Genetic_Algorithms
遗传 粒子群 蜂群算法
遗传粒子群蜂群算法
遗传算法(Genetic Algorithm),粒子群算法(Particle Swarm Optimization,PSO)和蜂群算法(Artificial Bee Colony,ABC)都是优化算法,它们分别从生物学和社会学中汲取灵感,以解决优化问题。
1. 遗传算法(Genetic Algorithm,GA):
-原理:模拟生物进化过程,通过选择、交叉和变异等操作,在候选解的空间中搜索最优解。
-应用:在函数优化、参数调整、组合优化等问题上应用广泛。
2. 粒子群算法(Particle Swarm Optimization,PSO):
-原理:模拟鸟群或鱼群中个体的协作行为,每个个体(粒子)根据自身经验和群体中其他粒子的经验来更新自己的位置。
-应用:用于连续优化、机器学习中的特征选择、神经网络训练等。
3. 蜂群算法(Artificial Bee Colony,ABC):
-原理:模拟蜜蜂群体在食物搜索过程中的行为,包括蜜蜂的招募、觅食和信息传递等。
-应用:主要应用于连续和离散优化问题,如机器学习中的特征选择、任务调度等。
这些算法都属于群体智能(Swarm Intelligence)范畴,通过模拟自然界中群体行为来解决问题。
它们具有全局搜索能力和较好的鲁棒性,适用于复杂问题和高维空间中的优化。
在应用这些算法时,通常需要根据具体问题的特点来选择适当的算法,并进行参数调整以提高性能。
算法的性能受到问题类型、问题维度、算法参数等多方面因素的影响。
运用含复杂网络结构的多种群遗传算法求解FJSP
2021572遗传算法[1](Genetic Algorithm,GA)是历史上备受关注的进化算法之一。
标准GA在求解组合优化等问题上具有独特的优势,但是极易早熟收敛。
为了克服这一缺点,多种群遗传算法(Multi-population Genetic Algorithm,MGA)随之出现,并获得了广泛的关注和应用[2-4]。
MGA将标准GA的单种群划分为多个子群,保证了种群的多样性,每个子群内的个体按照标准GA进化,精英个体在子群间迁徙传播优势基因,从而避免早熟收敛[5-6]。
如文献[2]利用MGA实现非线性动力学模型参数的辨识,预测橡胶波形发生器产生的冲击脉冲。
文献[3]采用MGA对常用的多孔吸声结构参数进行优化。
但是,传统MGA的子群数有限,且大多忽略了子群结构对算法性能的影响。
如果把子群以及它们之间的交流(优势基因的传播)分别看作节点和边,那么MGA运用含复杂网络结构的多种群遗传算法求解FJSP石宇强,田永政,张雨琦,石小秋西南科技大学制造科学与工程学院,四川绵阳621000摘要:多种群是为了克服遗传算法易早熟收敛而提出的一种有效方法,但是传统的多种群遗传算法较少考虑子群结构对算法性能的影响,且算法子群数有限。
因此,为了弥补以上不足,提出一种含复杂网络结构的多种群遗传算法(Multi-population Genetic Algorithms with Complex Network Structures,MGA-CNS),以求解柔性作业车间调度问题为例,研究子群大小、子群数、可控参数(α)、可控参数(β)以及初始网络规模对MGA-CNS寻优性能的影响。
仿真表明:子群大小越大,MGA-CNS的性能越好;子群数不能取值过小,更不能取值过大;α的值不能太大,以不大于0.3为宜;β的取值也不能太大,以不大于0.8为宜;初始网络规模以不大于4为宜。
将参数优化后的MGA-CNS用于求解更多的柔性作业车间调度问题并与多种其他算法比较,验证了其有效性。
GADS--matlab遗传算法工具箱使用总结
GADS--Matlab遗传算法工具箱使用总结e-mail:978299005@一、GADS简介与启动MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
在Matlab平台上主要有三个遗传算法(GA)的工具箱,分别是:GAOT,美国北卡罗来纳大学开发;GATBX,英国谢菲尔德大学开发;GADS,Matlab7以后的版本中自带的。
GATBX可以包含GAOT,而GADS显然年代又近了一些。
这里主要讲的是GADS。
GADS(Genetic Algorithm and Direct Search Toolbox)遗传算法与直接搜索工具箱。
可以在命令行中直接使用,在M文件的程序中调用ga函数,或在GUI 界面中使用它来解决实际问题。
在不同的Matlab版本中启动方法稍有区别。
以笔者的Matlab 2010b为例,启动有两种方法:1、在Matlab命令行中输入optimtool回车,在出现的对话框左上角找到Solver,选择ga- Genetic Algorithm即可。
2、Matlab界面中单击左下角Start,选择toolboxes,选择其中的optimization再点击optimization tool即可打开对话框,然后如1中,选择ga即可。
二、GADS的具体使用【1】先介绍ga函数的格式。
Ga函数可以在命令行中直接使用。
在命令行中键入命令type ga可以打印出ga函数的代码。
键入help ga,就打印出ga函数的帮助提示。
以下是help ga的输出:GA Constrained optimization using genetic algorithm.GA attempts to solve problems of the form:min F(X) subject to: A*X <= B, Aeq*X = Beq (linear constraints)X C(X) <= 0, Ceq(X) = 0 (nonlinear constraints)LB <= X <= ubX = GA(FITNESSFCN,NVARS) finds a local unconstrained minimum X to theFITNESSFCN using GA. NVARS is the dimension (number of designvariables) of the FITNESSFCN. FITNESSFCN accepts a vector X of size1-by-NVARS, and returns a scalar evaluated at X.X = GA(FITNESSFCN,NVARS,A,b) finds a local minimum X to the functionFITNESSFCN, subject to the linear inequalities A*X <= B. Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq) finds a local minimum X to thefunction FITNESSFCN, subject to the linear equalities Aeq*X = beq aswell as A*X <= B. (Set A=[] and B=[] if no inequalities exist.) Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub) defines a set of lower andupper bounds on the design variables, X, so that a solution is found inthe range lb <= X <= ub. Use empty matrices for lb and ub if no boundsexist. Set lb(i) = -Inf if X(i) is unbounded below; set ub(i) = Inf ifX(i) is unbounded above. Linear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON) subjects theminimization to the constraints defined in NONLCON. The functionNONLCON accepts X and returns the vectors C and Ceq, representing thenonlinear inequalities and equalities respectively. GA minimizesFITNESSFCN such that C(X)<=0 and Ceq(X)=0. (Set lb=[] and/or ub=[] ifno bounds exist.) Nonlinear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options) minimizeswith the default optimization parameters replaced by values in thestructure OPTIONS. OPTIONS can be created with the GAOPTIMSET function.See GAOPTIMSET for details.X = GA(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a structurethat has the following fields:fitnessfcn: <Fitness function>nvars: <Number of design variables>Aineq: <A matrix for inequality constraints>bineq: <b vector for inequality constraints>Aeq: <Aeq matrix for equality constraints>beq: <beq vector for equality constraints>lb: <Lower bound on X>ub: <Upper bound on X>nonlcon: <nonlinear constraint function>options: <Options structure created with GAOPTIMSET>rngstate: <State of the random number generator>[X,FVAL] = GA(FITNESSFCN, ...) returns FVAL, the value of the fitnessfunction FITNESSFCN at the solution X.[X,FVAL,EXITFLAG] = GA(FITNESSFCN, ...) returns EXITFLAG whichdescribes the exit condition of GA. Possible values of EXITFLAG and thecorresponding exit conditions are1 Average change in value of the fitness function overoptions.StallGenLimit generations less than options.TolFun andconstraint violation less than options.TolCon.3 The value of the fitness function did not change inoptions.StallGenLimit generations and constraint violation lessthan options.TolCon.4 Magnitude of step smaller than machine precision and constraintviolation less than options.TolCon. This exit condition appliesonly to nonlinear constraints.5 Fitness limit reached and constraint violation less thanoptions.TolCon.0 Maximum number of generations exceeded.-1 Optimization terminated by the output or plot function.-2 No feasible point found.-4 Stall time limit exceeded.-5 Time limit exceeded.[X,FVAL,EXITFLAG,OUTPUT] = GA(FITNESSFCN, ...) returns astructure OUTPUT with the following information:rngstate: <State of the random number generator before GA started>generations: <Total generations, excluding HybridFcn iterations>funccount: <Total function evaluations>maxconstraint: <Maximum constraint violation>, if anymessage: <GA termination message>[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = GA(FITNESSFCN, ...) returns thefinal POPULATION at termination.[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] = GA(FITNESSFCN, ...) returnsthe SCORES of the final POPULATION.Example:Unconstrained minimization of 'rastriginsfcn' fitness function ofnumberOfVariables = 2x = ga(@rastriginsfcn,2)Display plotting functions while GA minimizesoptions = gaoptimset('PlotFcns',...{@gaplotbestf,@gaplotbestindiv,@gaplotexpectation,@gaplotstopping});[x,fval,exitflag,output] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options)An example with inequality constraints and lower boundsA = [1 1; -1 2; 2 1]; b = [2; 2; 3]; lb = zeros(2,1);% Use mutation function which can handle constraintsoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);[x,fval,exitflag] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);FITNESSFCN can also be an anonymous function:x = ga(@(x) 3*sin(x(1))+exp(x(2)),2)If FITNESSFCN or NONLCON are parameterized, you can use anonymousfunctions to capture the problem-dependent parameters. Suppose you wantto minimize the fitness given in the function myfit, subject to thenonlinear constraint myconstr, where these two functions areparameterized by their second argument a1 and a2, respectively. Heremyfit and myconstr are MATLAB file functions such asfunction f = myfit(x,a1)f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + a1);andfunction [c,ceq] = myconstr(x,a2)c = [1.5 + x(1)*x(2) - x(1) - x(2);-x(1)*x(2) - a2];% No nonlinear equality constraints:ceq = [];To optimize for specific values of a1 and a2, first assign the valuesto these two parameters. Then create two one-argument anonymousfunctions that capture the values of a1 and a2, and call myfit andmyconstr with two arguments. Finally, pass these anonymous functions toGA:a1 = 1; a2 = 10; % define parameters first% Mutation function for constrained minimizationoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);x = ga(@(x)myfit(x,a1),2,[],[],[],[],[],[],@(x)myconstr(x,a2),options)解释如下:ga函数最完整的格式是[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES]= GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)。
遗传算法(GeneticAlgorithm)..
2018/10/7
选择(Selection)
选择(复制)操作把当前种群的染色体按与适应值成正比例 的概率复制到新的种群中 主要思想: 适应值较高的染色体体有较大的选择(复制)机 会 实现1:”轮盘赌”选择(Roulette wheel selection) 将种群中所有染色体的适应值相加求总和,染色体适应 值按其比例转化为选择概率Ps 产生一个在0与总和之间的的随机数m 从种群中编号为1的染色体开始,将其适应值与后续染色 体的适应值相加,直到累加和等于或大于m
2018/10/7
选择(Selection)
染色体的适应值和所占的比例
轮盘赌选择
2018/10/7
选择(Selection)
染色体被选的概率
染色体编号
1
2
3
4
5
6
染色体
适应度 被选概率 适应度累计
01110
8
0.16 8
11000
15
0.3 23
00100
2
0.04 25
10010
5
0.1 30
适者生存(Survival of the Fittest)
GA主要采用的进化规则是“适者生存” 较好的解保留,较差的解淘汰
2018/10/7
生物进化与遗传算法对应关系
生物进化
环境
适者生存 个体 染色体 基因 群体 种群 交叉 变异
2018/10/7
遗传算法
适应函数
适应函数值最大的解被保留的概率最大 问题的一个解 解的编码 编码的元素 被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
遗传算法(GeneticAlgorithm)..
被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
➢选择(selection):
根据各个个体的适应值,按照一定的规则或方法,从 第t代群体P(t)中选择出一些优良的个体遗传到下一代 群体P(t+1)中。
等到达一定程度时,值0会从整个群体中那个位上消失,然而全局最 优解可能在染色体中那个位上为0。如果搜索范围缩小到实际包含全局 最优解的那部分搜索空间,在那个位上的值0就可能正好是到达全局最 优解所需要的。
2023/10/31
适应函数(Fitness Function)
➢ GA在搜索中不依靠外部信息,仅以适应函数为依据,利 用群体中每个染色体(个体)的适应值来进行搜索。以染 色体适应值的大小来确定该染色体被遗传到下一代群体 中的概率。染色体适应值越大,该染色体被遗传到下一 代的概率也越大;反之,染色体的适应值越小,该染色 体被遗传到下一代的概率也越小。因此适应函数的选取 至关重要,直接影响到GA的收敛速度以及能否找到最优 解。
2023/10/31
如何设计遗传算法
➢如何进行编码? ➢如何产生初始种群? ➢如何定义适应函数? ➢如何进行遗传操作(复制、交叉、变异)? ➢如何产生下一代种群? ➢如何定义停止准则?
2023/10/31
编码(Coding)
表现型空间
基因型空间 = {0,1}L
编码(Coding)
10010001
父代
111111111111
000000000000
交叉点位置
子代
2023/10/31
111100000000 000011111111
【智能算法】超详细的遗传算法(GeneticAlgorithm)解析和TSP求解代码详解
回到3.1中提的求一元函数最大值的问题。在上面我们把极大值比喻为山峰,那么,袋鼠的位置坐标可以比喻为区间[-1, 2]的某一个x坐标 (有了x坐标,再通过函数表达式可以算出函数值 <==> 得到了袋鼠染色体编码,解码得到位置坐标,在喜马拉雅山脉地图查询位置坐标算 出海拔高度)。这个x坐标是一个实数,现在,说白了就是怎么对这个x坐标进行编码。下面我们以二进制编码为例讲解,不过这种情况下以 二进制编码比较复杂就是了。(如果以浮点数编码,其实就很简洁了,就一浮点数而已。)
就像0和1两种碱基,然后将他们串成一条链形成染色体。一个位能表示出2种 状态的信息量,因此足够长的二进制染色体便能表示所有的特征。这便是二进制编码。如下:
1110001010111
它由二进制符号0和1所组成的二值符号集。它有以下一些优点:
image 当指针在这个转盘上转动,停止下来时指向的个体就是天选之人啦。可以看出,适应性越高的个体被选中的概率就越大。
遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。 适用于二进制编码个体或浮点数编码个体的交叉算子: 1. 单点交叉(One-point Crossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。 2. 两点交叉与多点交叉:
(1) 两点交叉(Two-point Crossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。 (2) 多点交叉(Multi-point Crossover) 3. 均匀交叉(也称一致交叉,Uniform Crossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两 个新个体。 4. 算术交叉(Arithmetic Crossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。 咳咳,根据国际惯例。还是抓一个最简单的二进制单点交叉为例来给大家讲解讲解。 二进制编码的染色体交叉过程非常类似高中生物中所讲的同源染色体的联会过程――随机把其中几个位于同一位置的编码进行交换,产生新 的个体。
MATLAB智能算法30个案例分析
MATLAB 智能算法30个案例分析第1 章1、案例背景遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。
遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。
在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。
基因组成的串就是染色体,或者叫基因型个体( Individuals) 。
一定数量的个体组成了群体(Population)。
群体中个体的数目称为群体大小(Population Size),也叫群体规模。
而各个个体对环境的适应程度叫做适应度( Fitness) 。
2、案例目录:1.1 理论基础1.1.1 遗传算法概述1. 编码2. 初始群体的生成3. 适应度评估4. 选择5. 交叉6. 变异1.1.2 设菲尔德遗传算法工具箱1. 工具箱简介2. 工具箱添加1.2 案例背景1.2.1 问题描述1. 简单一元函数优化2. 多元函数优化1.2.2 解决思路及步骤1.3 MATLAB程序实现1.3.1 工具箱结构1.3.2 遗传算法中常用函数1. 创建种群函数—crtbp2. 适应度计算函数—ranking3. 选择函数—select4. 交叉算子函数—recombin5. 变异算子函数—mut6. 选择函数—reins7. 实用函数—bs2rv8. 实用函数—rep1.3.3 遗传算法工具箱应用举例1. 简单一元函数优化2. 多元函数优化1.4 延伸阅读1.5 参考文献3、主程序:1. 简单一元函数优化:clcclear allclose all%% 画出函数图figure(1);hold on;lb=1;ub=2; %函数自变量范围【1,2】ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线xlabel('自变量/X')ylabel('函数值/Y')%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=20; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(2,MAXGEN); %寻优结果的初始值FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器Chrom=crtbp(NIND,PRECI); %初始种群%% 优化gen=0; %代计数器X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换ObjV=sin(10*pi*X)./X; %计算目标函数值while gen<MAXGENFitnV=ranking(ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异X=bs2rv(SelCh,FieldD); %子代个体的十进制转换ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群X=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=min(ObjV);trace(1,gen)=X(I); %记下每代的最优值trace(2,gen)=Y; %记下每代的最优值endplot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点grid on;plot(X,ObjV,'b*'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(2,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestY=trace(2,end);bestX=trace(1,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\n'])2. 多元函数优化clcclear allclose all%% 画出函数图figure(1);lbx=-2;ubx=2; %函数自变量x范围【-2,2】lby=-2;uby=2; %函数自变量y范围【-2,2】ezmesh('y*sin(2*pi*x)+x*cos(2*pi*y)',[lbx,ubx,lby,uby],50); %画出函数曲线hold on;%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=50; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(3,MAXGEN); %寻优结果的初始值FieldD=[PRECI PRECI;lbx lby;ubx uby;1 1;0 0;1 1;1 1]; %区域描述器Chrom=crtbp(NIND,PRECI*2); %初始种群%% 优化gen=0; %代计数器XY=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换X=XY(:,1);Y=XY(:,2);ObjV=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算目标函数值while gen<MAXGENFitnV=ranking(-ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异XY=bs2rv(SelCh,FieldD); %子代个体的十进制转换X=XY(:,1);Y=XY(:,2);ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群XY=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=max(ObjV);trace(1:2,gen)=XY(I,:); %记下每代的最优值trace(3,gen)=Y; %记下每代的最优值endplot3(trace(1,:),trace(2,:),trace(3,:),'bo'); %画出每代的最优点grid on;plot3(XY(:,1),XY(:,2),ObjV,'bo'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(3,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestZ=trace(3,end);bestX=trace(1,end);bestY=trace(2,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ), '\n']) 第2 章基于遗传算法和非线性规划的函数寻优算法1.1案例背景1.1.1 非线性规划方法非线性规划是20世纪50年代才开始形成的一门新兴学科。
智能二代(Genetic Algorithm)饲料配方软件
智能二代(Genetic Algorithm)饲料配方软件Genetic Algorithm(遗传算法)饲料配方软件是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为遗传算法。
下载:多目标遗传算法在饲料配方设计中的应用(算法理论)软件反刍版本(反刍营养百分百):以干物质为基础,采用过胃(能氮平衡)、过肠、MP(可代谢蛋白)中氨基酸含量对饲料日粮进行TMR计算。
欢迎下载:最新 Feed mix 反刍营养百分百-饲料配方软件(第四版)软件猪鸡版本(智能二代):根据实际生长状况(类似NRC2012)、天气温度等因素生成营养需求,计算最符合氨基酸最佳比例模型的饲料配方。
欢迎下载:智能二代-饲料配方软件(猪、鸡饲料配方计算)和高品质猪鸡饲料配方-计算方法软件主界面说明:软件操作记录:作用:记录下软件操作数据,方便软件使用者查看。
操作:“双击”此窗口软件操作数据将更新显示。
一,选择适用(功能)选择(配方)设计方式说明:在此选择配方设计方式-它有两种选择方式(1):根据营养标准设计饲料配方。
(如下图所示,可进行修改)(2):根据动物的实际生长状况生成“营养需求”,进行配方设计。
说明:上面的三个图完整的介绍了如何根据实际生长状况生成“营养需求”的过程。
举例:a:输入饲养对象平均体重为---------75公斤。
b:预计本次饲料饲喂天数为---------7天。
c:软件自动计算生成各项营养需求-------例如:粗蛋白为-----14.4748%。
备注:产蛋鸡将根据产蛋率生成各项营养需求。
二,环境选项(功能)环境选项包含养殖“环境设置”和“预混添加剂原料”设置两个方面内容。
遗传算法简介
遗传算法简介遗传算法英文全称是Genetic Algorithm,是在1975年的时候,由美国科学家J.Holland从生物界的进化规律之中发现并且提出来的,借助适者生存,优胜劣汰的自然科学规律运用到科学的训练方法之中,对于对象直接进行操作的一种算法。
并且,遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化方法,很好的解决了电力系统的多变量、非线性、不连续、多约束的优化控制问题。
非常多的运用到了生产的方方面面。
可以说遗传算法的研究已经取得了巨大的成功。
2.1.1染色体在具体的使用遗传算法的时候,一般是需要把实际之中的问题进行编码,使之成为一些具有实际意义的码子。
这些码子构成的固定不变的结构字符串通常被叫做染色体。
跟生物学之中一样的,具体的染色体中的每一个字符符号就是一个基因。
总的固定不变的结构字符串的长度称之为染色体长度,每个具体的染色体求解出来就是具体问题之中的一个实际问题的解。
2.1.2群体具体的实际之中的问题的染色体的总数我们称之为群体,群体的具体的解就是实际之中的问题的解的集合。
2.1.3适应度在对于所有的染色体进行具体的编码之后,具体的一条染色体对应着一个实际的数值解,而每个实际的数值解对应着一个相对应的函数,这个函数就是适应度指标,也就是我们数学模型之中常说的目标函数。
2.1.4遗传操作说到遗传算法,不得不提的是遗传算法之中的遗传问题,具体进行遗传的时候有如下操作:1、选择:从上一次迭代过程之中的M个染色体,选择二个染色体作为双亲,按照一定的概率直接遗传到下一代。
2、交叉:从上一次迭代过程之中的M个染色体,选择二个染色体A、B作为双亲,用A、B作为双亲进行生物学之中的交叉操作,遗传到下一代。
3、变异从上一次迭代过程之中的M个染色体,选择一个染色体进行去某一个字符进行反转。
GA
7
遗传算法
Holland图式理论 图式理论 ------图式定理 图式定理
f (H ) δ (H ) m( H , t + 1) ≥ m( H , t ) • • (1 − Pc • − O( H ) • Pm ) l −1 f
m(H,t):t代群体中符合图式H的串数量 代群体中符合图式H
f
f (H )
从初始群体(即问题解的串集)开始搜索。 从初始群体(即问题解的串集)开始搜索。 求解时使用特定问题的信息极少,容易形成通用算法程序。 求解时使用特定问题的信息极少,容易形成通用算法程序。 有很强的容错能力 选择、交换、突变都是随机操作,不是确定的精确规则。 选择、交换、突变都是随机操作,不是确定的精确规则。 具有隐含的并行性
① ② ③ ④
20
遗传算法
旅行商问题
旅行商问题( 旅行商问题(Traveling Salesman Problem,TSP)又 , ) 译为旅行推销员问题、货郎担问题,简称为TSP问题,是 问题, 译为旅行推销员问题、货郎担问题,简称为 问题 最基本的路线问题, 最基本的路线问题,该问题是在寻求单一旅行者由起点出 通过所有给定的需求点之后, 发,通过所有给定的需求点之后,最后再回到原点的最小 路径成本。 路径成本。
19
遗传算法
结束语
遗传算法对于组合优化中的NP问题非常有效。 遗传算法对于组合优化中的 问题非常有效。例如遗传算法已经 问题非常有效 在求解旅行商问题、 背包问题、装箱问题、 在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得 到成功的应用。 此外, 也在生产调度问题 自动控制、机器人学、 也在生产调度问题、 到成功的应用。 此外,GA也在生产调度问题、自动控制、机器人学、 图象处理、人工生命、遗传编码和机器等方面获得了广泛的运用。 图象处理、人工生命、遗传编码和机器等方面获得了广泛的运用。 但是遗传算法还有大量的问题待研究。 但是遗传算法还有大量的问题待研究。 在变量多、取值范围大或无给定范围时, 在变量多、取值范围大或无给定范围时,收敛速度下降 在最有解附近徘徊, 在最有解附近徘徊,无法定位最优解位置 参数选择尚未有定量方法 如何有效配合使用交叉和变异操作
遗传算法-1
1 遗传算法简介
1.1 生物进化理论和遗传学的基本知识
遗传学基本概念与术语 ➢ 基因型(genotype):遗传因子组合的模型,染
色体的内部表现; ➢ 表现型(phenotype):由染色体决定性状的外
部表现,基因型形成的个体;
1111111
1.1 生物进化理论和遗传学的基本知识
交换部分基因产生一组新解的过程 编码的某一分量发生变化
例1 用遗传算法求解优化问题
max f (x) x2 ,0 x 31
其中 x 为整数。
产生群体:
p(
xi
)
fitness( xi )
fitness( x j
)
j
x1 (00000 ) x2 (11001)
x3 (01111) x4 (01000 )
1 遗传算法简介
1.1 生物进化理论和遗传学的基本知识
遗传学基本概念与术语 ➢ 变异(mutation):在细胞进行复制时可能以很
小的概率产生某些复制差错,从而使DNA发生 某种变异,产生出新的染色体,这些新的染色体 表现出新的性状; ➢ 编码(coding):表现型到基因型的映射; ➢ 解码(decoding):从基因型到表现型的映射。
司同时完成
生物遗传学基础
群体
变异
子群
竞争
淘汰的 群体
婚配 种群
群体
淘汰
遗传基因重组过程
变异
选择
淘汰的 个体
新种群
交配
种群
父代染色体1
父代染色体2
生物进化过程
子代染色体1
子代染色体2
1 遗传算法简介
1.1 生物进化理论和遗传学的基本知识 遗传学基本概念与术语 ➢ 染色体(chromosome):遗传物质的载体; ➢ 脱氧核糖核酸(DNA):大分子有机聚合物,
遗传算法
第1章遗传算法简介遗传算法(Genetic Algorithm)起始于20世纪60年代,主要由美国Michigan大学的John Holland与其同事和学生研究形成了一个较完整的理论和方法。
从1985年在美国卡耐基梅隆大学召开的第5届目标遗传算法会议(Intertional Conference on Genetic Algorithms:ICGA’85)到1997年5月IEEE的Transaction on Evolutionary Computation创刊,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究逐渐成熟。
1.1遗传算法的产生与发展(略)1.2遗传算法概要1.2.1生物进化理论和遗传算法的知识遗传:变异:亲代和子代之间,子代和子代的不同个体之间总有些差异,这种现象称为变异,变异是随即发生的,变异的选择和积累是生命多样性的根源生存斗争和适者生存:下面给出生物学的几个基本概念知识,这对于理解遗传算法很重要。
染色体:是生物细胞中含有的一种微小的丝状化合物,是遗传物质的主要载体,由多个遗传因子—基因组成。
遗传因子(gene):DNA长链结构中占有一定位置的基本遗传单位,也称基因。
生物的基因根据物种的不同而多少不一。
个体(individual):指染色体带有特征的实体种群(population):染色体带有特征的个体的集合进化(evolution);生物在其延续生命的过程中,逐渐适应其生存环境使得其品质不断得到改良,这种生命现象称为进化。
生物的进化是以种群的形式进行的。
适应度(fitness):度量某个物种对于生存环境的适应程度选择(selection):指以一定的概率从种群中选择若干个体的操作复制(reproduction)交叉(crossorer)变异(musation):复制时很小的概率产生的某些复制差错编码(coding):DNA中遗传信息在一个长链上按一定的模式排列,也即进行了遗传编码。
Genetic_Algorithm
“遗传算法”专题一、遗传算法的主要特征:我们的目的是获得“最好解”,可以把这种任务看成是一个优化过程。
对于小空间,经典的穷举法就足够了;而对大空间,则需要使用特殊的人工智能技术。
遗传算法(Genetic Algorithm)是这些技术中的一种,它是一类模拟生物进化过程而产生的由选择算子、杂交算子和变异算子三个基本算子组成的全局寻优算法。
它从一个初始族出发,由选择算子选出性状好的父本,由杂交算子进行杂交运算,变异算子进行少许变异,在一定概率规则控制下随机搜索模型空间。
一代代进化,直到最终解族对应的误差泛函值达到设定的要求。
遗传算法的结构:图1. 遗传算法的结构在第t 次迭代,遗传算法维持一个潜在解的群体},,,{)(21tn t t x x x t p =。
每个解t i x 用其“适应值”评价。
然后通过选择更合适个体(1+t 次迭代)形成一个新的群体。
新的群体的成员通过杂交和变异进行变换,形成新的解。
杂交组合了两个亲体染色体(即待求参数的二进制编码串)的特征,通过交换父代相应的片断形成了两个相似的后代。
例如父代染色体为),,,,(11111e d c b a 和),,,,(22222e d c b a ,在第二个基因后杂交,产生的后代为),,,,(22211e d c b a 和),,,,(11122e d c b a 。
杂交算子的目的是在不同潜在解之间进行信息交换。
变异是通过用一个等于变异率的概率随机地改变被选择染色体上的一个或多个基因(染色体中的一个二进制位)。
变异算子的意图是向群体引入一些额外的变化性。
遗传算法的特点:(1). 它不是直接作用于参变量集上,而是作用于参变量的某种编码形成的数字串上。
(2). 它不是从单个点,而是从一个解族开始搜索解空间,与传统的“点对点”式的搜索方法不同。
(3). 它仅仅利用适应值信息评估个体的优劣,无须求导数或其它辅助信息。
(4). 它利用概率转移规则,而非确定性规则。
遗传算法及其应用
选择-复制 通常做法是:对于一个规模为N 的种群S,按每个染色体xi∈S的选择概率P(xi)所决 定的选中机会, 分N次从S中随机选定N个染色体, 并进行复制。
这里的选择概率P(xi)的计算公式为
P(xi )
f (xi )
N
f (xj)
j 1
交叉 就是互换两个染色体某些位上的基因。 例如, 设染色体 s1=01001011, s2=10010101, 交换其后4位基因, 即
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
适应度值eval 4.3701 3.7654 4.9184 4.5556 2.5802 3.4671 3.6203 3.6203 1.0000 3.6203
选择概率P 0.1230 0.1060 0.1385 0.1283 0.0727 0.0976 0.1019 0.1019 0.0282 0.1019
➢ 若下述关系成立,则选择第k个染色体。
Qk1 r Qk ,Q0 0, (1 k pop size)
伪随机数表示指针 大小表示位置 所指向的染色体就是 待选择的染色体
针对本例题,首先计算适值之和
10
F eval(Uk ) 35.5178 k 1
计算各染色体选择概率、积累概率
序号NO.
对一个染色体串的适应度评价由下列三个步骤组成:
(1)将染色体进行反编码,转换成真实值。在本例中,意 味着将二进制串转为实际值:
xk (x2k ), k 1, 2,
(2)评价目标函数f(xk)。 (3)将目标函数值转为适应度值。对于极小值问题,适应 度就等于目标函数值,即
eval(Uk ) f (xk ), k 1, 2,
• 适应度函数(fitness function)就是问题中的 全体个体与其适应度之间的一个对应关。 它一般是一个实值函数。该函数就是遗传 算法中指导搜索的评价函数。
遗传算法(GeneticAlgorithm,GA)及MATLAB实现
遗传算法(GeneticAlgorithm,GA)及MATLAB实现遗传算法概述:• 遗传算法(Genetic Algorithm,GA)是⼀种进化算法,其基本原理是仿效⽣物界中的“物竞天择、适者⽣存”的演化法则,它最初由美国Michigan⼤学的J. Holland教授于1967年提出。
• 遗传算法是从代表问题可能潜在的解集的⼀个种群(population)开始的,⽽⼀个种群则由经过基因(gene)编码的⼀定数⽬的个体(individual)组成。
因此,第⼀步需要实现从表现型到基因型的映射即编码⼯作。
初代种群产⽣之后,按照适者⽣存和优胜劣汰的原理,逐代(generation)演化产⽣出越来越好的近似解,在每⼀代,根据问题域中个体的适应度(fitness)⼤⼩选择个体,并借助于⾃然遗传学的遗传算⼦(genetic operators)进⾏组合交叉和变异,产⽣出代表新的解集的种群。
这个过程将导致种群像⾃然进化⼀样,后⽣代种群⽐前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
• 遗传算法有三个基本操作:选择(Selection)、交叉(Crossover)和变异(Mutation)。
• (1)选择。
选择的⽬的是为了从当前群体中选出优良的个体,使它们有机会作为⽗代为下⼀代繁衍⼦孙。
根据各个个体的适应度值,按照⼀定的规则或⽅法从上⼀代群体中选择出⼀些优良的个体遗传到下⼀代种群中。
选择的依据是适应性强的个体为下⼀代贡献⼀个或多个后代的概率⼤。
• (2)交叉。
通过交叉操作可以得到新⼀代个体,新个体组合了⽗辈个体的特性。
将群体中的各个个体随机搭配成对,对每⼀个个体,以交叉概率交换它们之间的部分染⾊体。
• (3)变异。
对种群中的每⼀个个体,以变异概率改变某⼀个或多个基因座上的基因值为其他的等位基因。
同⽣物界中⼀样,变异发⽣的概率很低,变异为新个体的产⽣提供了机会。
遗传算法的基本步骤:1)编码:GA在进⾏搜索之前先将解空间的解数据表⽰成遗传空间的基因型串结构数据,这些串结构数据的丌同组合便构成了丌同的点。
3遗传算法(GA, Genetic Algorithm)
• 太多的勘察会导致早熟收敛,太多探索会使搜索 变成随机搜索。
• 交叉和变异是GA中的两个重要算子,调整交叉和 变异率可维护勘察/探索间的平衡,对搜索的有效 性和效率有直接影响。 • 文献中的参数设定方法可分成四类:静态设定、 动态确定、自主自适应和动态自适应。
静态设定
• 先通过反复试验找到一个满意的参数组合,然后 应用到GA中。文献中有大量确定算子概率的指导 规则,如
•
单点交叉
两点交叉
• 常见的交叉算子有:一点、两点、均匀和奇偶交 叉。均匀交叉,对染色体中每一位做贝努利试验, 确定其是来自父亲还是母亲。偶交叉是基因组的 偶数位来自母亲,奇数位来自父亲,奇交叉刚好 相反。 • 变异算子是首先对基因组的每一位做贝努利试验, 确定是否要进行变异操作;然后对需要变异的位 进行变异操作。 • 常见的变异操作有:翻转,针对01编码是0和1间 转换;交换,从染色体中随机选择一位与需要变 异的位交换基因;高斯变异是针对实数编码的, 基于高斯分布从当前值的周围选择一个新值代替 旧值。
• 线性定标
f, if f avg f max f ' f avg ( f f min ) /( f max f avg ), if f min (cfavg f max )/(c - 1) f [c( f f ) f f ) /( f f ), if f (cf f )/(c - 1) avg max max avg min avg max avg
incremental genetic algorithm
• 增量GA:每代拥有1-2个孩子的交叠群体 • 每代仅更新1-2个个体。 • 每代仅由1-2个孩子组成。允许定制取代方法,去 定义新代应如何被集成进群体。如一个新生成的 小孩可以取代他的父亲,取代群体中的随机个体, 或取代最受欢迎的个体。 • 使用交叠群体,但交叠非常少,仅有1-2个个体, 缺省的取代方案是最坏的。 • 取代方法规定了ga使用哪种形式的取代。取代策 略确定了新个体如何插入群体,如父亲策略、随 机策略、最坏策略、最好策略、自定义。
算法】超详细的遗传算法(GeneticAlgorithm)解析
算法】超详细的遗传算法(GeneticAlgorithm)解析01 什么是遗传算法?1.1 遗传算法的科学定义遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。
遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。
其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。
1.2 遗传算法的执行过程(参照百度百科)遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码。
初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
第7章 遗传算法
遗传算法问题举例:求 Max f (x) x2 , x [0,31]
(1)编码: x 00000 ~ 11111
此时取均长为5,每个染色体 {0,1}5
(2)初始群体生成:群体大小视情况而定,此处设
置为4,随机产生四个个体:
编码: 01101,11000,01000,10011
解码: 13
24 8
w1 w2 …… wn 由于是回路,记wn+1= w1。 要注意w1,w2 ,……,wn是互不相同的。
15
遗传算法的基本机理——适应度函数
2. 适应度函数
通过适应度函数来决定染色体的优劣程度,它体现了自然 进化中的优胜劣汰原则. 对于优化问题,适应度函数就是目标函数,要能够有效地反 映每一个染色体与问题最优解染色体之间的差距. 例如:TSP的目标是路径总长度为最短,路径总长度的倒数 就可以为TSP的适应度函数:
2) 优化目标不受目标函数解析表示的限制,不要求目标 函数连续可微,甚至不要求优化目标具有函数形式, 仅用适应度函数来评价个体。
3) SGA的处理过程具有内在的并行性。 4) SGA不采用确定性规则,而是采用概率变迁规则来指
f 1170
10011 361 0.31 10011
淘汰
24
转轮法
转轮法把种群中所有个体位串适值的总和看作一个轮子的圆 周,而每个个体位串按其适值在总和中所占的比例占据轮子 的一个扇区。上题中可绘制如图所示的转轮。 复制时,只要简单地转动这个按权重划分的转轮4次,从而
产生4个下一代的种群。 例如对于表中的位串1, 其适值为169,为总适值的14.4%。 因此,每旋转一次转轮指向该位串 的概率为0.144。每当需要下一个后 代时,就旋转一下这个按权重划分 的转轮,产生一个复制的候选者。 这样位串的适值越高,在其下代中 产生的后代就越多。
遗传算法(GeneticAlgorithms)
遗传算法(GeneticAlgorithms)遗传算法前引:1、TSP问题1.1 TSP问题定义旅⾏商问题(Traveling Salesman Problem,TSP)称之为货担郎问题,TSP问题是⼀个经典组合优化的NP完全问题,组合优化问题是对存在组合排序或者搭配优化问题的⼀个概括,也是现实诸多领域相似问题的简化形式。
1.2 TSP问题解法传统精确算法:穷举法,动态规划近似处理算法:贪⼼算法,改良圈算法,双⽣成树算法智能算法:模拟退⽕,粒⼦群算法,蚁群算法,遗传算法等遗传算法:性质:全局优化的⾃适应概率算法2.1 遗传算法简介遗传算法的实质是通过群体搜索技术,根据适者⽣存的原则逐代进化,最终得到最优解或准最优解。
它必须做以下操作:初始群体的产⽣、求每⼀个体的适应度、根据适者⽣存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染⾊体的基因并随机变异某些染⾊体的基因⽣成下⼀代群体,按此⽅法使群体逐代进化,直到满⾜进化终⽌条件。
2.2 实现⽅法根据具体问题确定可⾏解域,确定⼀种编码⽅法,能⽤数值串或字符串表⽰可⾏解域的每⼀解。
对每⼀解应有⼀个度量好坏的依据,它⽤⼀函数表⽰,叫做适应度函数,⼀般由⽬标函数构成。
确定进化参数群体规模、交叉概率、变异概率、进化终⽌条件。
案例实操我⽅有⼀个基地,经度和纬度为(70,40)。
假设我⽅飞机的速度为1000km/h。
我⽅派⼀架飞机从基地出发,侦察完所有⽬标,再返回原来的基地。
在每⼀⽬标点的侦察时间不计,求该架飞机所花费的时间(假设我⽅飞机巡航时间可以充分长)。
已知100个⽬标的经度、纬度如下表所列:3.2 模型及算法求解的遗传算法的参数设定如下:种群⼤⼩M=50;最⼤代数G=100;交叉率pc=1,交叉概率为1能保证种群的充分进化;变异概率pm=0.1,⼀般⽽⾔,变异发⽣的可能性较⼩。
编码策略:初始种群:⽬标函数:交叉操作:变异操作:选择:算法图:代码实现:clc,clear, close allsj0=load('data12_1.txt');x=sj0(:,1:2:8); x=x(:);y=sj0(:,2:2:8); y=y(:);sj=[x y]; d1=[70,40];xy=[d1;sj;d1]; sj=xy*pi/180; %单位化成弧度d=zeros(102); %距离矩阵d的初始值for i=1:101for j=i+1:102d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*...cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));endendd=d+d'; w=50; g=100; %w为种群的个数,g为进化的代数for k=1:w %通过改良圈算法选取初始种群c=randperm(100); %产⽣1,...,100的⼀个全排列c1=[1,c+1,102]; %⽣成初始解for t=1:102 %该层循环是修改圈flag=0; %修改圈退出标志for m=1:100for n=m+2:101if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<...d(c1(m),c1(m+1))+d(c1(n),c1(n+1))c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈endendendif flag==0J(k,c1)=1:102; break %记录下较好的解并退出当前层循环endendendJ(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上实数即染⾊体编码for k=1:g %该层循环进⾏遗传算法的操作for k=1:g %该层循环进⾏遗传算法的操作A=J; %交配产⽣⼦代A的初始染⾊体c=randperm(w); %产⽣下⾯交叉操作的染⾊体对for i=1:2:wF=2+floor(100*rand(1)); %产⽣交叉操作的地址temp=A(c(i),[F:102]); %中间变量的保存值A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作A(c(i+1),F:102)=temp;endby=[]; %为了防⽌下⾯产⽣空地址,这⾥先初始化while ~length(by)by=find(rand(1,w)<0.1); %产⽣变异操作的地址endB=A(by,:); %产⽣变异操作的初始染⾊体for j=1:length(by)bw=sort(2+floor(100*rand(1,3))); %产⽣变异操作的3个地址%交换位置B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);endG=[J;A;B]; %⽗代和⼦代种群合在⼀起[SG,ind1]=sort(G,2); %把染⾊体翻译成1,...,102的序列ind1num=size(G,1); long=zeros(1,num); %路径长度的初始值for j=1:numfor i=1:101long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度endend[slong,ind2]=sort(long); %对路径长度按照从⼩到⼤排序J=G(ind2(1:w),:); %精选前w个较短的路径对应的染⾊体endpath=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度xx=xy(path,1);yy=xy(path,2);plot(xx,yy,'-o') %画出路径以上整个代码中没有调⽤GA⼯具箱。
基因遗传算法的组成部分包
基因遗传算法(Genetic Algorithms,GA)是一种启发式搜索算法,常用于优化和搜索问题。
它模拟自然选择和遗传机制来找到问题的解。
基因遗传算法的主要组成部分包括:1. 个体(Individuals):- 个体是基因遗传算法中的潜在解决方案。
在优化问题中,每个个体通常代表一个候选解。
2. 染色体(Chromosomes):- 染色体是个体的编码,它包含了解决方案的基因。
基因可以是二进制、整数、浮点数等形式。
3. 基因(Genes):- 基因是染色体的基本单元,它是编码问题解决方案的一部分。
基因的形式取决于问题的性质。
4. 适应度函数(Fitness Function):- 适应度函数用于评估每个个体的质量。
它根据问题的特定目标为每个个体分配一个适应度值,该值越高表示个体越优秀。
5. 选择(Selection):- 选择操作模拟自然选择的过程,优秀的个体有更大的概率被选择为父代,从而传递其优秀的特征。
6. 交叉(Crossover):- 交叉操作模拟基因的交换。
它将两个父代染色体的一部分基因互换,产生新的个体。
7. 变异(Mutation):- 变异操作引入随机性,通过随机改变染色体中的一些基因值,以便引入新的特征。
8. 种群(Population):- 种群是所有个体的集合。
每一代,新的个体通过选择、交叉和变异产生,并替代上一代。
9. 终止条件(Termination Condition):- 终止条件是算法停止迭代的条件,可以是达到特定的适应度阈值、达到最大迭代次数等。
10. 遗传算法参数(GA Parameters):- 这包括种群大小、交叉率、变异率等,这些参数对算法的性能和效率产生重要影响。
基因遗传算法的性能取决于这些组成部分的合理配置和调整。
根据不同问题的性质,可以对这些组成部分进行适当的定制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X2 example: mutation
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
The simple GA
Has been subject of many (early) studies
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
SGA operators: mutation
Alter each gene independently with a probability pm pm is called the mutation rate
–
discrete optimization not too fast good heuristic for combinatorial problems Traditionally emphasizes combining information from good parents (crossover) many variants, e.g., reproduction models, operators
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
Representation
Phenotype space
Genotype space = {0,1}L 10010001 10010010 010001001 011101001 Decoding (inverse representation)
–
Typically between 1/pop_size and 1/ chromosome_length
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
SGA operators: Selection
– –
–
–
Representations Mutations Crossovers Selection mechanisms
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
SGA technical summary tableau
n-point crossover
Choose n random crossover points Split along those points Glue parts, alternating between parents Generalisation of 1 point (still some positional bias)
Attributed features:
–
–
Special Features:
–
–
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
Genetic algorithms
Holland‟s original GA is now known as the simple genetic algorithm (SGA) Other GAs use different:
Simple problem: max x2 over {0,1,…,31} GA approach:
– – – –
–
Representation: binary code, e.g. 01101 13 Population size: 4 1-point xover, bitwise mutation Roulette wheel selection Random initialisation
Encoding (representation)
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
SGA reproduction cycle
1. Select parents for the mating pool (size of mating pool = population size) 2. Shuffle the mating pool 3. For each consecutive pair apply crossover with probability pc , otherwise copy parents 4. For each offspring apply mutation (bit-flip with probability pm independently for each bit) 5. Replace the whole population with the resulting offspring
Genetic Algorithms
Chapter 3
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
GA Quick Overview
Developed: USA in the 1970‟s Early names: J. Holland, K. DeJong, D. Goldberg Typically applied to:
We show one generational cycle done by hand
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
x2 example: selection
A
3/6 = 50%
B
C
fitness(A) = 3
fitness(B) = 1
2/6 = 33%
fitness(C) = 2
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
An example after Goldberg ‘89 (1)
–Hale Waihona Puke still often used as benchmark for novel GAs Representation is too restrictive Mutation & crossovers only applicable for bit-string & integer representations Selection mechanism sensitive for converging populations with close fitness values Generational population model (step 5 in SGA repr. cycle) can be improved with explicit survivor selection
A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms
SGA operators: 1-point crossover
Choose a random point on the two parents Split parents at this crossover point Create children by exchanging tails Pc typically in range (0.6, 0.9)
Representation Recombination Mutation Parent selection Survivor selection Speciality Binary strings N-point or uniform Bitwise bit-flipping with fixed probability Fitness-Proportionate All children replace parents Emphasis on crossover
Main idea: better individuals get higher chance – Chances proportional to fitness – Implementation: roulette wheel technique Assign to each individual a part of the roulette wheel Spin the wheel n times to select n individuals 1/6 = 17%
Performance with 1 Point Crossover depends on the order that variables occur in the representation
–
more likely to keep together genes that are near each other Can never keep together genes from opposite ends of string