杭锦后旗第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭锦后旗第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )
A .{x|x ≥0}
B .{x|x ≤1}
C .{﹣1,0,1}
D .R
2.
如图给出的是计算
的值的一个流程图,其中判断框内应填入的条件是( )
A .i ≤21
B .i ≤11
C .i ≥21
D .i ≥11
3. 已知点M (a ,b ,c )是空间直角坐标系O ﹣xyz 中的一点,则与点M 关于z 轴对称的点的坐标是( ) A .(a ,﹣b ,﹣c ) B .(﹣a ,b ,﹣c ) C .(﹣a ,﹣b ,c ) D .(﹣a ,﹣b ,﹣c )
4. 设等比数列{a n }的公比q=2,前n 项和为S n
,则=( )
A .2
B .4
C

D

5. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则7
4
S a =( ) A .
74 B .14
5
C .7
D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.
6. 若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )
A .命题p ∨q 是假命题
B .命题p ∧(¬q )是真命题
C .命题p ∧q 是真命题
D .命题p ∨(¬q )是假命题
7. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )
A .1:2:3
B .2:3:4
C .3:2:4
D .3:1:2
8. 给出下列函数:
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
①f (x )=xsinx ; ②f (x )=e x +x ;
③f (x )=ln (﹣x );
∃a >0,使f (x )dx=0的函数是( ) A .①②
B .①③
C .②③
D .①②③
9. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个
10.已知函数f (x )=Asin (ωx ﹣
)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角
形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )
A .向左平移个长度单位
B .向右平移个长度单位
C .向左平移
个长度单位 D .向右平移
个长度单位
11.某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-
B .32163π-
C .1683π-
D .3283
π-
【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力. 12.函数2
()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( )
A .[2,)+∞
B .[]2,4
C .(,2]-∞
D .[]0,2
二、填空题
13.计算sin43°cos13°﹣cos43°sin13°的值为 . 14.给出下列四个命题:
①函数y=|x|与函数
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];
⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;
其中正确命题的序号是 .(填上所有正确命题的序号)
15.数列{a n }是等差数列,a 4=7,S 7= .
16.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .
17.在(x 2﹣)9的二项展开式中,常数项的值为 . 18.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 .
三、解答题
19.在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD ﹣A 1C 1D 1,且这个几何体的体积为10. (Ⅰ)求棱AA 1的长;
(Ⅱ)若A 1C 1的中点为O 1,求异面直线BO 1与A 1D 1所成角的余弦值.
20.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;
(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,
若不存在,说明理由.
21.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.
(Ⅰ)证明AD⊥BE;
(Ⅱ)求多面体EF﹣ABCD体积的最大值.
22.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AB⊥SC;
(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;
(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.
23.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.
24.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:BC1∥平面ACD1.
(2)当时,求三棱锥E﹣ACD1的体积.
杭锦后旗第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.
A、{x|x≥0}={x|x≥0}=A,故本选项正确;
B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;
C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;
D、给出的集合是R,不合题意,故本选项错误.
故选:A.
【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.
2.【答案】D
【解析】解:∵S=
并由流程图中S=S+
故循环的初值为1
终值为10、步长为1
故经过10次循环才能算出S=的值,
故i≤10,应不满足条件,继续循环
∴当i≥11,应满足条件,退出循环
填入“i≥11”.
故选D.
3.【答案】C
【解析】解:∵在空间直角坐标系中,
点(x,y,z)关于z轴的对称点的坐标为:(﹣x,﹣y,z),
∴点M(a,b,c)关于z轴的对称点的坐标为:
(﹣a,﹣b,c).
故选:C.
【点评】本小题主要考查空间直角坐标系、空间直角坐标系中点的坐标特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.
4.【答案】C
【解析】解:由于q=2,



故选:C .
5. 【答案】C.
【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d
=+⇒+=+++,化简得1a d =-,∴17
4
176
7142732a d
S d a a d d
⋅+
===+,故选C.
6. 【答案】 B
【解析】解:∃x ∈R ,x ﹣2>0,即不等式x ﹣2>0有解,∴命题p 是真命题; x <0时,<x 无解,∴命题q 是假命题;
∴p ∨q 为真命题,p ∧q 是假命题,¬q 是真命题,p ∨(¬q )是真命题,p ∧(¬q )是真命题;
故选:B .
【点评】考查真命题,假命题的概念,以及p ∨q ,p ∧q ,¬q 的真假和p ,q 真假的关系.
7. 【答案】D 【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,
则球的体积V 球
=
圆柱的体积V 圆柱=2πR 3
圆锥的体积V 圆锥
=
故圆柱、圆锥、球的体积的比为2πR 3

: =3:1:2
故选D
【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.
8. 【答案】B
【解析】解:对于①,f (x )=xsinx , ∵(sinx ﹣xcosx )′=xsinx ,

xsinxdx=(sinx ﹣xcosx

=2sina ﹣2acosa ,
令2sina ﹣2acosa=0, ∴sina=acosa , 又cosa ≠0,∴tana=a ;
画出函数y=tanx与y=x的部分图象,如图所示;
在(0,)内,两函数的图象有交点,
即存在a>0,使f(x)dx=0成立,①满足条件;
对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;
令e a﹣e﹣a=0,解得a=0,不满足条件;
对于③,f(x)=ln(﹣x)是定义域R上的奇函数,
且积分的上下限互为相反数,
所以定积分值为0,满足条件;
综上,∃a>0,使f(x)dx=0的函数是①③.
故选:B.
【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.
9.【答案】C
【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},
∴集合S=A∩B={1,3},
则集合S的子集有22=4个,
故选:C.
【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.
10.【答案】A
【解析】解:∵△EFG是边长为2的正三角形,
∴三角形的高为,即A=,
函数的周期T=2FG=4,即T==4,
解得ω==,
即f(x)=Asinωx=sin(x﹣),g(x)=sin x,
由于f(x)=sin(x﹣)=sin[(x﹣)],
故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.
故选:A .
【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.
11.【答案】D
【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132
244428233
V =π⨯⨯-⨯⨯⨯=π-,故选D . 12.【答案】B 【解析】
试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m 需从开始,要取得最大值为,由图可知m 的右端点为,故m 的取值范围是[]2,4.
考点:二次函数图象与性质.
二、填空题
13.【答案】 .
【解析】解:sin43°cos13°﹣cos43°sin13°=sin (43°﹣13°)=sin30°=,
故答案为.
14.【答案】 ③⑤
【解析】解:①函数y=|x|,(x ∈R )与函数,(x ≥0)的定义域不同,它们不表示同一个函数;
错;
②奇函数y=,它的图象不通过直角坐标系的原点;故②错;
③函数y=3(x ﹣1)2的图象可由y=3x 2的图象向右平移1个单位得到;正确; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域由0≤2x ≤2,⇒0≤x ≤1, 它的定义域为:[0,1];故错;
⑤设函数f (x )是在区间[a .b]上图象连续的函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根.故正确; 故答案为:③⑤
15.【答案】49
【解析】解:
=
=7a 4 =49. 故答案:49.
【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.
16.【答案】 4 .
【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1 所以f (1)+f ′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).
17.【答案】 84 .
【解析】解:(x 2﹣)9
的二项展开式的通项公式为 T r+1=
•(﹣1)r •x 18﹣3r ,
令18﹣3r=0,求得r=6,可得常数项的值为T 7===84,
故答案为:84.
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.
18.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设AA1=h,
由题设=﹣=10,

即,解得h=3.
故A1A的长为3.
(Ⅱ)∵在长方体中,A1D1∥BC,
∴∠O1BC为异面直线BO1与A1D1所成的角(或其补角).
在△O1BC中,AB=BC=2,A1A=3,
∴AA1=BC1=,=,
∴,
则cos∠O1BC===.
∴异面直线BO1与A1D1所成角的余弦值为.
【点评】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离.
20.【答案】
【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,
又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,
又∵AC⊂面A1ACC1,∴AB⊥AC,
以A为原点建立如图所示的空间直角坐标系A﹣xyz,
则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),
设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),
则D(λ,0,1),所以=(,,﹣1),
∵=(0,1,),∴•==0,所以DF⊥AE;
(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.
理由如下:
设面DEF的法向量为=(x,y,z),则,
∵=(,,),=(,﹣1),
∴,即,
令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).
由题可知面ABC的法向量=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为,
∴|cos<,>|==,即=,
解得或(舍),所以当D为A1B1中点时满足要求.
【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.
21.【答案】
【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,
∵直线AE是圆O所在平面的垂线,
∴AD⊥AE,
∵AB∩AE=A,
∴AD⊥平面ABE,
∴AD⊥BE;
(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.
∵直线AE,CF是圆O所在平面的两条垂线,
∴AE∥CF,∥AE⊥AC,AF⊥AC.
∵AE=CF=,∴AEFC为矩形,
∵AC=2,
∴S AEFC=2,
作BM⊥AC交AC于点M,则BM⊥平面AEFC,
∴V=2V B﹣AEFC=2×≤=.
∴多面体EF﹣ABCD体积的最大值为.
【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.
22.【答案】
【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,
∴SA⊥AB,又AB⊥AC,SA∩AC=A,
∴AB⊥平面SAC,
又AS⊂平面SAC,∴AB⊥SC.
(Ⅱ)证明:取BD中点H,AB中点M,
连结AH,DM,GF,FM,
∵D,F分别是AC,SA的中点,
点G是△ABD的重心,
∴AH过点G,DM过点G,且AG=2GH,
由三角形中位线定理得FD∥SC,FM∥SB,
∵FM∩FD=F,∴平面FMD∥平面SBC,
∵FG⊂平面FMD,∴FG∥平面SBC.
(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,
∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),
A(0,0,0),G(,,0),F(0,0,1),
=(0,2,﹣1),=(),
设平面FDG的法向量=(x,y,z),
则,取y=1,得=(2,1,2),
又平面AFD的法向量=(1,0,0),
cos<,>==.
∴二面角A﹣FD﹣G的余弦值为.
【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.
23.【答案】
【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣

若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.
若p∨q为真,¬p为真,
则p为假命题,q为真命题.
∴.
∴实数m的取值范围是或.
【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
24.【答案】
【解析】(1)证明:∵AB∥C1D1,AB=C1D1,
∴四边形ABC1D1是平行四边形,
∴BC1∥AD1,
又∵AD1⊂平面ACD1,BC1⊄平面ACD1,
∴BC1∥平面ACD1.
(2)解:S△ACE=AEAD==.
∴V=V===.
【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.。

相关文档
最新文档