣1≥0时,即x ≥1时,函数 y=log 3(x ﹣1),此时为增函数, 当x ﹣1<0时,即x >1时,函数 y=log 3(1﹣x ),此时为减函数, 故选:B
【点评】本题考查了复合函数的单调性和函数图象的识别,属于基础题.
11.【答案】A 【



12.【答案】A
【解析】解:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23) 且3+log 23>4
∴f (2+log 23)=f (3+log 23)
=
故选A .
二、填空题
13.【答案】 ②③④⑤
【解析】解:①函数y=sinx 和y=tanx 在第一象限都是增函数,不正确,取x=

,但是

,因此不是单调递增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点,正确;
③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,∴
=5(a 6+a 5)>0,
=11a 6<0,
∴a 5+a 6>0,a 6<0,∴a 5>0.因此S n 最大值为S 5,正确;
④在△ABC 中,cos2A ﹣cos2B=﹣2sin (A+B )sin (A ﹣B )=2sin (A+B )sin (B ﹣A )<0⇔A >B ,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确. 其中正确命题的序号是 ②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
14.【答案】 4 .
【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4
故答案为:4
【点评】本题考查线性回归方程,考查计算能力,属于基础题.
15.【答案】
【解析】设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部, 且点A 与圆心O 之间的距离为OA==

圆的半径为r=

∴sin θ==,
∴cos θ=,tan θ==,
∴tan2θ===, 故答案为:。

16.【答案】
【解析】 试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且
5,,6AB VA h AC ===,所以三棱锥的体积为115652032
V h h =⨯⨯⨯==,解得4h =.
考点:几何体的三视图与体积.
17.【答案】e
【解析】考查函数()()20{x x x f x ax lnx
+≤=-,其余条件均不变,则: 当x ⩽0时,f (x )=x +2x ,单调递增,
f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点;
则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有ln x a x
=
有且只有一个实根。

令()()2ln 1ln ,'x x g x g x x x -==, 当x >e 时,g ′(x )<0,g (x )递减;
当0<x<e时,g′(x)>0,g(x)递增。

即有x=e处取得极大值,也为最大值,且为1
e

如图g(x)的图象,当直线y=a(a>0)与g(x)的图象
只有一个交点时,则1
a
e
=.
回归原问题,则原问题中a e=.
点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.
18.【答案】

【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高
由于此三角形的高为,故圆锥的高为
此圆锥的体积为=
故答案为
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
三、解答题
19.【答案】(1)参数方程为
1cos
sin
x
y
θ
θ
=+


=

,3460
x y
-+=;(2)14
5
.
【解析】
试题分析:(1)先将曲线C的极坐标方程转化为直角坐标系下的方程,可得22
(1)1
x y
-+=,利用圆的参数方
程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C 上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.
试题解析:
(1)曲线C 的普通方程为22cos ρρθ=,∴22
20x y x +-=, ∴22(1)1x y -+=,所以参数方程为1cos sin x y θθ
=+⎧⎨
=⎩, 直线的普通方程为3460x y -+=. (2)曲线C 上任意一点(1cos ,sin )θθ+到直线的距离为
33cos 4sin 65sin()914555d θθθϕ+-+++==≤,所以曲线C 上任意一点到直线的距离的最大值为145. 考点:1.极坐标方程;2.参数方程.
20.【答案】
【解析】解:(1)设等差数列{a n }的公差为d ,∵a 2=0,a 6+a 8=10.
∴,解得,
∴a n ﹣1+(n ﹣1)=n ﹣2.
(2)=.
∴数列{
}的前n 项和S n =﹣1+0+++…+,
=+0++…++,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n =

21.【答案】(1)2=
AD ;(2)3π=B . 【解析】
考点:正余弦定理的综合应用,二次方程,三角方程.
【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.
22.【答案】
【解析】(Ⅰ)解:由4S n=(a n+1)2,
令n=1,得,即a1=1,
又4S n+1=(a n+1+1)2,
∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.
∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,
∴a n =1+2(n ﹣1)=2n ﹣1;
(Ⅱ)证明:由(Ⅰ)可知,b n
=
=,
则b 1+b 2+…+b n
=
=
=

23.【答案】
【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.

为12y y ≠,20y ≠,化简得12216y y y ⎛
⎫=-+ ⎪⎝⎭
,所以221222256323264y y y =++≥=, 当且仅当2222
256y y =即22y =16,24y =?时等号成立. 圆的直径OS
=
因为21y ≥64,所以当21y =64即1y =±8
时,min OS =S 的坐标为
168±(,). 24.【答案】
【解析】解:(Ⅰ
)由题意得解得a=2,b=1,
所以椭圆方程为.
(Ⅱ)(i)由已知,直线MN的斜率存在,
设直线MN方程为y=kx﹣,M(x1,y1),N(x2,y2).
由得(1+4k2)x2﹣4kx﹣3=0,
∴x1+x2=,x1x2=,
又.
所以S△PMN=|PD|•|x1﹣x2|=
=.
令t=,则t≥,k2
=
所以S△PMN=,
令h(t)=,t∈[,+∞),则h′(t)=1﹣=>0,所以h(t)在[,+∞),单调递增,
则t=,即k=0时,h(t)的最小值,为h()=,
所以△PMN面积的最大值为.
(ii)假设存在△PMN是以O为中心的等边三角形.
(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上.
又O为△PMN的中心,所以,可知Q(0,﹣),M(﹣,),N(,).
从而|MN|=,|PM|=,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(2)当P在x轴上时,同理可知,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则k OP=,
又O为△PMN的中心,则,可知.
设M(x1,y1),N(x2,y2),则x1+x2=2x Q=﹣x0,y1+y2=2y Q=﹣y0,
又x12+4y12=4,x22+4y22=4,两式相减得k MN=,
从而k MN=.
所以k OP•k MN=•()=≠﹣1,
所以OP与MN不垂直,与等边△PMN矛盾.
综上所述,不存在△PMN是以O为中心的等边三角形.
【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想。

相关文档
最新文档