2019-2020学年上学期高二数学12月月考试题含解析(843)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静乐县第二中学校2019-2020学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .
B .20
C .21
D .31
2. 已知函数()cos()3
f x x π
=+
,则要得到其导函数'()y f x =的图象,只需将函数
()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
3. 若()f x 是定义在(),-∞+∞上的偶函数,[)(
)1212,0,x x x x ∀∈+∞≠,有()()
2121
0f x f x x x -<-,则
( )
A .()()()213f f f -<<
B .()()()123f f f <-<
C .()()()312f f f <<
D .()()()321f f f <-< 4. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )
=
被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )
有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( )
A .1个
B .2个
C .3个
D .4个
5. 如图F 1、F 2是椭圆C 1:
+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在
第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )
A.B.C.D.
6.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()
A.a,b,c中至少有两个偶数
B.a,b,c中至少有两个偶数或都是奇数
C.a,b,c都是奇数
D.a,b,c都是偶数
7.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
8.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()
A.30°B.60°C.120°D.150°
9.若,,且,则λ与μ的值分别为()
A.B.5,2 C.D.﹣5,﹣2
10.已知函数f(x)=lnx+2x﹣6,则它的零点所在的区间为()
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
11.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,
则满足的x的范围为()
A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞)
D.(0,)∪(2,+∞)
12.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()
A.1﹣B.﹣C.D.
二、填空题
13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.
14.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2;
②当i=3,j=1时,x=0;
③当x=1时,(i,j)有4种不同取值;
④当x=﹣1时,(i,j)有2种不同取值;
⑤M中的元素之和为0.
其中正确的结论序号为.(填上所有正确结论的序号)
15.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.
16.在△ABC中,已知=2,b=2a,那么cosB的值是.
17.直线l :(t 为参数)与圆C :(θ为参数)相交所得的
弦长的取值范围是 .
18.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.
三、解答题
19.(本小题满分12分)
设椭圆2222:1(0)x y C a b a b +=>>的离心率12e =,圆22
127x y +=与直线1x y a b
+=相
切,O 为坐标原
点.
(1)求椭圆C 的方程;
(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使
得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方
程;若不是,请说明理由.
20.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;
(2)令()()g x xf x =,区间15
22
,D e e -⎛⎫= ⎪⎝⎭
,e 为自然对数的底数。

(ⅰ)若函数()g x 在区间D 上有两个极值,求实数m 的取值范围;
(ⅱ)设函数()g x 在区间D 上的两个极值分别为()1g x 和()2g x , 求证:12x x e ⋅>.
21.(本小题满分12分) 已知函数2
()x
f x e ax bx =--.
(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1
[,1]2
x ∈时,()1f x <.
22.在2014﹣2015赛季CBA 常规赛中,某篮球运动员在最近5场比赛中的投篮次数及投
3分球的平均命中率; (2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.
23.现有5名男生和3名女生.
(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?
24.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,
∠A1AD=.若O为AD的中点,且CD⊥A1O
(Ⅰ)求证:A1O⊥平面ABCD;
(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.
静乐县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考
答案)
一、选择题
1. 【答案】C
【解析】解:由a n+1=a n +2n ,得a n+1﹣a n =2n ,又a 1=1, ∴a 5=(a 5﹣a 4)+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =2(4+3+2+1)+1=21. 故选:C .
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
2. 【答案】B 【解析】
试题分析:函数()cos ,3f x x π⎛

=+∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数
()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长
度得到5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝⎭
,故选B.
考点:函数()sin y A x ωϕ=+的图象变换.
3. 【答案】D
4. 【答案】 D
【解析】解:①∵当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0
∴当x 为有理数时,f (f (x ))=f (1)=1; 当x 为无理数时,f (f (x ))=f (0)=1
即不管x 是有理数还是无理数,均有f (f (x ))=1,故①正确; ②∵有理数的相反数还是有理数,无理数的相反数还是无理数, ∴对任意x ∈R ,都有f (﹣x )=f (x ),故②正确;
③若x 是有理数,则x+T 也是有理数; 若x 是无理数,则x+T 也是无理数
∴根据函数的表达式,任取一个不为零的有理数T ,f (x+T )=f (x )对x ∈R 恒成立,故
③正确;
④取x 1=﹣,x 2=0,x 3=
,可得f (x 1)=0,f (x 2)=1,f (x 3)=0
∴A (,0),B (0,1),C (﹣
,0),恰好△ABC 为等边三角形,故④正确.
故选:D.
【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.
5.【答案】D
【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,
∴2a=4,b=1,c=;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四边形AF1BF2为矩形,
∴+=,即x2+y2=(2c)2==12,②
由①②得:,解得x=2﹣,y=2+,设双曲线C
2
的实轴长为2m,焦距为2n,
则2m=|AF
2
|﹣|AF1|=y﹣x=2,2n=2c=2,
∴双曲线C2的离心率e===.
故选D.
【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.
6.【答案】B
【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”
可得题设为:a,b,c中恰有一个偶数
∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.
故选B.
【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.
7.【答案】A
【解析】解:由“|x﹣2|<1”得1<x<3,
由x2+x﹣2>0得x>1或x<﹣2,
即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,
故选:A.
8.【答案】A
【解析】解:∵sinC=2sinB,∴c=2b,
∵a2﹣b2
=bc,∴cosA===
∵A是三角形的内角
∴A=30°
故选A.
【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.9.【答案】A
【解析】解:由,得.
又,,
∴,解得.
故选:A.
【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.
10.【答案】C
【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.
因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.
可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.
故选C.
11.【答案】D
【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,
∵函数f(x)是偶函数,
∴不等式等价为f(||)<,
即||>,即>或<﹣,
解得0<x<或x>2,
故x的取值范围是(0,)∪(2,+∞)
故选:D
【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
12.【答案】A
【解析】解:设扇形的半径为r,则扇形OAB的面积为,
连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到
图中划线部分,则阴影部分的面积为:﹣,
∴此点取自阴影部分的概率是.
故选A.
二、填空题
13.【答案】0.6
【解析】解:当t>0.1时,可得1=()0.1﹣a
∴0.1﹣a=0
a=0.1
由题意可得y≤0.25=,
即()t﹣0.1≤,
即t﹣0.1≥
解得t≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室.
故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.
14.【答案】①③⑤
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标
系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
15.【答案】.
【解析】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),
∴设直线l方程为y=k(x﹣1),
由,消去x得.
设A(x1,y1),B(x2,y2),
可得y1+y2=,y1y2=﹣4①.
∵|AF|=3|BF|,
∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,
消去y
得k2=3,解之得k=±.
2
故答案为:.
【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.
16.【答案】.
【解析】解:∵=2,由正弦定理可得:,即c=2a.
b=2a,
∴==.
∴cosB=.
故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.
17.【答案】[4,16].
【解析】解:直线l:(t为参数),
化为普通方程是=,
即y=tanα•x+1;
圆C的参数方程(θ为参数),
化为普通方程是(x﹣2)2+(y﹣1)2=64;
画出图形,如图所示;
∵直线过定点(0,1),
∴直线被圆截得的弦长的最大值是2r=16,
最小值是2=2×=2×=4
∴弦长的取值范围是[4,16].
故答案为:[4,16].
【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.
18.【答案】或 【解析】
试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以
150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或.
考点:等差数列的性质.
【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.
三、解答题
19.【答案】(1)22
143
x y +=;(2)点R 在定直线1x =-上. 【解析】
试题解析:
(1)由12e =,∴2214e a =,∴22
34a b =7=

解得2,a b ==,所以椭圆C 的方程为22
143
x y +=.
设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--,
解得112
12
21212011224
424()
41()814
x x x x x x x x x x x x x x x λλ
++
⋅-+++=
==+-+++
+
又221212222
64123224
24()24343434k k x x x x k k k
---++=⨯+⨯=+++, 21222
3224
()883434k x x k k -++=+=++,从而12120
1224()1()8x x x x x x x ++==-++, 故点R 在定直线1x =-上.
考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系. 20.【答案】(1)增区间()0,2,减区间()2,+∞,(2)详见解析 【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数()g x 在区间D 上有两个
极值,等价于
()2ln 21g x x mx -'=+在15
22,e e -⎛⎫
⎪⎝⎭
上有两个不同的零点,令()0g x '=,得
2l n 1
2x m x
+=
,通过求导分析 得m 的范围为512231,e e ⎛⎫ ⎪ ⎪⎝⎭
;(ⅱ)2ln 1
2x m x +=,得12122ln 12ln 12x x m x x ++==,由分式
恒等变换得
12121212
212ln 12ln 12ln 1
lnx x x x x x x x ++++--=
+-,得
1
121211211222
2
1
ln ln 1ln ln 1x x x x x x
x x x x x x x x ++++=⋅=⋅--,要证明
12x x e >,只需证12ln ln 12x x ++>,即证1
2112
2
1ln 21x x x
x x x +⋅>-, 令3
1
21x e
t x -<
=<,()()21ln 1
t p t t t -=-+,通过求导得到()0p t <恒成立,得证。

试题解析:
(2)(ⅰ)因为()2
2ln g x x x mx x =--,
所以()2ln 2212ln 21g x x mx x mx =+--=-+',15
22,x e e -⎛⎫
∈ ⎪⎝⎭

若函数()g x 在区间D 上有两个极值,等价于()2ln 21g x x mx -'=+在15
22,e e -⎛⎫
⎪⎝⎭
上有两
个不同的零点,
令()0g x '=,得2ln 1
2x m x
+=
, 设()()2
2ln 112ln ,x x
t x t x
'+-==
,令()0,t x x ='=
所以m 的范围为512231,e e ⎛⎫
⎪ ⎪⎝⎭
(ⅱ)由(ⅰ)知,若函数()g x 在区间D 上有两个极值分别为()1g x 和()2g x ,不妨设
12x x <,则
1212
2ln 12ln 12x x m x x ++==,
所以12121212
212ln 12ln 12ln 1
lnx x x x x x x x ++++--=+-
即1
1
21211211222
2
1
ln ln 1ln ln 1x x x x x x
x x x x x x x x ++++=⋅=⋅--, 要证12x x e >,只需证12ln ln 12x x ++>,即证1
2112
2
1ln 21x x x
x x x +⋅>-, 令3
121x e t x -<=<,即证1ln 21t t t +⋅>-,即证1ln 21
t t t -<⋅
+, 令()()
21ln 1t p t t t -=-+,因为()()()()
2
22
114
011t p t t t t t -=-=+'>+, 所以()p t 在()
3,1e -上单调增,()10p =,所以()0p t <,
即()21ln 0,1
t t t --
<+所以1
ln 2
1
t t t -<+,得证。

21.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4
e a ∈+∞时,有个公共点;(2)证明见解析. 【解析】
试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x
e a x
=,构造函数
2()x e h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2
(2)4
e h =,根据原函数的
单调性可讨论得零点个数;(2)构造函数2
()1x h x e x x =---,利用导数可判断()h x 的
单调性和极值情况,可证明()1f x <.1
试题解析:
当2
(0,
)4
e
a ∈时,有0个公共点; 当2
4e a =,有1个公共点;
当2
(,)4
e a ∈+∞有2个公共点.
(2)证明:设2()1x h x e x x =---,则'()21x
h x e x =--,
令'
()()21x
m x h x e x ==--,则'
()2x
m x e =-,
因为1(,1]2x ∈,所以,当1[,ln 2)2
x ∈时,'()0m x <;()m x 在1[,ln 2)2
上是减函数,
当(ln 2,1)x ∈时,'
()0m x >,()m x 在(ln 2,1)上是增函数,
考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.
【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.
22.【答案】
【解析】解:(1)该运动员在这5场比赛中2分球的平均命中率为:
=,
3分球的命中率为:=.
(2)依题意,该运动员投一次2分球命中的概率和投一次3分球命中的概率分别为,,ξ的可能取值为0,2,3,5,
P(ξ=0)=(1﹣)(1﹣)=,
P(ξ=2)==,
P(ξ=3)=(1﹣)×=,
P(ξ=5)==,
∴该运动员在最后1分钟内得分ξ的分布列为:
∴该运动员最后1分钟内得分的数学期望为Eξ==2.
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想.
23.【答案】
【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.
(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种
【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.
24.【答案】
【解析】满分(13分).
(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,
∴A1O==,…(2分)
∴+AD2=AA12,
∴A1O⊥AD.…(3分)
又A1O⊥CD,且CD∩AD=D,
∴A1O⊥平面ABCD.…(5分)
(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),
则A(0,﹣1,0),A
(0,0,),…(6分)
1
设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),
∵=,=(1,m+1,0),

取z=1,得=.…(8分)
又A1O⊥平面ABCD,A1O⊂平面A1ADD1
∴平面A1ADD1⊥平面ABCD.
又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,
∴CD⊥平面A1ADD1.
不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)
由题意得==,…(12分)
解得m=1或m=﹣3(舍去).
∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)
【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.。

相关文档
最新文档