离心泵的汽蚀的判断和消除

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵的汽蚀的判断和消除
摘要:离心泵被广泛应用于石化、冶金、水利、电力及核电等工业领域,在各种生产装置中对液体介质进行动力输送,其性能可靠性对于装置的正常运行有着非常重要的作用。

汽蚀是离心泵运行中的一个重要现象,是影响离心泵运行可靠性和使用寿命最常见的问题,同时也是影响其向大流量、高转速方向发展的一个巨大的障碍,因此汽蚀成为目前泵类研究中的一个重要课题。

关键词:离心泵汽蚀判断消除措施
一、何为离心泵的汽蚀
离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力pK最低。

此后由于叶轮对液体作功,液体压力很快上升。

当叶轮叶片入口附近的压力pK小于液体输送温度下的饱和蒸汽压力pv时,液体就汽化。

同时,使溶解在液体内的气体逸出。

它们形成许多汽泡。

当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。

这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。

其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。

如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。

上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为气蚀。

二、离心泵产生汽蚀的现象及原因分析
1.汽蚀现象。

离心泵是靠大气压力与吸入口的压力差作用不断吸入液体。

若吸入口完全真空(绝对零压)时,在大气压力作用下其吸入高度也不能大于10.33[m水柱]。

但实际绝对压力不能低于当时温度下输送液体的饱和蒸汽压,否则就会汽化而产生气泡,并随液体从低压区流向外缘的高压区。

气泡在高压作用下,迅速凝结或破裂,瞬间内周围的液体即以极高的速度冲向原气泡所占据的空间(在冲击点处形成高达几百大气压的压强),冲击频率高达每秒几万次之多),而引起强烈的震动和噪音;叶轮局部地方在巨大冲击力的作用下,材料表面疲劳破坏,从开始点蚀到形成严重的蜂窝空洞,使叶轮损坏。

这种现象称为汽蚀现象。

为避免这种操作不正常现象的发生,离心泵应按允许安装高度进行安装。

2.离心泵最易发生气蚀的部位及原因分析
A.离心泵最易发生气蚀的部位有:
a.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧;
b.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧;
c.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶梢的低压侧;
d.多级泵中第一级叶轮。

B. 原因分析,液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。

把这种产生气泡的现象称为汽蚀。

汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。

这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。

泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。

在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。

在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。

水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。

三、泵汽蚀基本关系式
泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。

因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为
NPSHc≤NPSHr≤[NPSH]≤NPSHa
NPSHa=NPSHr(NPSHc)——泵开始汽蚀
NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀
式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;
NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;
NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;
[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。

四、离心泵汽蚀的识别
汽蚀是造成离心泵的性能和效率下降的主要原因之一,及时识别出汽蚀的发生,便于采取相应的防范措施,实际生产中可根据如下几种办法判别是否发生了汽蚀。

1 .根据扬程识别。

这是一种简单易行,且在业内得到广泛应用的方法。

当汽蚀发生时,离心泵的扬程会急剧下降。

API610标准中,将离心泵扬程(对于多级泵而言是首级扬程)下降3%,作为性能断裂的标志,并依此判定离心泵的必需汽蚀余量NPSHr的数值。

通常当离心泵特性曲线上扬程下跌3%时,我们认为这个点是其发生汽蚀的临界点,但是在泵发生汽蚀的初始阶段,离心泵扬程的变化并不是很明显,而当扬程变化明显时,汽蚀已经发展到了一定程度,所以用扬程来判断离心泵的汽蚀具有一定的滞后性。

2.根据噪音识别。

汽蚀发生时由于液体撞击会产生各种噪声,并且当汽蚀严重时,可听到泵内发出类似于爆竹的噼噼啪啪的声音。

我们可以据此作为汽蚀的判断。

3 根据振动识别。

离心泵的汽蚀伴随着泵体的振动,因此可以在泵体上加振动传感器,当泵运行时发现振动与正常有异,应该首先考虑是否发生了汽蚀。

在实际生产中,我们可以根据经验感觉出泵体振动的不同,从而初步判定是否产生了汽蚀。

五、提高离心泵抗气蚀性的两种措施
a.提高离心泵本身抗气蚀性能的措施
(1)改进泵的吸入口至叶轮附近的结构设计。

增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。

(2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。

(3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。

(4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。

但正冲角不宜过大,否则影响效率。

(5)采用抗气蚀的材料。

实践表明,材料的强度、硬度、韧性越高,化学稳定性越好,抗气蚀的性能越强。

b.提高进液装置有效气蚀余量的措施
(1)增加泵前贮液罐中的液面压力,以提高有效气蚀余量。

(2)减小吸上装置泵的安装高度。

(3)将上吸装置改为倒灌装置。

(4)减小泵前管路上的流动损失。

如在要求范围尽量缩短管路,减小管路中的流速,减少弯管和阀门,尽量加大阀门开度等。

以上措施可根据泵的选型、选材和泵的使用现场等条件,进行综合分析,适当加以应用。

参考文献
[1] 黄兵,离心泵的汽蚀现象及消除[G],网络财富,2008(11)
[2]中国泵业网,离心泵的汽蚀现象及其防范措施,2013年03月26日。

相关文档
最新文档