二元一次方程应用题类型解析全套整合

合集下载

二元一次方程应用题分类复习(整理)

二元一次方程应用题分类复习(整理)

- 1 -二元一次方程应用题分类复习日期: 2月 8日1、知道用方程组解决实际问题的一般步骤2、读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.列二元一次方程组解应用题(1)列二元一次方程组解应用题的一般步骤 ①设出题中的两个未知数; ②找出题中的两个等量关系;③根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组; ④解这个方程组,求出未知数的值;⑤检验所得结果的正确性及合理性并写出答案. (2)用方程解决实际问题的几个注意事项①先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.②“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.③所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等. ④要养成“验”的好习惯,即所求结果要使实际问题有意义. ⑤不要漏写“答”,“设”和“答”都不要丢掉单位名称. ⑥分析过程可以只写在草稿纸上,但一定要认真.⑦对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程,即未知数的个数应与方程组中方程的个数相等.例1:配套问题1. 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x 人生产螺栓,y人生产螺母,则每天可生产螺栓25x 个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套- 2 -成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a 件甲产品和b 件乙产品配成一套,那么甲产品数的b 倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a 件,乙产品b件,丙产品c 件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.跟踪练习1、木工厂有28个工人,每个工人一天加工桌子数与加工椅子数的比是9:20,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?2、某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?3、现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套? 例2、数字问题2.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系 原两位数xy10x +y10x+y=x +y+9- 3 -解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.跟踪练习1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.2、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数.某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克?2、某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?- 4 -3、学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,信封个数分别为多少个?4、为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?1.在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B的距离为120千米,B到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.2.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得- 5 -()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.跟踪练习1、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二元一次方程组应用题经典题(解析版)

二元一次方程组应用题经典题(解析版)

实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等. 知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比较直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比较直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数内的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率.④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥月利率=年利率1 12 .注意:免税利息=利息5.配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例.6.增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当n 为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆; ⑤在寻找等量关系时,应注意挖掘隐含的条件; ⑥列方程组解应用题一定要注意检验.类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米? 思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程. (2)有两个等量关系:①相向而行:汽车行驶113小时的路程+拖拉机行驶113小时的路程=160千米;②同向而行:汽车行驶12小时的路程=拖拉机行驶112⎛⎫+ ⎪⎝⎭小时的路程. 解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组()4160,311122x y x y ⎧+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩ 解这个方程组,得: 90,30x y =⎧⎨=⎩1111901165,3011853232⎛⎫⎛⎫⨯+=⨯+= ⎪ ⎪⎝⎭⎝⎭.答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略.乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度.类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元.设甲组单独做一天商店应付x 元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.解:(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元.(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,故请乙组单独做费用最少.答:请乙组单独做费用最少.总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一线段图或列表法进行分析.【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为x元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元.【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(注:获利= 售价—进价)求该商场购进A、B两种商品各多少件;类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:教育储蓄一年定期合计现在x y一年后 2.25%x x+⨯ 2.25%80%+⨯⨯2042.75y y解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?类型五:列二元一次方程组解决——生产中的配套问题5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套.【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条.现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?类型六:列二元一次方程组解决——增长率问题6. 某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为x万元,总支出为y万元,则有总产值(万元)总支出(万元)利润(万元)去年x y200今年120%x90%y780根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的已知量和未知量,可以列出两个等式.解:设去年的总产值为x万元,总支出为y万元,根据题意得:,解之得:答:去年的总产值为2000万元,总支出为1800万元总结升华:当题的条件较多时,可以借助图表或图形进行分析.【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口.类型七:列二元一次方程组解决——和差倍分问题7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后,倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组.解:设原计划“爱心”帐篷厂生产帐篷x 千顶,“温暖”帐篷厂生产帐篷y 千顶,由题意得:9,1.6 1.514x y x y +=⎧⎨+=⎩, 解得:5,4x y =⎧⎨=⎩所以:1.6x =1.65=8, 1.5y =1.54=6答:“爱心”帐篷厂生产帐篷8千顶,“温暖”帐篷厂生产帐篷6千顶. 【变式1】 (2011年北京门头沟区中考一模试题) “地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分—21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【变式2】 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?类型八:列二元一次方程组解决——数字问题8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数.思路点拨:设较大的两位数为x,较小的两位数为y.问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100x+y问题2:在较大数的左边写上较小的数,所写的数可表示为:100y+x解:设较大的两位数为x,较小的两位数为y.依题意可得:,解得:答:这两个两位数分别为45,23.【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?【变式3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数.类型九:列二元一次方程组解决——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和=50;(2)混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;(3)混合前两种与水之和的比=混合后溶液所含纯酒精与水的比.解:法一:设甲、乙两种酒精溶液分别取x kg , y kg.依题意得:,答:甲取20kg,乙取30kg法二:设甲、乙两种酒精溶液分别取10x kg和5y kg,则甲种酒精溶液含水7x kg,乙种酒精溶液含水y kg,根据题意得:,所以10x=20,5y=30.答:甲取20kg,乙取30kg总结升华:此题的第(1)个相等关系比较明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等.用它们来联系各量之间的关系,列方程组时就显得容易多了.列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么.有时候需要设间接未知数,有时候需要设辅助未知数.举一反三:【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效.用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?类型十:列二元一次方程组解决——几何问题10.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x,宽为y,就可以列出关于x、y的二元一次方程组.解:设长方形地砖的长xcm,宽ycm,由题意得:,答:每块长方形地砖的长为45cm、宽为15cm.总结升华:几何应用题的相等关系一般隐藏在某些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解.举一反三:【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?类型十一:列二元一次方程组解决——年龄问题11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?思路点拨:解本题的关键是理解“6年后”这几个字的含义,即6年后父子俩都长了6岁.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程.解:设现在父亲x岁,儿子y岁,根据题意得:,答:父亲现在30岁,儿子6岁.总结升华:解决年龄问题,要注意一点:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内).【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.类型十二:列二元一次方程组解决——优化方案问题:12.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成你认为选择哪种方案获利最多?为什么?思路点拨:如何对蔬菜进行加工,获利最大,是生产经营者一直思考的问题. 本题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.解:方案一获利为:4500×140=630000(元).方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).方案三获利如下:设将吨蔬菜进行精加工,吨蔬菜进行粗加工,则根据题意,得:,解得:所以方案三获利为:7500×60+4500×80=810000(元).因为630000<725000<810000,所以选择方案三获利最多答:方案三获利最多,最多为810000元.总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进行比较从中选择最优方案.举一反三:【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是3.24%-X,则有:2000*X*(1-20%)+1000*(3.24%-X)*(1-20%)=43.92即:1600X+25.92-800X=43.92800X=18X=2.25%3.24%-2.25%=0.99%所以,2000的存款利率是2.25%,1000的存款的利息率是0.99%.法二:也可用二元一次方程组解。

二元一次方程应用题8种类型

二元一次方程应用题8种类型

二元一次方程应用题8种类型一、行程问题1. 题目- 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲在乙后面,5小时后甲追上乙。

求甲、乙两人的速度。

2. 解析- 根据相向而行时,路程 = 速度和×时间,可得到方程3(x + y)=30,化简为x + y = 10。

- 根据同向而行时,路程差=速度差×时间,可得到方程5(x - y)=30,化简为x - y=6。

- 联立方程组x + y = 10 x - y = 6,将两式相加,2x=16,解得x = 8。

- 把x = 8代入x + y = 10,得y = 2。

二、工程问题1. 题目- 一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成;甲队单独做比乙队单独做少用5天。

求甲、乙两队单独完成这项工程各需要多少天?2. 解析- 把工作总量看作单位“1”,根据工作效率 = 工作总量÷工作时间,两队合作的工作效率为(1)/(6),甲队工作效率为(1)/(x),乙队工作效率为(1)/(y),则(1)/(x)+(1)/(y)=(1)/(6)。

- 又因为甲队单独做比乙队单独做少用5天,所以y - x=5,即y=x + 5。

- 将y=x + 5代入(1)/(x)+(1)/(y)=(1)/(6)中,得到(1)/(x)+(1)/(x + 5)=(1)/(6)。

- 去分母得6(x+5)+ 6x=x(x + 5),展开6x+30+6x=x^2+5x,移项化为一元二次方程x^2-7x - 30 = 0,因式分解(x - 10)(x+3)=0,解得x = 10或x=-3(天数不能为负舍去)。

- 当x = 10时,y=10 + 5=15。

三、利润问题1. 题目- 某商店购进甲、乙两种商品,甲商品进价为x元/件,乙商品进价为y元/件。

已知购进5件甲商品和4件乙商品共花费300元;甲商品每件售价20元,乙商品每件售价30元,全部售出后利润为100元。

完整版二元一次方程组应用题分类型十一种类型解析

完整版二元一次方程组应用题分类型十一种类型解析

二元一次方程组应用题分类型列方程 (组 )解应用题的一般步骤 :1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、 解 :解方程 (组 ).6、 验 :检验方程 (组)的解是否符合实际题意.7、 答 :完整写出答案 (包括单位 ). 列方程组思想:找出相等关系 “未知” 转化为“已知” .有几个未知数就列出几个方程, 所列方程必须满足:(1) 方程两边表示的是同类量; (2) 同类量的单位要统一; (3) 方程两边的数值要相等 . 类型:(1)行程问题:(2)(3) (4) (5) (6) (7) (8) (9) (10 )几何问题 ;(11 )年龄问题 ; (12)优化方案问题、行程问题快行距+慢行距=原距 快行距-慢行距=原距顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度—水流(风)速度 顺速-逆速=2水速; 顺速+逆速=2船速顺水的路程=逆水的路程1、甲、乙两地相距 160 千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行, 1 小时20 分相遇 .相遇后,拖拉机继续前进,汽车在相遇处停留 1 小时后调转车头原速返回,在汽 车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?工程问题 ; 销售中的盈亏问题 ; 储蓄问题 ; 产品配套问题 ; 增长率问题 ; 和差倍分问题: 数字问题 ; 浓度问题 ;(1) 三个基本量的关系: 路程s=速度v X 时间t 时间t =路程s +速度V 速度V =路程s +时间t (2) 三大类型: ① 相遇问题: ② 追及问题: ③ 航行问题:2、两地相距280千米,一艘船在其间航行,顺流用 14小时,逆流用20小时,求船在静水中的速度和水流速度。

二、工程问题三个基本量的关系: 工作总量=工作时间X 工作效率;工作时间=工作总量十工作效率; 工作效率=工作总量十工作时间甲的工作量+乙的工作量=甲乙合作的工作总量, 注:当工作总量未给出具体数量时,常设总工作量为“ 1”。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是3.24%-X,则有:2000*X*(1-20%)+1000*(3.24%-X)*(1-20%)=43.92即:1600X+25.92-800X=43.92800X=18X=2.25%3.24%-2.25%=0.99%所以,2000的存款利率是2.25%,1000的存款的利息率是0.99%.法二:也可用二元一次方程组解。

【初中数学】二元一次方程8种典型例题详解

【初中数学】二元一次方程8种典型例题详解

【初中数学】二元一次方程8种典型例题详解1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

1.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题:【思路点拨】由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展:【思路点拨】由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

2.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。

典型例题:【思路点拨】本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展:【思路点拨】根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

3.工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

二元一次方程应用题类型

二元一次方程应用题类型

二元一次方程应用题类型1.简介二元一次方程是数学中常见的方程形式,由两个未知数和一次项组成,具有许多实际应用。

本文将介绍几种常见的二元一次方程应用题类型,并分析解题方法。

2.题型分类2.1速度问题某人骑行一段路程,一段距离内以恒定速度前进,然后在剩余的距离内以不同的恒定速度前进。

已知两段速度和路程的关系,求解两段路程。

示例题:某人骑自行车从A地到B地,前半程以20k m/h的速度行驶,行驶了2小时到达一半的地方C,后半程以15km/h的速度行驶,行驶了4小时到达终点B。

求A地到B地的距离。

解题思路:设A地到B地的距离为Dk m。

根据题意,前半程的路程为D/2km,后半程的路程为D-D/2=D/2km。

根据速度等于路程除以时间的公式,可以得到以下方程组:```20=(D/2)/215=(D/2)/4```解以上方程组,可以得到D=120k m。

因此,A地到B地的距离为120k m。

2.2比例问题某业务员的工资由底薪和提成组成,已知底薪和提成的比例,以及完成的业绩,求解业务员的工资。

示例题:某业务员的底薪为2000元,提成按照销售额的10%计算。

某月该业务员完成的业绩是8万元。

求该业务员的工资。

解题思路:设该业务员的工资为S元。

根据题意,提成的金额为销售额的10%,即提成金额为8万元的10%。

因此,可以得到以下方程:```S=2000+0.1*80000```解以上方程,可以得到S=10000元。

因此,该业务员的工资为10000元。

2.3混合问题某化学试剂的成分由两种物质A和B组成,已知物质A和B的比例,以及混合后的质量,求解各种物质的质量。

示例题:某化学试剂由物质A和物质B组成,A和B的质量比为3:2。

已知将100克物质A和60克物质B混合后得到该试剂。

求物质A和物质B的质量。

解题思路:设物质A的质量为A克,物质B的质量为B克。

根据题意,可以得到以下方程组:```A/B=3/2A+B=160```解以上方程组,可以得到A=90克,B=70克。

二元一次方程组的应用题,总结了十个题型,学透很容易!

二元一次方程组的应用题,总结了十个题型,学透很容易!

初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。

为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

二元一次方程组应用题的常见类型分析

二元一次方程组应用题的常见类型分析

二元一次方程组应用题的常见类型分析1.自由度为1的问题:这类问题的特点是方程组中的未知数个数和方程个数相等,且存在一个未知数可以任意取值。

例如:已知二元一次方程组2x+y=4,3x-2y=1,求解该方程组的解集。

2.自由度为2的问题:这类问题的特点是方程组中的未知数个数和方程个数相等,且方程组中的每个未知数都可以任意取值。

例如:已知二元一次方程组x+y=2,2x+2y=4,求解该方程组的解集。

3. 带参数的问题:这类问题的特点是方程组中的未知数个数大于方程个数,方程组中存在参数。

例如:已知二元一次方程组 x+2y=a,3x+ay=1,求解该方程组中的参数 a。

4.几何问题:这类问题与几何图形有关,方程组中的未知数通常表示几何图形中的一些量。

例如:已知二元一次方程组x+y=5,x-y=1,求解该方程组表示的直线的交点坐标。

5. 混合问题:即同时涉及了自由度为 1 或 2 的问题和参数问题,通常需要综合运用相关知识来解决。

例如:已知二元一次方程组 x+y=a,3x-2y=1,求 a 的取值范围;已知二元一次方程组 x+2y=a,3x-2ay=1,求 a 的取值范围。

二、解题思路对于以上几种类型的问题,可以采用不同的解题思路和方法:1.代入法:将一个方程的未知数表示为另一个方程的未知数的函数,然后代入到另一个方程中求解。

2.消元法:通过加减乘除等操作,将方程组中的一些未知数消去,从而得到只含一个未知数的方程。

3.参数法:将方程组中的一个未知数表示为另一个未知数的函数,并引入参数,然后对参数进行求解。

4.几何法:将方程组的两个方程表示为几何图形上的两条直线或曲线,通过图像求解交点坐标。

5.综合运用:将几种解题思路和方法进行综合运用,根据具体问题的特点选取合适的解题方法。

三、解题步骤1.分析问题类型,并确定解题思路和方法。

2.分别列出方程组的各个方程。

3.根据所选解题方法进行相应的计算和推导。

4.求解得出方程组的解集或参数的取值范围。

二元一次方程组应用题类型大全

二元一次方程组应用题类型大全

根据题意, 得 x+y =22
2×1200x=2000y
解得 x=10
Y =12
所以为了使每天生产的产品刚好配套,应安排10人生产螺 钉,12人生产螺母
例2.某工地需雪派48人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应该 怎样安排人员,正好能使挖的土能及时运走?
每天挖的土等于每天运的土
分析题意:1、有鲜奶9吨,
2.若在市场上直接销售鲜奶,每吨可获利润500元,
3.若制成酸奶销售,每吨可获利润1200元,
4.若制成奶片销售,每吨可获利润2000元.
5.每天可加工3吨酸奶或1吨奶片, 两种方式不能同时进行.
6.受季节的限制,这批牛奶必须在4天内加工并销售完毕.
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
例:某牛奶加工厂现有鲜奶9吨,若在市场上直接 销售鲜奶,每吨可获利润500元,若制成酸奶销售, 每吨可获利润1200元,若制成奶片销售,每吨可获 利润2000元.该厂生产能力如下:每天可加工3吨酸 奶或1吨奶片,受人员和季节的限制,两种方式不能 同时进行.受季节的限制,这批牛奶必须在4天内加 工并销售完毕,为此该厂制定了两套方案:
160千米 甲
汽车行驶1小时20分的路程
汽车行驶半小时的路程
乙 拖拉机行驶1小时 20分的路程
拖拉机行驶1个半小时 行驶的路程
1、同时同地相向而行第一次相遇(相当 于相遇问题):
甲的路程 + 乙的路程 = 跑道一圈长
2、同时同地同向而行第一次相遇(相当于 追击问题):
快者的路程 - 慢者的路程 = 跑道一圈长
解之得
X=77 Y=8
答:这批零件有77个,按计划需8 小时完成

二元一次方程组应用题经典题(解析版)

二元一次方程组应用题经典题(解析版)

实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比较直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比较直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2) ;(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售(.例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数内的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率.④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥月利率=年利率1.12注意:免税利息=利息5.配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例.6.增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:n 解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆; 关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验.方程组⑤在寻找等量类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程. (2)有两个等量关系:①相向而行:汽车行驶 11小时的路程+拖拉机行驶11小时的路程=160千米;33②同向而行:汽车行驶 1小时的路程=拖拉机行驶1 1 小时的路程.22解:设汽车的速度为每小时行 千米,拖拉机的速度为每小时千米.4 x y 160,3x 90,根据题意,列方程组11 解这个方程组,得: 30x 1y 2y2901 1 165,30 1 1 185.1 21 233答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略.【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度.类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元.设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.解:(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元.(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360 元,故请乙组单独做费用最少.答:请乙组单独做费用最少.总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析.【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱 5.2 万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为x元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元.【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B(注:获利进价(元/件)1200售价(元/件)1380=售价—进价)求该商场购进A、B10001200两种商品各多少件;类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为 2.25%的教育储蓄,另一种是年利率为 2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:教育储蓄一年定期合计现在x y一年后xx2.25%yy2.25%80%2042.75 解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华:我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为 3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000 元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?类型五:列二元一次方程组解决——生产中的配套问题5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只.现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等.各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套.【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条.现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?类型六:列二元一次方程组解决——增长率问题6.某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为x万元,总支出为y万元,则有总产值(万元)总支出(万元)利润(万元)去年x y200今年120%x90%y780根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的已知量和未知量,可以列出两个等式.解:设去年的总产值为x万元,总支出为y万元,根据题意得:,解之得:答:去年的总产值为2000万元,总支出为1800万元总结升华:当题的条件较多时,可以借助图表或图形进行分析.【变式1】若条件不变,求今年的总产值、总支出各是多少万元?【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口.类型七:列二元一次方程组解决——和差倍分问题7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后,倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组.解:设原计划“爱心”帐篷厂生产帐篷x千顶,“温暖”帐篷厂生产帐篷y千顶,由题意得:xy9,x5,1.6x1.5y14,解得:4y所以:1.6x=1.6 5=8,1.5y=1.5 4=6答:“爱心”帐篷厂生产帐篷8千顶,“温暖”帐篷厂生产帐篷6千顶.【变式1】(2011年北京门头沟区中考一模试题)“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分—21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【变式2】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多男孩与女孩各有多少人吗?.如果每位男1倍,你知道类型八:列二元一次方程组解决——数字问题8.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数.思路点拨:设较大的两位数为x,较小的两位数为y.问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100x+y问题2:在较大数的左边写上较小的数,所写的数可表示为:100y+x解:设较大的两位数为x,较小的两位数为y.依题意可得:,解得:答:这两个两位数分别为45,23.【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?【变式3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数.类型九:列二元一次方程组解决 ——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是 3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg ,问甲、乙两种酒精溶液应各取多少?思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和= 50;(2) 混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;(3)混合前两种 溶液所含水的质量之和=混合后溶液所含水的质量;( 4)混合前两种溶液所含纯酒精之和 与水之和的比=混合后溶液所含纯酒精与水的比 解:法一:设甲、乙两种酒精溶液分别取 . xkg,ykg.依题意得:,答:甲取20kg ,乙取30kg法二:设甲、乙两种酒精溶液分别取 10xkg 和5ykg ,则甲种酒精溶液含水 7xkg ,乙种酒精溶液含水 ykg ,根据题意得:,所以10x=20,5y=30.答:甲取20kg ,乙取30kg总结升华:此题的第(1)个相等关系比较明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等.用它们来联系各量之间的关系,列方程组时就显得容易多了 题目可以直接设未知数,但并不是千篇一律的,问什么就设什么有时候需要设辅助未知数.举一反三:【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效.用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?.有时候需要设间接未知数, .列方程组解应用题,首先要设未知数,多数类型十:列二元一次方程组解决——几何问题10.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x,宽为y,就可以列出关于x、y的二元一次方程组.解:设长方形地砖的长xcm,宽ycm,由题意得:,答:每块长方形地砖的长为45cm、宽为15cm.总结升华:几何应用题的相等关系一般隐藏在某些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解.举一反三:3厘米,补到较短【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?类型十一:列二元一次方程组解决——年龄问题11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?思路点拨:解本题的关键是理解“6年后”这几个字的含义,即6年后父子俩都长了6岁.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程.解:设现在父亲x岁,儿子y岁,根据题意得:,答:父亲现在30岁,儿子6岁.总结升华:解决年龄问题,要注意一点:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内).【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.类型十二:列二元一次方程组解决——优化方案问题:12.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨.但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成你认为选择哪种方案获利最多?为什么?思路点拨:如何对蔬菜进行加工,获利最大,是生产经营者一直思考的问题.本题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.解:方案一获利为:4500×140=630000(元).方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).方案三获利如下:设将吨蔬菜进行精加工,吨蔬菜进行粗加工,则根据题意,得:,解得:所以方案三获利为:7500×60+4500×80=810000(元).因为630000<725000<810000,所以选择方案三获利最多答:方案三获利最多,最多为810000元.总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进行比较从中选择最优方案.举一反三:【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?。

解二元一次方程组50题配完整解析

解二元一次方程组50题配完整解析

解方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。

二元一次方程(组)应用题专题讲解及练习(附答案)

二元一次方程(组)应用题专题讲解及练习(附答案)

实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。

初中数学二元一次方程8种典型例题详解,一次性解决应用题!

初中数学二元一次方程8种典型例题详解,一次性解决应用题!

初中数学⼆元⼀次⽅程8种典型例题详解,⼀次性解决应⽤题!⼀、实际问题与⼆元⼀次⽅程组的思路1.列⽅程组解应⽤题的基本思想列⽅程组解应⽤题,是把“未知”转换成“已知”的重要⽅法,它的关键是把已知量和未知量联系起来,找出题⽬中的等量关系。

⼀般来说,有⼏个未知量就必须列出⼏个⽅程,所列⽅程必须满⾜:①⽅程两边表⽰的是同类量;②同类量的单位要统⼀;③⽅程两边的数要相等。

2.列⼆元⼀次⽅程组解应⽤题的⼀般步骤设:⽤两个字母表⽰问题中的两个未知数;列:列出⽅程组(分析题意,找出两个等量关系,根据等量关系列出⽅程组);解:解⽅程组,求出未知数的值;答:写出答案。

3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)⼀般来说,设⼏个未知数就应该列出⼏个⽅程并组成⽅程组。

⼆、⼋⼤典型例题详解1.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题:【思路点拨】由甲⼄两⼈2分钟共打了240个字可以得到第⼀个等量关系式2(x+y)=240,再由甲每分钟⽐⼄多打10个字可以得到第⼆个等量关系式x-y=10,组成⽅程组求解即可。

变式拓展:【思路点拨】由甲组学⽣⼈数是⼄组的3倍可以得到第⼀个等量关系式x=3y,由⼄组的学⽣⼈数⽐甲组的3倍少40⼈可以得到第⼆个等量关系式3x-y=40,组成⽅程组求解即可。

2.产品配套问题知识梳理总⼈数等于⽣产各个产品的⼈数之和;各个产品数量之间的⽐例符合整体要求。

典型例题:【思路点拨】本题的第⼀个等量关系⽐较容易得出:⽣产螺钉和螺母的⼯⼈共有22名;第⼆个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展:【思路点拨】根据共有170名学⽣可得出第⼀个等量关系x+y=170,根据每个树坑对应⼀棵树可得第⼆个等量关系3x=7y,组成⽅程组求解即可。

3.⼯作量问题知识梳理我们在解决⼯程问题时通常把⼯作总量看成1;⼯作量=⼯作效率×⼯作时间;总⼯作量=每个个体⼯作量之和;⼯作效率=⼯作量÷⼯作时间(即单位时间的⼯作量);⼯作效率=1÷完成⼯作的总时间。

二元一次方程,应用题类型

二元一次方程,应用题类型

二元一次方程,应用题类型(最新版)目录1.二元一次方程的定义和基本概念2.二元一次方程的解法3.二元一次方程的应用题类型4.实际应用案例分析正文二元一次方程是由两个含有两个未知数的一次方程组成的方程组,它是初中数学中的重要内容。

掌握二元一次方程的解法对于解决实际问题具有重要意义。

一、二元一次方程的定义和基本概念二元一次方程指的是包含两个未知数的一次方程,例如:x + y = 5 和2x - y = 1。

这两个方程共同构成了一个方程组,我们需要找到这个方程组中的未知数 x 和 y 的值。

二、二元一次方程的解法解二元一次方程有多种方法,如代入法、消元法和韦达定理等。

这些方法都可以帮助我们求得方程组中未知数的值。

1.代入法:从一个方程中解出一个未知数,然后将其代入另一个方程中,从而解出另一个未知数。

2.消元法:通过加减消去一个未知数,从而得到一个新的方程,进而解出未知数。

3.韦达定理:根据方程组中各项系数和常数的关系,直接求得未知数的值。

三、二元一次方程的应用题类型二元一次方程在实际生活中的应用非常广泛,例如经济学、物理学、地理学等领域。

常见的应用题类型包括以下几种:1.购买问题:当购买两种物品时,需要考虑预算、价格和数量等因素,这类问题可以用二元一次方程来表示。

2.距离问题:在平面几何中,求两点之间的距离或线段长度,可以用二元一次方程来表示。

3.调配问题:在生产和制造过程中,需要根据不同原料的比例和数量来调配产品,这类问题可以用二元一次方程来表示。

四、实际应用案例分析假设一个小卖部需要进货苹果和香蕉,已知苹果每斤 10 元,香蕉每斤 8 元。

若小卖部希望在预算为 300 元的情况下,购买苹果和香蕉各50 斤,请问应该如何分配进货预算?设苹果进货预算为 x 元,香蕉进货预算为 y 元。

根据题意,我们可以列出以下二元一次方程组:x + y = 30050 / x = 50 / 1050 / y = 50 / 8通过解方程组,我们可以得到 x = 200,y = 100。

二元一次方程应用题专题讲解

二元一次方程应用题专题讲解

二元一次方程组(应用题)专题讲解现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x yy x x y+=++⎧⎨+=++⎩,得14xy=⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y-=⎧⎨-=⎩,解得200150xy=⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.【典题精析】例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x 解得,⎩⎨⎧==.35,15y x 故中型汽车有15辆,小型汽车有35辆.例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x 天进行精加工, y 天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.二、典型例题讲解题型一、列二元一次方程组解决生产中的配套问题1、 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套题型二、列二元一次方程组解决行程问题2、 甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。

二元一次方程组应用题题及答案

二元一次方程组应用题题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是3.24%-X,则有:2000*X*(1-20%)+1000*(3.24%-X)*(1-20%)=43.92即:1600X+25.92-800X=43.92800X=18X=2.25%3.24%-2.25%=0.99%所以,2000的存款利率是2.25%,1000的存款的利息率是0.99%.法二:也可用二元一次方程组解。

二元一次方程组常考题型分类总结(超全面)

二元一次方程组常考题型分类总结(超全面)

二元一次方程组常见题型二元一次方程组应用题(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=2、抽5人后到甲工厂的人数=可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少?解:设甲每小时走x千米,乙每小时走y千米题中的两个相等关系:1、同向而行:甲的路程=乙的路程+可列方程为:2、相向而行:甲的路程+ =可列方程为:(百分数问题)某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有x万人,农村人口有y万人题中的两个相等关系:1、现在城镇人口+ =现在全市总人口可列方程为:2、明年增加后的城镇人口+ =明年全市总人口可列方程为:(1+0.8%)x+ =(分配问题)某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,萍果有y个题中的两个相等关系:1、萍果总数=每人分3个+可列方程为:2、萍果总数= 可列方程为:(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。

题中的两个相等关系:1、含盐10%的盐水中盐的重量+含盐85%的盐水中盐的重量=可列方程为:10%x+ =2、含盐10%的盐水重量+含盐85%的盐水重量=可列方程为:x+y=(金融分配问题)需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克?解:设每千克售4.2元的糖果为x千克,每千克售3.4元的糖果为y千克题中的两个相等关系:1、每千克售4.2元的糖果销售总价+ =可列方程为:2、每千克售4.2元的糖果重量+ =可列方程为:(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米题中的两个相等关系:1、小长方形的长+ =大长方形的宽可列方程为:2、小长方形的长=可列方程为:(材料分配问题)一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?解:设题中的两个相等关系:1、制作桌面的木材+ =可列方程为:2、所有桌面的总数:所有桌脚的总数=可列方程为:(和差倍问题)一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?解:设个位数字为x ,十位数字为y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列一元一次方程解应用题的类型及练习列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.一、数字问题。

列方程的前提还必须正确地表示多位数的代数式一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?2、、有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,若把百位与个位数字对调,那么新数比原数大594,求原数。

已知三个连续偶数的和是2004,求这三个偶数各是多少?一个两位数,十位上的数字比个位上的数字小5,若此两位数的两个数字位置交换,得一新两位数,那么新两位数与原两位数大45,求新两位数与原两位数的积是多少?一个三位数,各位数字是百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位对调,所得的新数比原数的2倍少49,求原数。

二、日历中的方程(掌握日历或卡片中的规律)日历中的规律:横行相邻两数相差____竖行相邻两数相差___。

1、礼堂第一排有a个座位,后面每一排比前一排多一个座位,则第n排的座位是()A n+1B a+(n+1)C a+nD a+(n-1)2、如果今天是星期三,那么一年(365天)以后的今天是星期___________3、若今天是星期一,问过2010年后是星期____________.6、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?7、在8点和9点间,何时时钟分针和时针重合?何时时钟分针和时针成直角?何时时钟分针和时针成平角?三、等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

1、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方体盒子,容积是450003cm.求原来正方形铁皮的边长。

2、用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,如果这种钢每立方厘米重7.8g,应截圆钢多长?3、把直径6cm,长16cm的圆钢锻造成半径为4cm的圆钢。

求锻造后的圆钢的长。

4、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。

5、一个长方形的周长为26㎝,这个长方形的长减少1㎝,宽增加2㎝,就可成为一个正方形,则原长方形的长和宽各为多厘米?6、在一个底面直径为30厘米,高为8厘米的圆锥体容器中倒满水,然后将水倒入一个底面直径为10厘米的圆柱体空容器内,圆柱体容器内的水有多高?四、利润率问题。

(销售)其数量关系是:利润=售价-进价,利润率= 利润成本×100%,售价=标价×折扣率,注意打几折销售就是按原价的十分之几出售。

1、丽丽的妈妈到百盛商场给她买一件漂亮毛衣,售货员说:“这毛衣前两天打八折,今天又在八折的基础上降价10%,只卖144元,丽丽很快算出了这件毛衣的原标价,你知道是多少元吗?2、一种商品,甲提出按原价降低10元后卖掉,用售价的10%作积累;乙提出将原价降低20元卖掉,用售价的20%仍做积累,经测算两种积累一样多.则这种商品的原价是多少?3、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?4、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?5、某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25 %,第二件亏损25 %,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算6、某推销员,卖出全部商品的错误!未找到引用源。

后得到400元,卖出全部商品共得多少元?7、某商品在进价基础上加价20%后的价格为120元,它的进价是多少?8、买2支钢笔、一支圆珠笔需要4元;买1支钢笔、2支圆珠笔需要5元,求买4支钢笔、4本圆珠笔需要多少元?9、某产品按原价提高40%后打八折销售,每件商品赚270元,问该商品原标价多少元?现销售价是多少?10、某进货价为100元的商品标价为150元,老板要求以不低于5%的利润率出售,售货员最低可以优惠打几折出售该商品?11、某商店一次卖出两台不同品牌的产品,其中一台赚了12%,另一台赔了12%,且这两件商品的售价均为3080元,问该商店本次交易的盈利情况.12、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?13、某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听和书包的单价和味452元,且随身听的单价比书包的单价的4倍少8元。

某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物卷30元,但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱呢?14、某商店购进一批节能灯,每个13元,运输过程中损坏了12个,出售单价为15元,获利1020元,求购进多少个节能灯?15、一家服装店将某种服装成本提高40%后标价,又以八折优惠卖出,结果每件仍可获利15元,这种服装每件的成本是多少元?16、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?17、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?五、调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

这类问题要搞清人数的变化。

某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?2、甲乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?4、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

5 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?天平的两个盘内分别盛有51g、45g盐,应该怎样调配才能使天平平衡?有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?甲乙两人分别存书108本和54本,现要让甲给乙一些书,使甲有的书占乙有书的20%,问甲给了一多少书?某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?某班举办一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张.这个班有多少学生?一共展出了多少张邮票?学校新进若干箱教学设备,某班同学去运,若每人运8箱,还余16箱;若每人运9箱,还缺少32箱,这批设备共有多少箱?这个班有多少名同学?某车间有28名工人,生产一种螺栓和螺母,平均每人每小时能生产螺栓12个或螺母18个,一个螺栓配两个螺母,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺母刚好配套.七年级170名学生去植树,男生平均一天挖树坑3个,女生平均一天种树7棵,若正好每个树坑种一棵树,则该年级的男、女生各有多少人?小明看书若干日,若每日读书32页,尚余31页;若每日读书36页,则最后一天需要读39页,才能读完。

这本书共多少页?甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?甲、乙两车间各有工人若干,如果从乙车间调100人去甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人去乙车间,则两车间的人数相等。

求原来甲、乙车间各有多少人?六、行程问题。

(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:甲走的路程+乙走的路程=全路程追及问题(同向而行),这类问题的等量关系是:同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。

船(飞机)航行问题:顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。

②车离桥指车头离开桥到车尾离开桥的一段路程。

所走的路程为一个成长③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长1、A、B两地相距150千米。

一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?2、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?3、一架飞机飞行在两个城市之间,顺风要2小时45分,逆风要3小时,已知风速是20千米/小时,则两城市间的距离为多少?4、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?5、火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。

相关文档
最新文档