北师大版完整版新精选小学五年级数学下册期末复习试卷应用题训练300题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版完整版新精选小学五年级数学下册期末复习试卷应用题训练300题及
答案
一、北师大小学数学解决问题五年级下册应用题
1.张华买了一批菜油,放在A,B两个桶里,两个桶都未能装满。
如果把A桶油倒入B桶后,B桶装满,A桶还剩10升菜油;如果把B桶油倒入A桶后,A桶还要再加20升菜油才满。
已知A桶容量是B桶的2.5倍。
问:张华一共买了多少升菜油?
2.先认真阅读下面的背景资料再根据信息完成问题。
幸福小区里有个为民超市,超市房间从里面量长8米,宽5.6米,高3米,门窗面积共5.2平方米。
超市收银台旁有一个长6分米,宽5分米,高4分米的长方体鱼缸。
新冠肺炎疫情得到控制后,今年5月,超市进行了重新装修:房间的四壁和房顶贴上了新的墙纸,地面重新铺了正方形的地板砖,鱼缸(无盖)的棱上贴上了装饰条儿,鱼缸还放了美丽的珊瑚……6月1日超市重新开业,购进大量的商品,其中有很多小朋友爱喝的饮料,还有一些大米和80桶食用油。
(1)装修时至少用了多大面积的墙纸(门窗不贴墙纸)?
(2)如果用边长8分米,每块单价为108元的地砖来铺地,一共需要多少钱?
3.将小正方体按下图靠墙摆放。
小正方体的个数24681012…2a
露在外面的面的个数
4.有4个棱长是3dm的正方体礼品盒,现在要把它们用包装纸包装起来,有如下两种方案(如下图)。
(1)哪种方案能节省包装纸?
(2)至少需要多少平方米的包装纸?
5.红铅笔每支1.9元,蓝铅笔每支1.1元,两种铅笔共买了16支,花了28元。
问:红、蓝铅笔各买了几支?
6.书架有两屠,上层的图书本数是下层的1.5倍,如果从上层拿10本书到下层,那么两层的图书本数一样多。
原来书架的上、下层各有多少本图书?
7.水果店运来一批水果,其中香蕉360千克,菠萝的质量是香蕉的,橘子的质量比菠萝
的少15千克。
水果店运来橘子多少千克?(先画线段图分析数量关系,再列式计算)8.小华的妈妈买了香蕉和苹果各2kg,共花了14.4元.如果香蕉的价钱是苹果的1.25倍,每千克香蕉和苹果各多少元?(用方程解答)
9.一个长20cm、宽15cm、高8cm的长方体木块,每次都从这个木块中锯下一个最大的正方体。
锯三次后,剩下的体积是多少?
10.某工厂用一批钢材做零件,每个零件用钢4.5kg,可做160个,改进技术后,每个零件节约用钢1.3kg,改进技术后,这批钢材可做多少个零件?(用方程解)
11.把的分子、分母加上同一个数以后,正好可以约成。
这个加上去的数是多少?12.芳芳用10元钱买了3支圆珠笔和7本练习本。
剩下的钱若买一支圆珠笔就少1角4分,若买一本练习本还多8角钱。
圆珠笔和练习本的单价各是多少元?
13.一个底面是正方形的长方体木块,高是10厘米,如果高减少3厘米,表面积就减少了60平方厘米,原来这个长方体木块的体积是多少?
14.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?15.一辆汽车从甲地开往乙地,平均每小时行驶60km。
这辆汽车到达乙地后又以90千米时的速度返回甲地,往返一次共用2.5小时。
求甲、乙两地间的路程。
16.阳光小学五、六年级一个月共收集废电池80节。
五年级收集的废电池数量是六年级的1.5倍。
五、六年级各收集了多少节废电池?
17.5个棱长都是10cm的正方体纸箱堆放在墙角处(如下图)。
露在外面的面积是多少平方厘米?
18.一个长方体罐头盒,长12厘米,宽8厘米,高10厘米。
(1)在它的四周贴上商标纸,这张纸的面积至少是多少?(接缝处不计)
(2)小明打开罐头后吃了一些,现在盒内罐头只剩下2厘米高了,小明吃了多少立方厘米的罐头?(罐头盒厚度不计,食物装满状态)
19.希望小学有一间长10米、宽6米、高3.5米的长方体教室。
(1)这间教室的空间有多大?
(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?
20.有两袋大米,甲袋大米的质量是乙袋大米的1.2倍。
若从甲袋往乙袋倒4kg大米,则两袋大米一样重。
原来两袋大米各有多少千克?(用方程解答)
21.一个无水观赏鱼缸中放有一块高为28cm,体积为4200cm³的假石山(如图),如果水管以每分钟7dm³的流量向鱼缸内注水,那么至少需要多少分钟才能将假石山完全淹没?
22.一块方钢长80厘米,横截面是边长3厘米的正方形,如果每立方厘米的钢重7.8克,这块方钢共重多少千克?
23.学校要粉刷新教室的四周和屋顶,已知教室的长是8m,宽是6m,高是3m,门窗的面积是11.4平方米。
如果每平方米需要花6元涂料费,粉刷这个教室需要花费多少元?24.一个长是8cm,宽是5cm的长方体木块,体积是120cm3。
(1)这个长方体的高是________cm。
(2)如果从这个长方体木块中截取一个最大的正方体,正方体的体积是原长方体体积的几分之几?
(3)这个长方体木块最多能截取()个像上面(2)题中一样的正方体,截完后原来长方体剩余木块的表面积是多少平方厘米?
25.富安小区要建一个游泳池,游泳池长12m,宽是6m,深2m。
(1)这个游泳池的占地面积是多少平方米?
(2)如果在游泳池的四周和底面贴上瓷砖,这个游泳池需要贴多少平方米的瓷砖?
(3)这个游泳池最多可以装多少升水?
26.修一个长30米,宽20米,深3米的长方形的游泳池。
(1)要在四周与底面贴上磁砖,贴磁砖的面积是多少平方米?
(2)往池中注水6小时,平均每小时注水150立方米,这时池中水深多少米?
27.学校环形跑道长480米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向跑,经过30分钟,笑笑第一次追上淘气。
淘气的速度是230米/分,笑笑每分跑多少米?(列方程解答)
28.一个长方体水箱,长10dm,宽8dm,水深4.5dm,当把一块石块浸入水箱后,水位上升到6.5dm,这块石块的体积是多少?
29.少年宫和学校相距800米。
小童和小乐分别从少年宫和学校门口同时向相反方向走去(如下图),7分钟后两人相距1360米。
小童每分钟走37米。
小乐每分钟走多少米?(列方程解)
30.下图是一个长方体纸盒的展开图,计算立体图形的表面积和体积。
(单位:cm)
31.一个长方体玻璃鱼缸(无盖),长50厘米、宽40厘米、高30厘米。
(1)做这个鱼缸至少需要玻璃多少平方厘米?
(2)在鱼缸里注入40升水,水深大约多少厘米?
(3)往水里放入鹅卵石,测得水面上升了2.5厘米,求放入物体的体积一共是多少立方厘米?
32.AB两地相距384千米,甲乙两辆汽车同时从A地开往B地,当甲车到达B地时,乙车离B地还有60千米,已知乙车每小时行54千米,甲车每小时行多少千米?
33.爱心书屋里的科技书的本数是故事书的1.5倍,科技书的本数比故事书多240本。
科技书和故事书各有多少本?(用方程解)
34.一个长方体玻璃容器,底面是边长2分米的正方形,向容器中倒进6升的水,再把一个西瓜放进水中,这时水面高度是25厘米(水没有溢出),这个西瓜的体积是多少? 35.一根方钢,长6米,横截面是一个边长为4厘米的正方形。
(1)这块方钢重多少吨?(1立方厘米钢重10克)
(2)一辆载重5吨的货车能否一次运载50根这样的方钢?
36.一种盒装纸巾的长、宽、高(如图1)所示。
用塑料包装纸将3盒这样的纸巾包装起来(如图2),至少需要多少平方厘米的塑料包装纸?(接头处忽略不计)
37.光明学校四周的外围墙有些陈旧,现在要将四周的外围墙重新粉刷(不考虑门窗),
现在不但要选购涂料,还要请粉刷工人。
据了解:
(1)需要粉刷的外围墙(四个面)面积是多少平方米?需要多少千克涂料?
(2)既要便宜,又要耐用,你认为应该选哪种涂料,需要多少钱?
(3)选择(2)中的涂料,最后完成这项工程共计12800元,那么粉刷人工费每平方米需多少元?
38.有一块长32cm,宽16cm的长方形铁皮,通过折、割或焊等方法做出一个高为4cm的无盖长方体盒子,使这个盒子的容积尽可能的大,你会怎样设计?请画出示意图。
(1)我的设计是:长________cm,宽________cm,高4cm。
(2)我画的示意图:
(3)请列式计算出它的容积:
39.如图,一个5×5×5的立方体,在一个方向上开有1×1×5的孔,在另一个方向上开有2×1×5的孔,在第三个方向上开有3×1×5的孔。
(1)在一个方向上开有1×1×5的孔中,挖去了多少个孔?
(2)三个方向上开孔后,剩余部分的体积是多少?
40.一个无盖的长方体铁皮水槽(如下图),做这个水槽至少需要多少平方分米铁皮?这个水槽最多可以盛水多少升?(单位:dm)
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题五年级下册应用题
1.解:设B桶能装x升油,则A桶的容量是2.5x升。
x+10=2.5x-20
x+10-x=2.5x-20-x
10=1.5x-20
1.5x-20=10
1.5x=20+10
1.5x=30
x=30÷1.5
x=20
20+10=30(升)
答:张华一共买了30升油。
【解析】【分析】本题可列方程进行解答,更好理解。
设B桶能装x升油,A桶容量是B 桶的2.5倍,所以A桶的容量是2.5x升,由于把A桶油倒入B桶后,B桶装满,A桶还多10升,由此可知,共有油(x+10)升;又把B桶倒入A桶,A 桶还能再加20升才满,则油的总量是(2.5x-20)升,则此可得方程:x+10=2.5x-20,解此方程求出B桶的容量后,即能求出张华一共买了多少升油。
分析本题要注意两次倒入的油的总量没有发生变化,并由此列出等量关系式是完成本题的关键。
2.(1)解:8×5.6+(5.6×3+8×3)×2-5.2
=44.8+(16.8+24)×2-5.2
=44.8+81.6-5.2
=126.4-5.2
=121.2(m²)
答:装修时至少用了121.2m²的墙纸。
(2)解:8m=80dm,5.6m=56dm
80÷8=10
56÷8=7
10×7×108=7560(元)
或 80×56÷ (8×8)×108=7560(元)
答:一共需要7560元钱。
【解析】【分析】(1)墙纸面积=房间的四壁和房顶面积- 门窗面积,房间的四壁和房顶面积=长×宽+(宽×高+长×高)×2。
(2)1米=10分米,总价=数量×单价,数量=行数×列数,行数=宽÷地砖边长,列数=长÷地砖边长。
的倍数,当有2a个小正方体靠墙摆放时,露在外面的面有3a+4,据此规律解答。
4.(1)解:方案A减少了4×2=8个面,方案B减少了6个面,
因为8>6,
所以方案A能节省包装纸。
(2)解:方案A:长方体的长3×2=6dm,宽为3dm,高为3×2=6dm,
(6×3+6×6+3×6)×2
(18+36+18)×2
=72×2
=144(dm2)。
144dm2=1.44m2。
答:至少需要1.44平方米的包装纸。
【解析】【分析】(1)分别观察方案A和方案B,可得方案A减少了8个面,方案B减少了6个面,即可得出减少面数量多的节省包装纸;
(2)方案A中长方体的长3×2=6dm,宽为3dm,高为3×2=6dm,再根据长方体的表面积=(长×宽+长×高+宽×高),代入数值计算即可。
5.解:设红铅笔买了x支,蓝铅笔买了(16-x)支。
1.9x+(16-x)×1.1=28
1.9x+17.6-1.1x=28
0.8x=28-17.6
0.8x=10.4
x=10.4÷0.8
x=13
16-13=3(支)
答:红铅笔买了13支,蓝铅笔买了3支。
【解析】【分析】此题属于鸡兔同笼问题,用列方程的方法解答比较容易理解。
设红铅笔买了x支,蓝铅笔买了(16-x)支。
等量关系:红铅笔的总价+蓝铅笔的总价=28元,根据等量关系列方程,解方程求出红铅笔的支数,进而求出蓝铅笔的支数即可。
6.解:设下层有x本图书,那么上层有1.5x本图书。
1.5x-10=x+10
0.5x=20
x=40
40×1.5=60(本)
答:原来书架的上层有60本图书,下层有40本图书。
【解析】【分析】本题可以用方程作答,即设下层有x本图书,那么上层有1.5x本图书,那么题中存在的等量关系是:上层有图书的本数-上下两层一样多时上层拿到下层的图书的本数=下层有图书的本数+上下两层一样多时上层拿到下层的图书的本数,据此代入数据和字母作答即可。
7.解:如图所示:
360××-15
=270×-15
=180-15
=165(千克)
答:水果店运来橘子165千克。
【解析】【分析】根据题目信息,先画出香蕉的千克数,再将其平均分成4份,其中的3份表示菠萝的质量,菠萝中的2份表示再减去15千克即表示橘子的千克数。
橘子的千克数
=菠萝的千克数(香蕉的千克数×)×-15,代入数值计算即可。
8.解:设每千克苹果的价钱为x元,则每千克香蕉的价钱为1.25x元,由题意得:
(x+1.25x)×2=14.4
(x+1.25x)×2÷2=14.4÷2
x+1.25x=7.2
2.25x=7.2
2.25x÷2.25=7.2÷2.25
x=3.2
3.2×1.25=4(元)
答:每千克香蕉4元,每千克苹果3.2元。
【解析】【分析】等量关系:(苹果单价+香蕉单价)×购买数量=总价;根据等量关系列方程,根据等式性质解方程。
9.解:第一次:8×8×8
=64×8
=512(cm3)
第二次:8×8×8
=64×8
=512(cm3)
第三次:7×7×7
=49×7
=343(cm3)
剩下的体积=20×15×8-512-512-343
=300×8-512-512-343
=2400-512-512-343
=1888-512-343
=1376-343
=1033(cm3)
答:剩下的体积是1033 cm3。
【解析】【分析】第一次:从长上锯一个棱长为8厘米的正方体;第二次从宽上锯一个长为8厘米的立方体;第三次宽只剩下7厘米,所以只能锯一个棱长为7的正方体,再用长方体的体积(长×宽×高)减去三个正方体的体积(棱长×棱长×棱长),代入数值计算即可。
10.解:设改进技术后,这批钢材可做x个零件。
(4.5-1.3)x=4.5×160
3.2x=720
x=720÷3.2
x=225
答:改进技术后,这批钢材可做225个零件.
【解析】【分析】等量关系:改进技术后,每个零件用钢的质量×做的零件个数=改进技术前,每个零件用钢的质量×做的零件个数,根据等量关系列方程,根据等式性质解方程。
11.解:设加上去的数是x。
3×(5+x)=2×(23+x)
15+3x=46+2x
3x-2x=46-15
x=31
答:加上去的数是31。
【解析】【分析】等量关系:的分子分母都加上x,等于,根据等量关系列方程,根据等式性质解方程。
12.解:设练习本单价是x元,则圆珠笔单价是(x+0.8+0.14)元。
7x+3(x+0.8+0.14)=10-(x+0.8)
x=0.58
0.58+0.8+0.14=1.52(元)
答:圆珠笔单价是1.52元,练习本单价是0.58元。
【解析】【分析】剩下的钱若买一支圆珠笔就少1角4分,若买一本练习本还多8角钱。
据此可知圆珠笔的单价=练习本的单价+8角+1角4分;
等量关系:买7本练习本的钱+买3支圆珠笔的钱=10元-(一本练习本的钱数+8角),根据等量关系列方程,综合利用等式性质解方程。
13.解:60÷4÷3
=15÷3
=5(厘米)
10×5×5
=50×5
=250(立方厘米)
答:原来这个长方体木块的体积是250立方厘米。
【解析】【分析】减少的表面积÷4÷减少的高=长方体的底面边长,长方体的底面边长×边长×高=长方体木块的体积。
14.解:设大客车每小时行x千米,则小轿车每小时行1.2x千米。
(1.2x+x)×2=330
2.2x×2=330
4.4x=330
x=330÷4.4
x=75
75×1.2=90(千米)
答:大客车每小时行75千米,小轿车每小时行90千米。
【解析】【分析】本题属于相遇问题,等量关系:(大客车的速度+小客车的速度)×行驶时间=行驶路程,根据等量关系列方程,根据等式性质解方程。
15.解:设去时时间为x小时,则返回时间为(2.5-x)小时,
60x=90×(2.5-x)
60x=90×2.5-90x
60x+90x=90×2.5-90x+90x
150x=225
150x÷150=225÷150
x=1.5
1.5×60=90(千米)
答:甲、乙两地间的路程是90千米。
【解析】【分析】此题主要考查了列方程解决问题,去时与返回时的路程不变,设去时时间为x小时,则返回时间为(2.5-x)小时,去时速度×去时用的时间=返回速度×返回用的时间,据此列方程解答,然后用速度×时间=路程,据此列式解答。
16.解:设六年级收集废电池x节,则五年级收集1.5x节,
1.5x+x=80
2.5x=80
2.5x÷2.5=80÷2.5
x=32
五年级:32×1.5=48(节)
答:五年级收集48节废电池,六年级收集32节废电池。
【解析】【分析】此题主要考查了列方程解决问题,设六年级收集废电池x节,则五年级收集1.5x节,五年级收集的废电池数量+六年级收集的废电池数量=80,据此列方程解答。
17.解:观察几何体得:从上面可以看到4个正方形面,从前面可以看到3个正方形面,从右面可以看到4个正方形面,所以露在外面的面一共有:4+3+4=11(个),则露在外面的面积:10×10×11=1100(平方厘米)。
答:露在外面的面积是1100平方厘米。
【解析】【分析】先从不同的方向观察几何体,得到每个方向看到的正方形面的数量,从而求得露在外面的正方形面的数量,再根据“露在外面的面积=棱长×棱长×露在外面的正方形面的数量”,代入数据解答即可。
18.(1)(12×10+10×8)×2
=(120+80)×2
=200×2
=400(平方厘米)
答:这张纸的面积至少是400平方厘米。
(2)12×8×(10-2)
=96×8
=768(立方厘米)
答:小明吃了768立方厘米的罐头。
【解析】【分析】(1)四周四个面都是长方形,分别是长12厘米、宽10厘米的面两个,长10厘米、宽8厘米的面两个;计算出四个面的面积就是这张纸的面积;
(2)小明吃罐头的高度是(10-2)厘米,根据长方体体积公式,用长乘宽再乘吃罐头的高度即可求出小明吃罐头的体积。
19.(1)解:10 ×6×3.5
=60×3.5
=210(立方米)
答:这间教室的空间有210立方米。
(2)解:10×6+(10×3.5+3.5×6)×2-6
=60+(35+21)×2-6
=60+56×2-6
=60+112-6
=166(平方米)
答:这间教室要刷166平方米。
【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间;(2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。
20.解:设乙袋大米有x千克,则甲袋大米有1.2x千克,
1.2x-4=x+4
1.2x-4-x=x+4-x
0.2x-4=4
0.2x-4+4=4+4
0.2x=8
0.2x÷0.2=8÷0.2
x=40
甲袋:40×1.2=48(千克)
答:甲袋有48千克,乙袋有40千克。
【解析】【分析】此题主要考查了列方程解答应用题,设乙袋大米有x千克,则甲袋大米有1.2x千克,用甲袋大米的质量-4=乙袋大米的质量+4,据此列方程解答。
21.解:46×25×28-4200
=1150×28-4200
=32200-4200
=28000(cm3)
=28(dm3)
28÷7=4(分钟)
答:至少需要4分钟才能将假石山完全淹没。
【解析】【分析】根据题意可知,先求出水的体积,长×宽×假山石的高-假山石的体积=注水的体积,然后把cm3化成dm3,除以进率1000,最后用需要注水的体积÷水管每分钟的流量=需要的时间,据此列式解答。
22.解:3×3×80×7.8÷1000
=9×80×7.8÷1000
=720×7.8÷1000
=5616÷1000
=5.616(千克)
答:这块方钢共重5.616千克。
【解析】【分析】根据题意可知长方体的体积=底面积×高,计算出体积后,体积× 每立方厘米的质量=总质量,关键最后要单位换算。
23.解:(8×6+8×3×2+6×3×2-11.4)×6
=(48+48+36-11.4)×6
=120.6×6
=723.6(元)
答:粉刷这个教室需要花费723.6元。
【解析】【分析】要粉刷的面积=教室5个面的面积-门窗的面积,要粉刷的面积×6=粉刷这个教室需要花费的钱数。
24.(1)3
(2)解:3×3×3=9×3=27(立方厘米)
27÷120=
答:正方体的体积是原长方体体积的。
(3)解:8÷3=2(个)……2(厘米)
5÷3=1(个)……2(厘米)
3÷3=1(个)
2×1×1=2(个)
(8×5+8×3+5×3)×2=79×2=158(平方厘米)
答:这个长方体木块最多能截取2个像上面(2)题中一样的正方体,截完后原来长方体剩余木块的表面积是158平方厘米。
【解析】【解答】(1)120×(8×5)=120÷40=3(厘米),所以这个长方体的高是3cm。
【分析】(1)高=体积÷(长×宽);
(2)根据正方体的特征,截取的最大的正方体的棱长是3厘米,正方体的体积=棱长3,求一个数是另一个数的几分之几,用除法;
(3)长8厘米里面有2个3厘米,宽厘米5里面有1个3厘米,高3厘米里面有1个3厘米;据此可得能截取的正方体的个数为(2×1×1)个,平移割补后,剩余木块的表面积与原来长方体的表面积相同,据此解答即可。
25.(1)解:12×6=72(平方米)
答:这个游泳池的占地面积是72平方米。
(2)解:12×6+(12×2+6×2)×2
=72+(24+12)×2
=72+36×2
=72+72
=144(平方米)
答:这个游泳池需要贴144平方米的瓷砖。
(3)解:12×6×2
=72×2
=144(立方米)
=144000升
答:这个游泳池最多可以装水144000升水。
【解析】【分析】(1)游泳池的占地面积=游泳池的底面积=长×宽,代入数值计算即可;(2)需要贴瓷砖的平方米数=长×宽+(长×高+宽×高)×2,长方体的表面积-上面的面积,代入数值计算即可;
(3)水的体积=长×宽×高,最后将单位转化成升即可。
26.(1)解:30×20+(30×3+20×3)×2
=600+150×2
=600+300
=900(平方米)
答:贴瓷砖的面积是900平方米。
(2)解:150×6÷(30×20)
=900÷600
=1.5(米)
答:这时池中水深1.5米。
【解析】【分析】(1)贴磁砖的面积=底面积+(前面面积+侧面面积)×2=长×宽+(长×高+宽×高)×2。
(2)水的深度=水的体积÷底面积。
27.解:设笑笑每分跑x米。
30x-230×30=480
30x-6900=480
30x-6900+6900=480+6900
30x=7380
x=246
答:笑笑每分跑246米。
【解析】【分析】此题主要考查了追及问题,可以列方程解答,设笑笑每分跑x米,笑笑跑的路程-淘气跑的路程=追及时相差的路程,据此列方程解答。
28.解:10×8×(6.5-4.5)
=10×8×2
=80×2
=160(dm3)
答:这块石块的体积是160dm3。
【解析】【分析】此题主要考查了不规则物体的体积计算,水位上升部分的体积就是石块的体积,长方体水箱的长×宽×水位上升的高度=这块石块的体积,据此列式解答。
29.解:设小乐每分钟走x米。
列方程,得:37×7+7x=1360-800
259+7x=560
7x=301
x=43
答:小乐每分钟走43米。
【解析】【分析】小童的速度×时间+小乐的速度×时间=两人在7分钟内一共走的距离,两
人在7分钟内一共走的距离=两人相距的距离-少年宫和学校的距离,据此列出方程,解答即可。
30.解:(30-10×2)÷2=5(cm)
(10×20+20×5+10×5)×2=700(cm2)
10×20×5=1000(cm3)
【解析】【分析】长方体的长是20厘米,宽是10厘米,长方体的高=(30-2×宽)÷2;(长×宽+长×高+宽×高)×2=长方体表面积;长×宽×高=长方体体积。
31.(1)解:50×40+(50×30+40×30)×2
=50×40+(1500+1200)×2
=50×40+2700×2
=2000+5400
=7400(平方厘米)
答:做这个鱼缸至少需要玻璃7400平方厘米。
(2)解:40×1000=40000(立方厘米)
40000÷(50×40)
=40000÷2000
=20(厘米)
答:水深大约20厘米。
(3)解:50×40×2.5
=2000×2.5
=5000(立方厘米)
答:放入物体的体积一共是5000立方厘米。
【解析】【分析】(1)无盖的长方体的表面积=长×宽+(长×高+宽×高)×2;
(2)水深就是水的高,高=容积÷底面积;
(3)求物体的体积就等于容器内水上升的体积=底面积×高。
32.解:设甲车每小时行x千米,则
384÷x=(384-60)÷54
384÷x=324÷54
384÷x=6
x=384÷6
x=64
答:甲车每小时行64千米。
【解析】【分析】设甲车每小时行x千米,根据甲车和乙车行驶的时间相同即可得出等量关系式“甲车行驶的路程÷甲车的速度=乙车行驶的路程÷乙车的速度”,可列出方程384÷x=(384-60)÷54,根据等式的基本性质求解即可得出x的值。
33.解:设故事书有x本,则科技书有1.5x本,
1.5x-x=240
0.5x=240
0.5x÷0.5=240÷0.5
x=480
科技书:480×1.5=720(本)
答:科技书有720本,故事书有480本。
【解析】【分析】此题主要考查了列方程解决问题,设故事书有x本,则科技书有 1.5x 本,科技书的本数-故事书的本数=240,据此列方程解答。
34. 6升=6立方分米
6÷(2×2)=6÷4=1.5(分米)
25厘米=2.5分米
2.5-1.5=1分米
2×2×1=4×1=4(立方分米)
答:这个西瓜的体积是4立方分米。
【解析】【分析】先计算出倒入6升水后容器中水面的高度=水的体积(升化成立方分米)÷容器的底面积(边长×边长),再用放入西瓜后水面的总高度(将厘米化成分米)减去倒入6升水后容器中水面的高度,计算出水面升高的分米数,再用长方体的底面积(边长×边长)×水面升高的分米数即可计算出西瓜的体积。
35.(1)解:6米=600厘米
4×4×600×10
=16×600×10
=9600×10
=96000(克)
96000÷1000÷1000=0.096(吨)
答:这块方钢重0.096吨。
(2)解:0.096×50=4.8(吨)
4.8<5,所以能运完。
答:一辆载重5吨的货车能一次运载50根这样的方钢。
【解析】【分析】(1)方钢的体积=截面的面积(边长×边长)×长(方钢的长,注意将方钢长的单位化为厘米),再用方钢的体积×1立方厘米钢重的克数计算出一根方钢的克数,再将其化成吨数即可;
(2)用一根方钢的吨数×方钢的根数=50根方钢的吨数,再与货车载重的吨数比较即可。
36.解:8×3=24(cm)
(21×10+21×24+10×24)×2
=(210+504+240)×2
=954×2
=1908(平方厘米)
答:至少需要1908平方厘米的塑料包装纸。
【解析】【分析】观察图可知,先求出现在的长方体的高,然后用公式:长方体的表面积=(长×宽+长×高+宽×高)×2,据此列式解答。
37.(1)解:(150×2+250×2)×2=1600(平方米)
1600÷4=400(千克)
答:需要粉刷的外围墙(四个面)面积是1600平方米,需要400千克涂料。
(2)解:型号A:500÷25=20(元/千克)
型号B:450÷20=22.5(元/千克)
型号C:800÷40=20(元/千克)
型号C比型号A耐用比型号B便宜,所以选C。
需要400×20=8000(元)
答:需要8000元。
(3)解:(12800-8000)÷1600=3(元/平方米)
答:粉刷人工费每平方米需3元。
【解析】【分析】(1)长方体4个侧面的面积=(长×高+宽×高)×2,1kg涂料能够刷4平方米的面积,那1600平方米里面有多少个4平方米,就需要几千克的涂料。
(2)把A、B、C三种型号涂料的单价算出来,单价=总价÷数量,再来比较单价的大小,发现A和C两种型号的涂料单价一样,但是A型号的耐用期只有2年,C型号的耐用期有5年,要便宜又耐用,因此选C,再用数量×单价=总价,算出需要的钱。
(3)用总共花的钱-涂料费用=人工费,人工费÷粉刷的面积=每平米的人工费。
38.(1)24;8
(2)解:
(3)解:32-2×4=24(cm)
16-2×4=8(cm)
24×8×4=768(cm3)
答:它的容积是768cm3。
【解析】【解答】解:(1)长:32-4×2=24(cm),宽:16-4×2=8(cm)
(2)
(3)24×8×4=768(cm3)
【分析】这个无盖长方体的长,是在原来长方形的两端各剪去一个4cm,长方体的宽,是在原来长方形宽的两端各剪去一个4cm,这样就相当于在原来长方形的四个角剪去了边长是4cm的小正方形,这个长方体的体积=长×宽×高。
39.(1)解:1×1×5=5(个)
答:挖去5个孔。
(2)解:5×5×5-1×1×5-2×1×5+2-3×1×5+3
=125-5-10+2-15+3
=120-10+2-15+3
=110+2-15+3
=112-15+2
=97+3
=100
答:三个方向上开孔后,剩余部分的体积是100。
【解析】【分析】(1)观察图可知,在一个方向上开有1×1×5的孔中,挖去了1×1×5个孔,据此列式解答;
(2)观察图形可得:每个小正方体的体积是1×1×1=1,在一个方向上开有1×1×5的孔,去掉的体积是5,和另一个方向上开有2×1×5的孔,去掉的体积为10,交叉2个;第三个方向上开有3×1×5的孔,去掉体积为15,和第一次交叉1个,第二次交叉3个,所以剩余的体积应该是125-5-10+2-15+3=100,据此列式解答。
40.解:12×5+(12×2+5×2)×2=128(dm2)
12×5×2=120(dm3)=120(L)
答:做这个水槽至少需要128平方分米铁皮,这个水槽最多可以盛水120升。
【解析】【分析】因为无盖,所以做这个水槽至少需要的铁皮面积就是5个面的面积,长×宽+长×高×2+宽×高×2=至少需要铁皮的面积;长×宽×高=长方体体积,据此先算出长方体体积,再把体积单位化为容积单位。