中考数学二轮 反比例函数 专项培优附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.
(1)求双曲线的解析式;
(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;
(3)点(6,n)为G1与G2的交点坐标,求a的值.
(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.
【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,
所以双曲线的解析式为y= ;
(2)2
(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),
抛物线G2的解析式为y=﹣(x﹣a)2+9,
把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,
即a的值为6± ;
(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,
把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;
把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2
;
∵G1与G2有两个交点,
∴3+ ≤a≤12﹣2 ,
设直线DE的解析式为y=px+q,
把D(3,4),E(12,1)代入得,解得,
∴直线DE的解析式为y=﹣ x+5,
∵G2的对称轴分别交线段DE和G1于M、N两点,
∴M(a,﹣ a+5),N(a,),
∵MN<,
∴﹣ a+5﹣<,
整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,
∴a<4或a>9,
∴a的取值范围为9<a≤12﹣2 .
【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),
所以BE= =2 .
故答案为2 ;
【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的
解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.2.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).
(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出y1>y2时x的取值范围;
(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.
【答案】(1)解:把B(3,2)代入得:k=6
∴反比例函数解析式为:
把C(﹣1,n)代入,得:
n=﹣6
∴C(﹣1,﹣6)
把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:
所以一次函数解析式为y1=2x﹣4
(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.
(3)解:y轴上存在点P,使△PAB为直角三角形
如图,
过B作BP1⊥y轴于P1,
∠B P1 A=0,△P1AB为直角三角形
此时,P1(0,2)
过B作BP2⊥AB交y轴于P2
∠P2BA=90,△P2AB为直角三角形
在Rt△P1AB中,
在Rt△P1 AB和Rt△P2 AB
∴
∴P2(0,)
综上所述,P1(0,2)、P2(0,).
【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.
3.如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD 的面积为2.
(1)求的值及 =4时的值;
(2)记表示为不超过的最大整数,例如:,,设 ,若
,求值
【答案】(1)解:设A(x0, y0),则OD=x0, AD=y0,
∴S△AOD= OD•AD= x0y0=2,
∴k=x0y0=4;
当x0=4时,y0=1,
∴A(4,1),
代入y=mx+5中得4m+5=1,m=-1
(2)解:∵,
∴=mx+5,整理得,mx2+5x-4=0,
∵A的横坐标为x0,
∴mx02+5x0=4,
当y=0时,mx+5=0,
x=- ,
∵OC=- ,OD=x0,
∴m2•t=m2•(OD•DC),
=m2•x0(- -x0),
=m(-5x0-mx02),
=-4m,
∵- <m<- ,
∴5<-4m<6,
∴[m2•t]=5
【解析】【分析】(1)根据反比例函数比例系数k的几何意义,即可得出k的值;根据反比例函数图像上的点的坐标特点,即可求出A点的坐标,再将A点的坐标代入直线y=mx+5中即可求出m的值;
(2)解联立直线与双曲线的解析式所组成的方程组,得出mx2+5x-4=0,将A点的横坐标代入得出mx02+5x0=4,根据直线与x轴交点的坐标特点,表示出OC,OD的长,由m2•t=m2•(OD•DC)=-4m,根据m的取值范围得出5<-4m<6,从而答案。
4.如图,一次函数的图象与反比例函数的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).
(1)利用图中条件,求反比例函数的解析式和m的值;
(2)求△DOC的面积.
(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.
【答案】(1)解:将C(1,4)代入反比例函数解析式可得:k=4,则反比例函数解析式为:
,
将D(4,m)代入反比例函数解析式可得:m=1
(2)解:根据点C和点D的坐标得出一次函数的解析式为:y=-x+5
则点A的坐标为(0,5),点B的坐标为(5,0)
∴S△DOC=5×5÷2-5×1÷2-5×1÷2=7.5
(3)解:双曲线上存在点P(2,2),使得S△POC=S△POD,理由如下:
∵C点坐标为:(1,4),D点坐标为:(4,1),
∴OD=OC=,
∴当点P在∠COD的平分线上时,∠COP=∠POD,又OP=OP,
∴△POC≌△POD,
∴S△POC=S△POD.
∵C点坐标为:(1,4),D点坐标为:(4,1),
可得∠COB=∠DOA,
又∵这个点是∠COD的平分线与双曲线的y=交点,
∴∠BOP=∠POA,
∴P点横纵坐标坐标相等,
即xy=4,x2=4,
∴x=±2,
∵x>0,
∴x=2,y=2,
故P点坐标为(2,2),使得△POC和△POD的面积相等
利用点CD关于直线y=x对称,P(2,2)或P(−2,−2).
答:存在,P(2,2)或P(-2,-2)
【解析】【分析】(1)观察图像,根据点C的坐标可求出函数解析式及m的值。
(2)利用待定系数法,由点D、C的坐标求出直线CD的函数解析式,再求出直线CD与两坐标轴的交点A、B的坐标,然后利用S△DOC=S△AOB-S△BOC-S△AOD,利用三角形的面积公式计算可解答。
(3)双曲线上存在点P,使得S△POC=S△POD,这个点就是∠COD的平分线与双曲线的y=交点,易证△POC≌△POD,则S△POC=S△POD,可得出点P点横纵坐标坐标相等,利用反比例函数解析式,建立关于x的方程,就可得出点P的坐标,利用对称性,可得出点P的另一个坐标,即可得出答案。
5.如图,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.
(1)求k的值;
(2)点P为双曲线上的一个动点,过点P作直线PA⊥x轴于A点,交NM延长线于F 点,过P点作PB⊥y轴于B交MN于点E.设点P的横坐标为m.
①用含有m的代数式表示点E、F的坐标
②找出图中与△EOM 相似的三角形,并说明理由.
【答案】(1)解:当时,,
,
.
把代入得,
(2)解:①由(1)知 .
.
当时, ,
.
当时,,
,
∴E(2 -, ).
② , , , ,
,,
,
由一次函数解析式得∠OME=∠ONF=45°
【解析】【分析】(1)当x=0时,求出y=2,得出N(0,2) ,由平移的性质得出N'(3,2) .把 (3,2) 代入 y=得k=6.
(2)①由(1)可设P(m,) .当x=m时,求出y=−m+2 ,即F(m,2-m) ;当y=时,求出x=2−,即E(2 -,).
②∵ON=2 , EM=, OM=2 , NF=,从而得出OMNF=EMON.由一次函数解析式得∠OME=∠ONF=45°;推出ΔEOM∼ΔOFN.
6.如图,已知矩形OABC中,OA=3,AB=4,双曲线y= (k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD
(1)求k的值和点E的坐标;
(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P 的坐标,若不存在,请说明理由.
【答案】(1)解:∵AB=4,BD=2AD,
∴AB=AD+BD=AD+2AD=3AD=4,
∴AD= ,
又∵OA=3,
∴D(,3),
∵点D在双曲线y= 上,
∴k= ×3=4;
∵四边形OABC为矩形,
∴AB=OC=4,
∴点E的横坐标为4.
把x=4代入y= 中,得y=1,
∴E(4,1);
(2)解:(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.
∵∠APE=90°,
∴∠APO+∠EPC=90°,
又∵∠APO+∠OAP=90°,
∴∠EPC=∠OAP,
又∵∠AOP=∠PCE=90°,
∴△AOP∽△PCE,
∴,
∴,
解得:m=1或m=3,
∴存在要求的点P,坐标为(1,0)或(3,0).
【解析】【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.
7.【阅读理解】
我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),
【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2
(1)【直接应用】
若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】
若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________
(3)【探索应用】
在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S
①求S与x之间的函数关系式;
②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.
【答案】(1)1;2
(2)4
(3)解:①设P(x,),则C(x,0),D(0,),
∴AC=x+3,BD= +2,
∴S= AC•BD= (x+3)( +2)=6+x+ ;
②∵x>0,
∴x+ ≥2 =6,
∴当x= 时,即x=3时,x+ 有最小值6,
∴此时S=6+x+ 有最小值12,
∵x=3,
∴P(3,2),C(3,0),D(0,2),
∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,
∴四边形ABCD为菱形.
【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =
(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;
【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成
一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.
8.在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y=
(m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,
(1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;
(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;
(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴
平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP,且1≤S△MNP≤2,求k的取值范围.
【答案】(1)y=
;y=
(2)解:如图1,
∵双曲线y= 的“半双曲线”是y= ,
∴△AOD的面积为2,△BOD的面积为1,
∴△AOB的面积为1
(3)解:解法一:如图2,
依题意可知双曲线的“半双曲线”为,
设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM= ,CN= .
∴MN= ﹣ = .
同理PM=m﹣ = .
∴S△PMN= MN•PM=
∵1≤S△PMN≤2,
∴1≤ ≤2.
∴4≤k≤8,
解法二:如图3,
依题意可知双曲线的“半双曲线”为,
设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),
∴点N为MC的中点,同理点P为MD的中点.
连接OM,
∵,
∴△PMN∽△OCM.
∴.
∵S△OCM=k,
∴S△PMN= .
∵1≤S△PMN≤2,
∴1≤≤2.
∴4≤k≤8.
【解析】【解答】解:(1)由“倍双曲线”的定义
∴双曲线y= ,的“倍双曲线”是y= ;
双曲线y= 的“半双曲线”是y= .
故答案为y= ,y= ;
【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公
式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.
9.
(1)如图1所示,
在中,,,点在斜边上,点在直角边上,若,求证: .
(2)如图2所示,
在矩形中,,,点在上,连接,过点作交 (或的延长线)于点 .
①若,求的长;
②若点恰好与点重合,请在备用图上画出图形,并求的长.
【答案】(1)证明:∵在中,,,
∴,
∴,
∵,
∴,
∴,
∴ .
(2)解:①∵四边形是矩形,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,,
∴,;
②如图所示,设,由①得,
∴,即,
整理,得:,
解得:,,
所以的长为或 .
【解析】【分析】(1)利用平角的定义和三角形的内角和证明即可证得结论;(2)①仿(1)题证明,再利用相似三角形的性质即可求得结果;②由①得,设,根据相似三角形的性质可得关于x的方程,解方程即可求得结果.
10.如图1,抛物线与轴交于、两点,与轴交于点,顶点为点.
(1)求这条抛物线的解析式及直线的解析式;
(2)段上一动点(点不与点、重合),过点向轴引垂线,垂足为,设
的长为,四边形的面积为.求与之间的函数关系式及自变量的取值范围;
(3)在线段上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1)解:∵抛物线与轴交于、
两点,
∴,
解得:,
∴二次函数的解析式为,
∵,
∴
设直线的解析式为,
则有
,
解得:,
∴直线的解析式为
(2)解:∵轴,,
∴点的坐标为,
∴,
,
,
∵为线段上一动点(点不与点、重合),
∴的取值范围是.
(3)解:线段上存在点,,使为等腰三角形;
,,
,
①当时,,
解得,(舍去),
此时,
②当时,,
解得,(舍去),
此时,
③当时,
解得,此时.
(1),;(2),
的取值范围是;(3)或或
【解析】【分析】(1)将A、B俩点代入抛物线解析式即可求出M的坐标,再设直线
的解析式为,代入M的值计算即可.(2)由已知轴,,可得点的坐标为,再根据即可求得t的值.(3)存在,根据等腰三角形的性质,分情况进行解答即可.
11.综合实践
问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.
操作探究:
(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?
(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?
(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.
①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.
②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为
________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.
【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;
B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;
C.可以折叠成无盖正方体;
D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.
故答案为:C.
(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”
(3)x;(20﹣2x)2;576
【解析】【解答】(3)解:①如图,
②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).
故答案为:x,(20﹣2x)2, 576
【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.
12.小明利用函数与不等式的关系,对形如 ( 为正整数)的不等式的解法进行了探究.
(1)下面是小明的探究过程,请补充完整:
①对于不等式,观察函数的图象可以得到如表格:
的范围
的符号+﹣
由表格可知不等式的解集为.
②对于不等式,观察函数的图象可以得到如表表格:
的范围
的符号+﹣+
由表格可知不等式的解集为________.
③对于不等式,请根据已描出的点画出函数
(x+1)的图象;
观察函数的图象补全下面的表格:
的范围
的符号+﹣________________
________.
……
小明将上述探究过程总结如下:对于解形如 ( 为正整数)的不等式,先将按从大到小的顺序排列,再划分的范围,然后通过列表格的办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.
(2)请你参考小明的方法,解决下列问题:
①不等式的解集为________.
②不等式的解集为________.
【答案】(1)或;+;-;或
(2)或或;或且
【解析】【解答】(1)②由表格可知不等式的解集为或,
故答案为:或;③当时,,
当时,,
由表格可知不等式的解集为或,
故答案为:+,﹣,或;(2)①不等式
的解集为或或,
故答案为:或或;②不等式的解集为或且,
故答案为:或且
【分析】根据题意可知在表格中写出相应的函数值的正负性,借此来判断相应的不等式的解集.(1)②根据表格中的数据可以直接写出不等式的解集;③根据表格中的数据可以直接写出不等式的解集;(2)①根据小明的方法,可以直接写出该不等式的解集;②根据小明的方法,可以直接写出该不等式的解集.
13.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.
【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);
(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令
y=0,则,得到A、B两点坐标分别为(,0),
(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.
【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令
y=0,则,解方程可得到A、B两点坐标分别为(,0),
(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.
14.如图,直线y=mx+n与双曲线y= 相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积;
(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.
【答案】(1)解:∵点A(﹣1,2)在双曲线y= 上,
∴2= ,
解得,k=﹣2,
∴反比例函数解析式为:y=﹣,
∴b= =﹣1,
则点B的坐标为(2,﹣1),
∴,
解得,m=﹣1,n=1
(2)解:对于y=﹣x+1,当x=0时,y=1,
∴点C的坐标为(0,1),
∵点D与点C关于x轴对称,
∴点D的坐标为(0,﹣1),
∴△ABD的面积= ×2×3=3
(3)解:对于y=﹣x+1,当y=0时,x=1,
∴直线y=﹣x+1与x轴的交点坐标为(0,1),
当点P在x轴上时,设点P的坐标为(a,0),
S△PAB= ×|1﹣a|×2+ ×|1﹣a|×1=3,
解得,a=﹣1或3,
当点P在y轴上时,设点P的坐标为(0,b),
S△PAB= ×|1﹣b|×2+ ×|1﹣b|×1=3,
解得,b=﹣1或3,
∴P点坐标为(﹣1,0)或(3,0)或(0,﹣1)或(0,3)
【解析】【分析】(1)由点A(﹣1,2)在双曲线上,得到k=﹣2,得到反比例函数解析式为,从而求出b的值和点B的坐标,把A、B坐标代入直线y=mx+n,求出m、n的值;(2)由一次函数的解析式求出点C的坐标,由点D与点C关于x轴对称,得到点D的坐标,从而求出△ABD的面积;(3)由一次函数的解析式得到直线y=﹣x+1与x轴的交点坐标为(0,1),当点P在x轴上时,设点P的坐标为(a,0),求出S△PAB=3,求出a的值,当点P在y轴上时,设点P的坐标为(0,b),求出S△PAB=3,求出b的值,从而得到P点坐标.
15.如图1,已知(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B 作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.
(1)如图2,连结BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.
【答案】(1)解:连接OP,
(2)解:如图1,∵四边形BQNC是菱形,
∴BQ=BC=NQ,∠BQC=∠NQC。
∵AB⊥BQ,C是AQ的中点,∴BC=CQ= AQ。
∴∠BQC=60°,∠BAQ=30°。
在△ABQ和△ANQ中,∵,∴△ABQ≌△ANQ(SAS)。
∴∠BAQ=∠NAQ=30°。
∴∠BAO=30°。
∵S四边形BQNC= ,∴BQ=2。
∴AB= BQ= 。
∴OA= AB=3。
又∵P点在反比例函数的图象上,∴P点坐标为(3,2)。
(3)解:∵OB=1,OA=3,∴AB= 。
∵△AOB∽△DBA,∴。
∴BD=3 。
①如图,当点Q在线段BD上,
∵AB⊥BD,C为AQ的中点,∴BC= AQ。
∵四边形BNQC是平行四边形,∴QN=BC,CN=BQ,CN∥BD。
∴,∴BQ=CN= BD= 。
∴AQ=2 。
∴C四边形BQNC= 。
②如图,当点Q在线段BD的延长线上,
∵AB⊥BD,C为AQ的中点,
∴BC=CQ= AQ。
∴平行四边形BNQC是菱形,BN=CQ,BN∥CQ。
∴。
∴BQ=3BD=9 。
∴。
∴C四边形BNQC=2AQ= 。
【解析】【分析】(1)连接OP,构建同底等高的两个三角形Δ PAB与Δ PAO,利用面积相等求出△PAB的面积。
(2)利用条件先求出∠BQC=60°,∠BAQ=30°,再证明△ABQ≌△ANQ,利用全等三角形的对应角相等,求出∠BAO=30°,再由四边形BQNC的面积为,求出OA的长,从而求
出点P的坐标。
(3)点Q在射线BD上,需要分两种情况讨论,(1)当点Q在线段BD上,(2)当点Q 在线段BD的延长线上,分别利用平行四边形的性质求解。