西工区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西工区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知直线l
的参数方程为1cos sin x t y t α
α
=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3
π
ρθ=+
,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )
A .4
π
α=
B .3
π
α=
C .34
πα=
D .23
π
α=
2. 下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y=|x|(x ∈R ) B .
y=(x ≠0) C .y=x (x ∈R ) D .y=﹣x 3(x ∈R ) 3. 若复数z=2﹣i ( i
为虚数单位),则=( ) A .4+2i B .20+10i C .4﹣2i D

4. 若变量x ,y
满足:
,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t
<﹣ B .﹣2<t ≤
﹣ C .﹣2≤t ≤
﹣ D .﹣2≤t
<﹣
5. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )
A .7
B .14
C .28
D .56
6. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36
【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 7. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0
,则不等式<0的解集为( )
A .(﹣1,0)∪(1,+∞)
B .(﹣∞,﹣1)∪(0,1)
C .(﹣∞,﹣1)∪(1,+∞)
D .(﹣1,
0)∪(0,1)
8. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )
A .
B .
C .
D .
9. 已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为

,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2
π D .23π
10.“2
4
x ππ
-<≤”是“tan 1x ≤”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.
11.O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )
A .1
B .
C .
D .2
12.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )
A.{}|12x x <≤
B.{}|21x x -≤<
C. {}|21x x -≤≤
D. {}|22x x -≤≤
【命题意图】本题主要考查集合的概念与运算,属容易题.
二、填空题
13.【徐州市2018届高三上学期期中】已知函数
(为自然对数的底数),若
,则实数 的取值范围为______.
14.下列命题:
①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;
③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1
:||
f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1
()f x x
=
在定义域上是减函数. 其中真命题的序号是 .
15.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,
),(3,
),则O 点到直线AB
的距离是 .
16.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .
17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;
③若实数x ,y 满足x 2+y 2=1,则
的最大值为

④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且

=5,则△ABC 的形状是直角三角形.
18.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=
,则AC 的长为_________. 三、解答题
19.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:
(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .
20.在ABC ∆中已知2a b c =+,2
sin sin sin A B C =,试判断ABC ∆的形状.
21.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且
线段AB的中点E在直线y=x上
(Ⅰ)求直线AB的方程
(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.
22.(本小题满分12分)
如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.
(1)求证:BD⊥MC1;
(2)求四棱柱ABCD-A1B1C1D1的体积.
23.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
24.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.
(1)求常数a,b的值;
(2)求f(x)在[﹣2,﹣]的最值.
西工区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C
的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵
||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴
4
π
α=,选A .
2. 【答案】D
【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,
y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件, y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件, y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件, 故选:D
3. 【答案】A
【解析】解:∵z=2﹣i ,
∴==
=
=


=10•
=4+2i ,
故选:A .
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
4. 【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由(t+1)x+(t+2)y+t=0得t (x+y+1)+x+2y=0,

,得
,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),
则由图象知A ,B 两点在直线两侧和在直线上即可, 即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0, 即(3t+4)(2t+4)≤0,
解得﹣2≤t ≤﹣,
即实数t 的取值范围为是[﹣2,﹣],
故选:C .
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.
5. 【答案】C 【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.
∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),
∴a 6+a 23=2.
则{a n }的前28项之和S 28==14(a 6+a 23)=28.
故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,
属于中档题.
6. 【答案】A
【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.
7. 【答案】D
【解析】解:由奇函数f (x )可知,即x 与f (x )异号,
而f (1)=0,则f (﹣1)=﹣f (1)=0,
又f (x )在(0,+∞)上为增函数,则奇函数f (x )在(﹣∞,0)上也为增函数,
当0<x <1时,f (x )<f (1)=0,得
<0,满足;
当x >1时,f (x )>f (1)=0,得>0,不满足,舍去;
当﹣1<x <0时,f (x )>f (﹣1)=0,得<0,满足;
当x <﹣1时,f (x )<f (﹣1)=0,得>0,不满足,舍去;
所以x 的取值范围是﹣1<x <0或0<x <1. 故选D .
8. 【答案】D
【解析】解:设F 2为椭圆的右焦点
由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,
所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.
又因为F 1F 2=2c ,所以∠PF 1F 2=30°,所以.
根据椭圆的定义可得|PF 1|+|PF 2|=2a , 所以|PF 2|=2a ﹣c .
所以2a ﹣c=,所以e=

故选D .
【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.
9. 【答案】A 【解析】

点:三角函数的图象性质. 10.【答案】A
【解析】因为tan y x =在,22ππ⎛⎫
-
⎪⎝⎭
上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当
tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24
x ππ
-<≤”是“tan 1x ≤”
的充分不必要条件,故选A. 11.【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1), 又P 为C 上一点,|PF|=4, 可得y P =3,
代入抛物线方程得:|x
P |=2,
∴S △POF =|0F|•|x P |=.
故选:C .
12.【答案】B
【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A
B =ð{}|21x x -≤<,故选B.
二、填空题
13.【答案】
【解析】令,则
所以为奇函数且单调递增,因此

点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性
去掉“”,转化为具体的不等式(组),此时要注意与
的取值应在外层函数的定义域内
14.【答案】①② 【解析】
试题分析:子集的个数是2n
,故①正确.根据奇函数的定义知②正确.对于③()2
41f x x =-为偶函数,故错误.
对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n
个;对于
奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个
元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1
15.【答案】 .
【解析】解:根据点A ,B 的极坐标分别是(2,
),(3,
),可得A 、B 的直角坐标分别是(3,
)、(﹣,),
故AB 的斜率为﹣
,故直线AB 的方程为 y ﹣
=﹣
(x ﹣3),即x+3
y ﹣12=0,
所以O点到直线AB的距离是=,
故答案为:.
【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.
16.【答案】.
【解析】解:复数z==﹣i(1+i)=1﹣i,
复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.
故答案为:.
【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.
17.【答案】:①②③
【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;
对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;
对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线
的斜率,其最大值为,③正确;
对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,
即π﹣A﹣B<,即A+B>,B>﹣A,
则cosB<cos(﹣A),
即cosB<sinA,故④不正确.
对于⑤在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,
∵=|,

则,


又BC=5
则有
由余弦定理可得cosC<0,
即有C为钝角.
则三角形ABC为钝角三角形;⑤不正确.
故答案为:①②③
18.
【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).
三、解答题
19.【答案】
【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.
又因为EF不在平面PCD中,PD⊂平面PCD
所以直线EF∥平面PCD.
(2)连接BD.因为AB=AD,∠BAD=60°.
所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.
因为平面PAD⊥平面ABCD,BF⊂平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.
【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.
∆为等边三角形.
20.【答案】ABC
【解析】
试题分析:由2
=,根据正弦定理得出2a bc
=,在结合2a b c
A B C
sin sin sin
==,
=+,可推理得到a b c 即可可判定三角形的形状.
考点:正弦定理;三角形形状的判定.
21.【答案】
【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),
∵点A在椭圆C上,∴,
整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(Ⅱ)证明:设P(x0,y0),则,
直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.
22.【答案】
【解析】解:(1)证明:如图,连接AC,设AC与BD的交点为E,
∵四边形ABCD 为菱形, ∴BD ⊥AC ,
又AA 1⊥平面ABCD ,
BD ⊂平面ABCD ,∴A 1A ⊥BD ; 又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1, 又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.
(2)∵AB =BD =2,且四边形ABCD 是菱形, ∴AC =2AE =2
AB 2-BE 2=23,
又△BMC 1为等腰三角形,且M 为A 1A 的中点, ∴BM 是最短边,即C 1B =C 1M . 则有BC 2+C 1C 2=AC 2+A 1M 2,
即4+C 1C 2=12+(C 1C 2
)2

解得C 1C =46
3

所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C
=12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2. 23.【答案】
【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.
24.【答案】
【解析】解:(1)∵f(x)=x3+3ax2+bx,
∴f'(x)=3x2+6ax+b,
又∵f(x)在x=﹣1时有极值0,
∴f'(﹣1)=0且f(﹣1)=0,
即3﹣6a+b=0且﹣1+3a﹣b=0,
解得:a=,b=1 经检验,合题意.
(2)由(1)得f'(x)=3x2+4x+1,
令f'(x)=0得x=﹣或x=﹣1,
∴f(x)max=0,f(x)min=﹣2.。

相关文档
最新文档