Hive常用的SQL命令操作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hive提供了很多的函数,可以在命令行下show functions罗列所有的函数,你会发现这些函数名与mysql的很相近,绝大多数相同的,可通过describe function functionName 查看函数使用方法。
hive支持的数据类型很简单就INT(4 byte integer),BIGINT(8 byte integer),FLOAT(single precision),DOUBLE(double precision),BOOLEAN,STRING等原子类型,连日期时间类型也不支持,但通过to_date、unix_timestamp、date_diff、date_add、date_sub等函数就能完成mysql 同样的时间日期复杂操作。
如下示例:
select * from tablename where to_date(cz_time) > to_date('2050-12-31');
select * from tablename where unix_timestamp(cz_time) > unix_timestamp('2050-12-31
15:32:28');
分区
hive与mysql分区有些区别,mysql分区是用表结构中的字段来分区(range,list,hash等),而hive不同,他需要手工指定分区列,这个列是独立于表结构,但属于表中一列,在加载数据时手动指定分区。
创建表
hive> CREATE TABLE pokes (foo INT, bar STRING COMMENT 'This is bar');
创建表并创建索引字段ds
hive> CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING);
显示所有表
hive> SHOW TABLES;
按正条件(正则表达式)显示表,
hive> SHOW TABLES '.*s';
表添加一列
hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);
添加一列并增加列字段注释
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
更改表名
hive> ALTER TABLE events RENAME TO 3koobecaf;
删除列
hive> DROP TABLE pokes;
元数据存储
将本地文件中的数据加载到表中
hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;
加载本地数据,同时给定分区信息
hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
加载DFS数据,同时给定分区信息
hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous.
SQL 操作
按先件查询
hive> SELECT a.foo FROM invites a WHERE a.ds='';
将查询数据输出至目录
hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='';
将查询结果输出至本地目录
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;
选择所有列到本地目录
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='';
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;
将一个表的统计结果插入另一个表中
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;
hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;
JOIN
hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;
将多表数据插入到同一表中
FROM src
INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;
将文件流直接插入文件
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';
This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples)
实际示例
创建一个表
CREATE TABLE u_data (
userid INT,
movieid INT,
rating INT,
unixtime STRING)
ROW FORMAT DELIMITEDFIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;
下载示例数据文件,并解压缩
wget /system/files/ml-data.tar__0.gz
tar xvzf ml-data.tar__0.gz
加载数据到表中
LOAD DATA LOCAL INPATH 'ml-data/u.data'OVERWRITE INTO TABLE u_data;
统计数据总量
SELECT COUNT(1) FROM u_data;
现在做一些复杂的数据分析
创建一个weekday_mapper.py: 文件,作为数据按周进行分割
import sys
import datetime
for line in sys.stdin:
line = line.strip()
userid, movieid, rating, unixtime = line.split('\t')
生成数据的周信息
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() print '\t'.join([userid, movieid, rating, str(weekday)])
使用映射脚本
//创建表,按分割符分割行中的字段值
CREATE TABLE u_data_new (
userid INT,
movieid INT,
rating INT,
weekday INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';
//将python文件加载到系统
add FILE weekday_mapper.py;
将数据按周进行分割
INSERT OVERWRITE TABLE u_data_new
SELECT
TRANSFORM (userid, movieid, rating, unixtime)
USING 'python weekday_mapper.py'
AS (userid, movieid, rating, weekday)
FROM u_data;
SELECT weekday, COUNT(1)
FROM u_data_new
GROUP BY weekday;
------------------------------------------------------------------------------------------------------------创建表:
hive> CREATE TABLE pokes (foo INT, bar STRING);
Creates a table called pokes with two columns, the first being an integer and the other a string
创建一个新表,结构与其他一样
hive> create table new_table like records;
创建分区表:
hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);
加载分区表数据:
hive> load data local inpath '/home/hadoop/input/hive/partitions/file1' into table logs partition (dt='2001-01-01',country='GB');
展示表中有多少分区:
hive> show partitions logs;
展示所有表:
hive> SHOW TABLES;
lists all the tables
hive> SHOW TABLES '.*s';
lists all the table that end with 's'. The pattern matching follows Java regular expressions. Check out this link for documentation
显示表的结构信息
hive> DESCRIBE invites;
shows the list of columns
更新表的名称:
hive> ALTER TABLE source RENAME TO target;
添加新一列
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
删除表:
hive> DROP TABLE records;
删除表中数据,但要保持表的结构定义
hive> dfs -rmr /user/hive/warehouse/records;
从本地文件加载数据:
hive> LOAD DATA LOCAL INPATH '/home/hadoop/input/ncdc/micro-tab/sample.txt' OVERWRITE INTO TABLE records;
显示所有函数:
hive> show functions;
查看函数用法:
hive> describe function substr;
查看数组、map、结构
hive> select col1[0],col2['b'],col3.c from complex;
内连接:
hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
查看hive为某个查询使用多少个MapReduce作业
hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
外连接:
hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id);
hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);
in查询:Hive不支持,但可以使用LEFT SEMI JOIN
hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
Map连接:Hive可以把较小的表放入每个Mapper的内存来执行连接操作
hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
INSERT OVERWRITE TABLE ..SELECT:新表预先存在
hive> FROM records2
> INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year
> INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year
> INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;
CREATE TABLE ... AS SELECT:新表表预先不存在
hive>CREATE TABLE target AS SELECT col1,col2 FROM source;
创建视图:
hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;
查看视图详细信息:
hive> DESCRIBE EXTENDED valid_records;。