相交线与平行线 章节测试题

合集下载

相交线与平行线单元测试题总集完整含答案

相交线与平行线单元测试题总集完整含答案

B E DA CF87654321DCBA第五章 相交线与平行线测试题一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138、;B . 都是10;C . 42138、或4210、;D . 以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错DB A C1ab1 2OABCD EF 2 1Oa b M P N 1 2 3A B C a b1 23 B E9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180B .270C .360D .540二、填空题(每题3分,共18分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.图7 图8 图9 图1012、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______14、如图11,已知a b ∥,170∠=,240∠=,则3∠ 图11 1315、如图12的一个条件 .16、如图13,已知AB CD //,∠α=____________ 三、解答题(共52分)17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则∥ ()②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. (8分)12 bac b ac d1 2 3 4 A BCDE 321DCBAABCDO123EF19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角; (3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角?(5)若有2008条直线相交于一点,则可形成 多少对对顶角?21、(6分)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30º,求∠EAD ,∠DAC ,∠C 的度数。

平行线与相交线单元测试题

平行线与相交线单元测试题

平行线与相交线单元测试题一、选择题(每题2分,共10分)1. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点的直线C. 垂直于同一条直线的直线D. 相交于一个点但角度不同的直线2. 如果两条直线相交,它们的角度和是多少度?A. 90度B. 180度C. 360度D. 45度3. 以下哪项不是平行线的性质?A. 平行线在任何地方都不相交B. 平行线之间的距离处处相等C. 平行线可以相交D. 通过平行线之一可以画出无数条平行线4. 两条平行线被第三条直线所截,所形成的内错角的特点是?A. 内错角相等B. 内错角互补C. 内错角和为90度D. 内错角和为180度5. 同位角的定义是什么?A. 两条平行线被第三条直线所截,同侧的角B. 两条直线相交形成的角C. 两条平行线被第三条直线所截,异侧的角D. 两条直线相交形成的同侧角二、填空题(每题2分,共10分)6. 当两条直线相交时,它们形成的角中,____角相等。

7. 如果两条直线相交,且其中一个角是90度,则这两条直线是____。

8. 平行线之间的距离在任何地方都是____。

9. 两条平行线被第三条直线所截,同旁内角的和是____。

10. 如果两条直线相交,且其中一个角是锐角,则这个角的对顶角是____。

三、判断题(每题1分,共5分)11. 平行线永远不会相交。

()12. 垂直线是相交线的一种特殊形式。

()13. 两条平行线之间的夹角总是90度。

()14. 同旁内角互补,即它们的和为180度。

()15. 如果两条直线相交形成的角是钝角,那么这个角的对顶角是锐角。

()四、简答题(每题5分,共10分)16. 解释什么是“对应角”,并给出一个例子。

17. 描述如何使用三角板来测量两条直线是否平行。

五、计算题(每题5分,共10分)18. 如果两条平行线被一条直线所截,形成的内错角分别为40度和140度,请计算同旁内角的度数。

19. 在一个直角三角形中,如果一个锐角是30度,求另一个锐角的度数。

相交线与平行线单元测试题(含答案)

相交线与平行线单元测试题(含答案)

相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。

人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

第五章《相交线与平行线》单元检测题题号一二三总分192021222324分数1.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补2.如图,将△ABC沿BC方向平移得到△DEF,若△ABC的周长为12cm,四边形ABFD的周长为18cm,则平移的距离为()A.2cm B.3cm C.4cm D.6cm3.如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角4.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1 个B.2个C.3 个D.4个10.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°二、填空题(每题3分,共24分)11.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式是.12.如图所示,DE∥BF,∠D=53°,∠B=30°,DC平分∠BCE,则∠DCE的度数为.13.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,则∠CED=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.20.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.24.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一、选择题:题号12345678910答案D B B C C D A D B B二、填空题:11.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.12.解:∵DE∥BF,∠D=53°,∴∠F AC=∠D=53°,∵∠B=30°,∴∠ACB=23°,∵DC平分∠BCE,∴∠DCE=23°.故答案为:23°.13.解:∵a∥b∥c,∴∠1=∠3,∠2=∠4,∵∠1=35°,∴∠3=30°,∵∠4+∠3=90°,∴∠4=55°,∴∠2=55°,故答案为:55°.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.解:∵∠1+∠2=180°,∠1+∠BDC=180°∴∠2=∠BDC∴EF∥AB∴∠3=∠BDE∵∠3=∠A∴∠A=∠BDE∴AC∥DE∴∠ACB+∠CED=180°∵CD平分∠ACB,∠4=35°∴∠ACB=2∠4=2×35°=70°∴∠CED=180°﹣∠ACB=180°﹣70°=110°故答案为:110°.三.解答题:19.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.20.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.24.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。

《相交线与平行线》单元测试题

《相交线与平行线》单元测试题

《相交线与平行线》单元测试题一.选择题(共10小题)1.下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.下列句子中不是命题的是()A.明年是2020年B.延长线段EFC.三角形的内角和是360度D.对顶角相等3.在同一平面内,已知点P在直线l上,过点P画直线l的垂线,可以画出多少条()A.1条B.2条C.3条D.4条4.如图,下列判断正确的是()A.∠3与∠6是同旁内角B.∠2与∠4是同位角C.∠1与∠6是对顶角D.∠5与∠3是内错角5.如图,点P是直线l外一点,从点P向直线l引P A,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是()A.P A B.PB C.PC D.PD6.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c7.如图,在下列给出的条件中,不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE8.如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=7cm,EC =4cm,那么平移距离为()A.3cm B.5cm C.8cm D.13cm9.如图,AC∥BD,AE∥BF,下列结论错误的是()A.∠A=∠B B.∠A+∠B=180°C.∠B=∠DPE D.∠A=∠APB 10.某同学的作业如下框,其中横线处应填的依据是()如图所示,当∠1=∠2时,∠3=∠4吗?为什么?请完成下面的说理过程.解,∵∠1=∠2(已知).∴直线a∥b(______________).∴∠3=∠4(两直线平行,同位角相等)A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行二.填空题(共6小题)11.如图所示,△EFG是由△ABC沿水平方向平移得到的,如果∠ABC=90°,AB=3cm,BC=2cm,则EF=,FG=,EG=.12.将命题“互为补角的两个角都是锐角”改写成“如果……,那么……”的形式是.13.如图,在三角形ABC中,∠C=90°,AC=3,BC=4,AB=5,则点A到BC的距离等于.14.如图,在长方体中,与棱AB平行的棱有条.15.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.16.如图,已知∠1=∠2=32°,∠D=78°,则∠BCD=.三.解答题(共8小题)17.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.18.指出下列命题的题设和结论,并判断其真假,如果是假命题,请举出一个反例.(1)邻补角互补;(2)同旁内角互补.19.如图,△ABC,△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2,请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.20.如图,在直角三角形ABC中,∠C=90°,DE⊥AC交AC于点E,交AB于点D.(1)请分别写出当BC,DE被AB所截时,∠B的同位角、内错角和同旁内角.(2)试说明∠1=∠2=∠B的理由.21.如图,已知AB∥CD,射线AH交BC于点F,交CD于点D,从D点引一条射线DE,若∠B+∠CDE=180°,求证:∠AFC=∠EDH.证明:∵AB∥CD(已知)∴∠B=(两直线平行,内错角相等)∵∠B+∠CDE=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥(同旁内角互补,两直线平行)∴=∠EDH()∵=∠BFD(对顶角相等)∴∠AFC=∠EDH(等量代换)22.如图是两个重叠的直角三角形,将其中一个直角三角形沿着BC方向平移BE的长度就得到该图形,求阴影部分的面积(单位:厘米)23.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连结OF.(1)ED是否平行于AB,请说明理由;(2)若OD平分∠BOF,∠OFD=80°,求∠1的度数.24.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.。

(完整版)《相交线与平行线》单元测试卷含答案

(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°1 2 33.如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC. ∠B+∠ECB=180°D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为()A.向右平移1格再向下B.向右平移3格再向下C.向右平移2格再向下D.以上答案均可5.如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D.垂直于同一直线的两直线平行6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()A.a∥dB.a⊥cC.a⊥dD.b⊥d8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120 °B.130°C.140°D.150°9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°10.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()6 8 9 10二、填空题(每题3分,共21分)11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离为cm.11 14 1515.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.三、解答题(22~24题每题9分,其余每题8分,共59分)18.如图,在一条公路l的两侧有A,B两个村庄.(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.23.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射光线与平面镜的夹角等于反射光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么进入潜望镜的光线和离开潜望镜的光线是平行的.24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立?若不成立,请说明理由.参考答案一、1.【答案】B 2.【答案】C3.【答案】B解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B二、11.【答案】∠1=∠212.【答案】4解:a=3,b=1.13.【答案】垂直14.【答案】215.【答案】9016.【答案】14017.【答案】8062三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).相等),又因为∠E=∠EMC,所以∠BCD=∠ACD(等量代换).所以CD是∠ACB的平分线(角平分线定义).21.解:OD和OE互相垂直,即OD⊥OE.理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),所以∠ENM=∠E(等量代换),所以AE∥HM(内错角相等,两直线平行).所以∠EAM=∠AMH(两直线平行,内错角相等).又因为∠1=∠2,所以∠EAM+∠1=∠AMH+∠2(等式性质),即∠BAM=∠AMC.所以AB∥CD(内错角相等,两直线平行).所以∠AMD+∠BAP=180°(两直线平行,同旁内角互补).因为∠4=∠AMD(对顶角相等),所以∠4+∠BAP=180°(等量代换).23.解:根据题意,作出如图所示的几何图形,已知:AB∥CD,∠1=∠2,∠3=∠4.试说明:EF∥GH.说明过程:因为AB∥CD(已知),所以∠2=∠3(两直线平行,内错角相等).又因为∠1=∠2,∠3=∠4,所以∠1=∠2=∠3=∠4.因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),所以∠5=∠6,所以EF∥GH(内错角相等,两直线平行).即进入潜望镜的光线和离开潜望镜的光线是平行的.24.解:(1)如图①:过点P作MP∥AC,则MP∥BD,因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,①②(2)不成立.理由如下:如图②,过点P作MP∥AC,则MP∥BD, 因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,即:360°-∠APB=∠PAC+∠PBD.所以∠APB=∠PAC+∠PBD不成立.。

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

第五章相交线与平行线单元试卷测试卷(解析版)

第五章相交线与平行线单元试卷测试卷(解析版)

第五章相交线与平行线单元试卷测试卷(解析版)一、选择题1.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°2.如图,AB∥CD,∠1=120°,则∠2=()A.50°B.70°C.120°D.130°3.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.两条平行线被第三条直线所截,则下列说法错误的是()A.一对邻补角的平分线互相垂直 B.一对同位角的平分线互相平行C.一对内错角的平分线互相平行 D.一对同旁内角的平分线互相平行5.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线 B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短6.如图,直线AB,CD相交于点O,EO⊥AB,垂直为点O,∠BOD=50°,则∠COE=()A.30°B.140°C.50°D.60°7.如图,在△ABC中,AB=AC,CD∥AB,点E在BC的延长线上.若∠A=30°,则∠DCE的大小为()A.30° B.52.5° C.75° D.85°8.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线9.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°10.下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离 B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短11.下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个12.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .4二、填空题13.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.14.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.15.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.16.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .17.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.18.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.19.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.(1)如图a 所示,//AB CD ,且点E 在射线AB 与CD 之间,请说明AEC A C ∠=∠+∠的理由.(2)现在如图b 所示,仍有//AB CD ,但点E 在AB 与CD 的上方,①请尝试探索1∠,2∠,E ∠三者的数量关系.②请说明理由.22.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.23.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.24.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED 与∠ABC ,∠ADC 的数量关系;(2)如图2,当点B 在点A 的右侧时,试猜想∠BED 与∠ABC ,∠ADC 的数量关系,并说明理由.25.(1)方法感悟如图①所示,求证:BCF B F ∠=∠+∠.证明:过点C 作//CD EF//AB EF (已知)//CD AB ∴(平行于同一条直线的两条直线互相平行)1,2B F ∴∠=∠∠=∠(两直线平行,内错角相等 )12B F ∴∠+∠=∠+∠即BCF B F ∠=∠+∠(2)类比应用如图②所示,//,AB EF 求证:360B BCF F ∠+∠+∠=︒.证明:(3)拓展探究如图③所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可). 如图④所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可).26.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OCPD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示). 27.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP28.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.2.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.3.D解析:D【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.4.D解析:D【解析】试题分析:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.5.A解析:A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.6.B解析:B【解析】试题解析:EO⊥AB,∴∠=AOE90,∠=∠=AOC BOD50,∴∠=∠+∠=+=COE AOC AOE5090140.故选B.7.C解析:C【解析】试题分析:根据等腰三角形的性质:等边对等角,可得∠B=∠ACB,然后根据三角形的内角和可求得∠B=75°,然后根据平行线的性质可得∠B=∠DCE=75°.故选:C.点睛:此题主要考查了等腰三角形的性质,解题关键是利用等腰三角形的性质求得两底角的值,然后根据平行线的性质可求解问题.8.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.9.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.10.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.11.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.12.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.二、填空题13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.14.或【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少,可得出答案.【详解】解:设为x ,则为,若两角互补,则,解得,;若两角相等,则,解得,.故答案解析:125︒或20︒【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40︒,可得出答案.【详解】解:设β∠为x ,则α∠为340x -︒,若两角互补,则340180x x +-︒=︒,解得55x =︒,125α∠=︒;若两角相等,则340x x =-︒,解得20x =︒,20α∠=︒.故答案为:125︒或20︒.【点睛】本题考查了平行线的性质,解题的关键是注意若∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,注意方程思想与分类讨论思想的应用.15.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD∥BC 时.∵AD∥BC, ∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD ∥BC 时.∵AD ∥BC , ∴∠D =∠BCD =30°,∵∠ACE+∠ECD =∠ECD+∠DCB =90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.16.【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25解析:125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.17.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥. 18.40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,,∠2=50°,∴∠1=∠2,∵,∠2=50°,∴α+10°=50°,∴α=4解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.19.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA 平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD ∥BC ,∴∠BCD=180°-∠D=80°,又∵CA 平分∠BCD ,∴∠ACB=12∠BCD=40°, ∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.20.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.(1);(2)①∠1+∠2-∠E=180°;②见解析【分析】(1)过点E 作EF ∥AB ,根据平行线的性质得到∠A=∠AEF 和∠FEC=∠C ,再相加即可;(2)①、②过点E 作EF ∥AB ,根据平行线的性质可得∠AEF+∠1=180°和∠FEC=∠2,从而可得三者之间的关系.【详解】解:(1)过点E 作EF ∥AB ,∴∠A=∠AEF ,∵AB ∥CD ,∴EF ∥CD ,∴∠FEC=∠C ,∵∠AEC=∠AEF+∠FEC ,∴∠AEC=∠A+∠C ;(2)①∠1+∠2-∠E=180°,②过点E 作EF ∥AB ,∴∠AEF+∠1=180°,∵AB ∥CD ,∴EF ∥CD ,∴∠FEC=∠2,即∠CEA+∠AEF=∠2,∴∠AEF=∠2-∠CEA ,∴∠2-∠CEA+∠1=180°,即∠1+∠2-∠AEC=180°.【点睛】本题考查了平行线的性质,作辅助线并熟记性质是解题的关键.22.(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠; 过点P 作PM∥FD,则PM∥FD∥CG,∵PM∥FD,∴∠1=∠α,∵PM∥CG,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由: 过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP,AN 平分∠PAC, ∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.23.(1)证明见解析;(2)45IGJ ∠=︒.【分析】(1)根据平行线的性质可得180DEF BFE ∠+∠=︒,再利用角平分线的定义即可得证; (2)过点G 作//GK AB ,则////AB GK CD ,根据平行线的性质可得DEG EGK ∠=∠,KGF GFB ∠=∠,再结合(1)的结论易得90EGK KGF ∠+∠=︒,利用角平分线的定义及垂线的定义即可求解.【详解】(1)证明:∵//AB CD ,∴180DEF BFE ∠+∠=︒.∵EG 平分DEF ∠,FG 平分BFE ∠,∴22DEF GEF DEG ∠=∠=∠,22BFE EFG GFB ∠=∠=∠,∴22180GEF EFG ∠+∠=︒,∴90EFG GEF ∠+∠=︒.(2)解:过点G 作//GK AB .∵//AB CD ,∴////AB GK CD ,∴DEG EGK ∠=∠,KGF GFB ∠=∠.由(1)得90DEG GFB ∠+∠=︒,∴90EGK KGF ∠+∠=︒.∵GH AB ⊥,∴GH KG ⊥,即90KGH KGF HGF ∠=∠+∠=︒,∴EGK HGF ∠=∠.∵GJ 平分EGH ∠,∴EGJ HGJ ∠=∠.又KGJ EGJ EGK ∠=∠-∠,FGJ HGJ HGF ∠=∠-∠,∴KGJ FGJ ∠=∠,∴2KGF FGJ ∠=∠.∵GI 平分HGF ∠,∴2HGF FGI ∠=∠,∴2290FGJ FGI ∠+∠=︒,即45FGJ FGI ∠+∠=︒,∴45IGJ FGJ FGI ∠=∠+∠=︒.【点睛】本题考查平行线的性质、角平分线的定义等内容,掌握平行线的性质是解题的关键.24.(1)①∠BED =60º;②∠BED =12∠ABC +12∠ADC ;(2)∠BED =180º-12∠ABC +12∠ADC ,理由见解析. 【分析】(1)①过点E 作EF ∥AB ,然后说明AB ∥CD ∥EF ,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E 作EF ∥AB ,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒,∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF=12∠ABC,∠EDC=∠DEF=12∠ADC;.∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC∴∠BED=12∠ABC+12∠ADC(2)如图2,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠EDC=∠DEF,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE.∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=12∠ABC,∠DEF=12∠ADC,∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC.【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.25.(2)见解析;(2)BCF F B ∠=∠-∠,BCF B F ∠=∠-∠.【分析】(2)过点C 作CD ∥AB ,由平行线的性质,得到180B BCD ∠+∠=︒,180DCF F ∠+∠=︒,即可得到结论成立;(3)①过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案; ②过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案;【详解】()2证明:过点C 作//CD AB//AB EF (已知)//CD EF ∴(平行于同一条直线的两条直线互相平行)180,180B BCD DCF F ∴∠+∠=︒∠+∠=︒(两相线平行,同旁内角补),∵BCF BCD DCF ∠=∠+∠,∴360B BCF F ∠+∠+∠=︒;(3)①过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠=∠+∠,∴BCF F B ∠=∠-∠;故答案为:BCF F B ∠=∠-∠;②过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠+∠=∠,∴BCF B F ∠=∠-∠.故答案为:BCF B F ∠=∠-∠.【点睛】本题考查了平行线的判定和性质,解题的关键是熟练掌握题意,以及掌握平行线的判定和性质进行证明.26.(1)45;(2)①详见解析;②302α︒+或602α︒-; 【分析】(1)根据平行线性质可得180********BPD ∠=︒-︒-︒-︒=︒,再根据平行线性质得BOC BPD ∠=∠;(2)①根据平行线性质得160BOC ∠=∠=︒,2160∠=∠=︒,结合角平分线定义可证180DQE PDQ ∠+∠=︒,得PD QE ∥,根据平行线传递性可再证PD OC ∥; ②分两种情况分析:当Q 在H 的右侧时,根据平行线性质可得∠BPD=∠BOC=α,∠MQP=∠QPB=60°+α,根据角平分线性质∠MQE=12(60°+α),故∠PEQ=∠MQE ;当Q 在H 的右侧时,与上面同理,∠NQE=12(180°-60°-α),∠PEQ=∠NQE . 【详解】(1)由45NQD ∠=︒,MNAB ,可得180********BPD ∠=︒-︒-︒-︒=︒, 而PD OC ∥,则有BOC BPD ∠=∠.故45BPD α=∠=︒ (2)∵QE OC ∥,60BOC α∠==︒,∴160BOC ∠=∠=︒,又∵MN AB ,∴2160∠=∠=︒,又∵QE 平分PQH ∠,∴3260∠=∠=︒,又∵430∠=︒,∴4390DQE ∠=∠+∠=︒,且90PDQ ∠=︒,∴180DQE PDQ ∠+∠=︒,∴PD QE ∥,∵QE OC ∥,∴PD OC ∥.②当Q 在H 的右侧时,∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠MQP=∠QPB=60°+α又∵QE 平分∠MQP∴∠MQE=12(60°+α)=30°+12α ∴∠PEQ=∠MQE=30°+12α 当Q 在H 的左侧时∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠NQP=180°-60°-α又∵QE 平分∠NQP∠NQE=12(180°-60°-α)=60°-12α ∴∠PEQ=∠NQE=60°-12α∴302PEQ α∠=︒+或602α︒-.【点睛】 考核知识点:平移、平行线判定和性质综合运用.熟练运用平行线性质和判定,分类讨论问题是关键.27.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键. 28.(1)∠AEC=130°;(2)∠A1EC=130°;(3)∠A1EC=40°.【解析】【分析】(1)由直线PQ∥MN,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.【详解】(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点睛】本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。

相交线与平行线测试题

相交线与平行线测试题

相交线与平行线测试题一、选择题1. 以下哪一条不是相交线的特征?A. 相交线在平面内相交于一点B. 相交线可以是曲线C. 相交线相交后形成4个角D. 相交线相交后,对角线相等2. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点但不是直线C. 相交于两点的直线D. 永远不会相交的曲线3. 以下哪个条件不能保证两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两条直线相交4. 如果两条直线相交,它们可以形成多少个角?A. 1个B. 2个C. 4个D. 无数个5. 平行线的性质中,以下哪一项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 平行线可以是曲线D. 平行线相交于无穷远处二、填空题6. 两条直线相交所形成的角中,如果两个角是内错角,那么这两个角的关系是________。

7. 如果两条直线相交,其中一个角是锐角,那么它的对角是________。

8. 平行线的性质之一是,如果两条平行线被一条横截线所截,那么同位角相等,内错角相等,同旁内角的和为________。

9. 两条平行线之间的距离是指________。

10. 如果两条直线是平行的,那么它们之间的夹角是________。

三、简答题11. 解释“内错角”和“同旁内角”的定义,并给出它们在平行线中的性质。

12. 描述如何使用“同位角”来证明两条直线是平行的。

13. 如果两条直线相交,它们形成的角有哪些可能的组合?请列举所有情况。

四、计算题14. 在平面直角坐标系中,直线L1的方程为 y = 2x + 3,直线L2的方程为 y = -x + 5。

求这两条直线的交点坐标。

15. 如果两条平行线在y轴上的距离为5,且一条直线的方程为 y =3x + 7,求另一条平行线的方程。

五、证明题16. 给定两条直线AB和CD,已知AB平行于CD,且AB与CD之间的距离为10。

如果AB上的点E到CD的距离为8,求点E到与AB平行且与CD相交的直线的距离。

相交线与平行线章节测试

相交线与平行线章节测试

相交线与平行线章节测试(满分100分,考试时间45分钟)姓名:一、选择题(每小题3分,共18分) 1. 下列说法中正确的有( )①两条直线相交,所得的四个角中有一个角是90°,这两条直线一定互相垂直; ②两条直线的交点叫垂足;③直线AB ⊥CD ,也可以说成直线CD ⊥AB ; ④两条直线不是平行就是互相垂直.A .1个B .2个C .3个D .4个2. 如图所示,∠AOC =∠BOD =90°,若∠AOB =150°,则∠COD 的度数为( )A .30°B .40°C .50°D .60°ODCBA第2题图 第3题图 3. 如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是( ) A .同位角B .内错角C .同旁内角D .对顶角4. 如图,若∠D =∠BED ,则AB ∥DF ,其依据是( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .内错角相等D .同位角相等,两直线平行5. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两次拐弯可以是( )A .先向左转130°,再向左转50°B .先向左转50°,再向右转50°C .先向左转50°,再向右转40°D .先向左转50°,再向左转40°6. 点P 是直线l 外一点,A ,B ,C 为直线l 上的三点,若P A =4cm ,PB =5cm ,PC =2cm ,则点P 到直线l 的距离( ) A .小于2cmB .等于2cmC .不大于2cmD .大于2cm二、填空题(每小题4分,共28分)7. 如图,∠AOB 是直角,∠AOC =38°,∠COD :∠COB =1:2,则∠BOD 的度数为________.ADCBE D CBA第7题图 第8题图8. 已知:如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,AE ⊥BC 于点E .若∠ADE =80°,∠EAC =20°,则∠B =_______.9. 如图,给出下列四组条件:①∠1=∠6;②∠1=∠2;③∠3=∠4;④∠6=∠5.其中能使AD ∥BC 的条件是____________(填序号).654312BD CA 21ml BA第9题图 第10题图10. 如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为__________.11. 如图,在△ABC 中,AC ⊥BC ,垂足为C ,CD ⊥AB ,垂足为D ,则∠A 的余角是______和___________.A BCDAECD FB12. 根据证明过程填空.已知:如图,直线AB ,CD 被直线EF 所截,∠1=∠2. 求证:AB ∥CD . 证明:如图, ∵∠1=∠2 (已知) ∠2=∠3 (对顶角相等)∴∠1=∠3 (_____________________________) ∴AB ∥CD (_____________________________) 13. 下说法正确的是______________(填序号).①两条直线被第三条直线所截,同位角相等; ②a ,b ,c 是直线,若a ∥b ,b ∥c ,则a ∥c ; ③a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥c ; ④相等的角是对顶角.三、解答题(本大题共4小题,满分54分) 14. (10分)尺规作图:已知∠α,∠β,求作一个角,使它等于∠α+2∠β(保留作图痕迹,不写作法).βα15. (13分)已知:如图,直线BD ,CE 与直线AF 交于点G ,H ,∠1=∠2.求证:∠C =∠ABD .ABC1GH 2FED16. (15分)如图,MN ,EF 分别表示两面互相平行的镜面,一束光线AB 照射到镜面MN上,反射光线为BC ,此时,∠1=∠2;光线BC 经镜面EF 反射后的反射光线为CD ,此 时,∠3=∠4.试判断AB 与CD 的位置关系,并说明理由.4321AB DCFENM17. (16分)如图,AC ∥BD ,点P 是直线AC 和BD 之间的一动点,当点P 运动到某一位置时,连接P A ,PB .(1)点P 在运动过程中构成了不同类型的∠APB ,试画出各种不同类型的∠APB ; (2)请直接写出∠APB ,∠P AC ,∠PBD 之间的等量关系.CA3HGFED 21CBA。

相交线与平行线单元测试题

相交线与平行线单元测试题

相交线与平行线单元测试题一、选择题(每题2分,共20分)1. 下列说法中,正确的是:A. 经过直线外一点,有且只有一条直线与已知直线平行B. 经过直线外一点,有且只有一条直线与已知直线相交C. 经过直线外一点,可以画无数条直线与已知直线平行D. 经过直线外一点,可以画无数条直线与已知直线相交2. 如果两直线相交,那么它们相交所成的角是:A. 锐角B. 直角C. 钝角D. 任意角3. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线:A. 平行B. 相交C. 垂直D. 无法判断4. 平行线的性质中,下列说法不正确的是:A. 平行线之间的距离处处相等B. 平行线永不相交C. 两条平行线可以确定一个平面D. 平行线之间的夹角是锐角5. 对于两条平行线,下列说法正确的是:A. 它们之间的距离在任何地方都是相同的B. 它们可以相交C. 它们之间的夹角可以是任意角D. 它们可以确定一个平面二、填空题(每题2分,共10分)6. 如果两条直线相交成直角,则称这两条直线互相______。

7. 两条直线相交,如果其中一个角是锐角,则其他三个角分别是______。

8. 平行线之间的距离是指______。

9. 两条直线相交所成的角中,最大的角是______。

10. 如果两条直线被第三条直线所截,那么内错角相等的条件是这两条直线______。

三、判断题(每题1分,共10分)11. 两条直线相交所成的角都是锐角。

()12. 平行线在任何地方的距离都是相等的。

()13. 两条直线相交,形成的对顶角相等。

()14. 两条平行线之间的夹角是直角。

()15. 如果两条直线被第三条直线所截,同位角相等,则这两条直线平行。

()四、简答题(每题5分,共20分)16. 解释什么是“同位角”、“内错角”和“同旁内角”,并说明它们在判断两条直线是否平行时的作用。

17. 描述如何使用直角三角板来检验两条直线是否平行。

18. 给出两条直线相交的几何图形,并说明如何确定它们相交所成的角的大小。

相交线与平行线测试题及答案

相交线与平行线测试题及答案

相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。

A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。

1) 平行线没有交点。

2) 相交线可以有无数个交点。

3) 两条垂直线的交点一定是直角。

A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。

答案:90度5. 判断题:两条平行线的夹角为180度。

答案:错误6. 判断题:两条相交直线一定不平行。

答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。

答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。

答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。

答案:相交线是指两条直线或线段在平面上有唯一一点相交。

例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。

平行线是指在平面上没有任何交点的两条直线。

例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。

10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。

两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。

总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。

相交线与平行线单元练习(含答案)

相交线与平行线单元练习(含答案)

第五章相交线与平行线一、选择题1.a、b、c是同一平面内的任意三条直线,其交点有()A. 1或2个B. 1或2或3个C. 0或1或3个D. 0或1或2或3个【答案】D【解析】由题意画出图形,如图所示:2.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米()A. 4B. 5C. 6D. 72.【答案】D【解析】地毯长度至少需3+4=7米.故选D.3.下列语句中,是对顶角的语句为()A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角【答案】D【解析】A.有公共顶点并且两边分别都在同一条直线上的两个角是对顶角,故本选项错误;B.两条直线相交所成的角是对顶角或邻补角,故本选项错误;C.顶点相对的两个角的两边不一定在同一条直线上,不一定是对顶角,故本选项错误;D.两条直线相交,有公共顶点没有公共边的两个角的两边在同一条直线上,是对顶角,故本选项正确;故选D.4.如图,能判定EC∥AB的条件是()A.∠B=∠ACBB.∠B=∠ACEC.∠A=∠ACED.∠A=∠ECD【答案】C【解析】根据∠B=∠ACB,不能得到EC∥AB,故A错误;根据∠B=∠ACE,不能得到EC∥AB,故B错误;根据∠A=∠ACE,能判定EC∥AB,故C正确;根据∠A=∠ECD不能得到EC∥AB,故D错误;故选C.5.有下列说法:①△ABC在平移的过程中,对应线段一定相等.②△ABC在平移的过程中,对应线段一定平行.③△ABC在平移的过程中,周长不变.④△ABC在平移的过程中,面积不变.其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的大小和形状,∴△ABC在平移过程中,面积不变,正确;∴①、③、④都符合平移的基本性质,都正确.故选C.6.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A. 25°B. 35°C. 45°D. 50°【答案】D【解析】∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选D.7.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③答案】C【解析】由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.8.两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】①有三个角都相等,能判定互相垂直;②有一对对顶角互补,可计算出夹角是90°,可以判定垂直;③有一个角是直角,可以判定垂直;④有一对邻补角相等,可以判定垂直.故选D.二、填空题9.已知,如图,AD∥BE,∠1=20°,∠DCE=45°,则∠2的度数为______.【答案】25°【解析】∵AD∥BE,∠DCE=45°,∴∠DCE=∠ADC=45°.∵∠1=20°,∴∠2=∠ADC-∠1=45°-20°=25°.故答案为25°10.如图,已知点A、B、C、F在同一条直线上,AD∥EF,∠D=40°,∠F=30°,那么∠ACD的度数是________.【答案】110°【解析】∵AD∥EF,∴∠A=∠F=30°,∵∠D=40°,∴∠ACD=180°-30°-40°=110°.故答案为110°.11.如图∠1=(3x-40)°,∠2=(220-3x)°,那么AB与CD的位置关系是________.【答案】平行【解析】因为∠2=(220-3x)°,所以∠3=180°-∠2=(3x-40)°,可得:∠1=∠3,所以AB与CD平行,故答案为平行.12.把下列命题改写成“如果…那么…“的形式:(1)互补的两个角不可能都是锐角:________________________________________.(2)垂直于同一条直线的两条直线平行:________________________________________.(3)对顶角相等:____________________________________________________.【答案】如果两个角互补,那么这两个角不可能都是锐角如果两直线都垂直于第三条直线,那么这两直线平行如果两个角为对顶角,那么这两个角相等【解析】(1)如果两个角互补,那么这两个角不可能都是锐角;(2)如果两直线都垂直于第三条直线,那么这两直线平行;(3)如果两个角为对顶角,那么这两个角相等.故答案为:如果两个角互补,那么这两个角不可能都是锐角;如果两直线都垂直于第三条直线,那么这两直线平行;如果两个角为对顶角,那么这两个角相等.13.如图,与∠2互为同旁内角的是________;与∠3互为同位角的是________;∠6与∠9是______,它们是直线________与______被直线______所截得的;∠3与∠5是直线______与直线______被直线______所截得的;与∠1是同位角的有______,在标有数字的九个角中,大小一定相等的角有__________________.【答案】∠1和∠3∠4和∠5内错角AC DE BE AC BC BE∠7和∠8∠2=∠6,∠5=∠7【解析】由图可得,∠1,∠3与∠2互为同旁内角;∠4,∠5与∠3互为同位角;∠6与∠9是内错角,它们是直线AC与DE被直线BE所截得的;∠3与∠5是直线AC与直线BC被直线BE所截得的同位角;∠7,∠8与∠1是同位角;根据对顶角相等可得,在标有数字的九个角中,大小一定相等的角有∠2=∠6,∠5=∠7.故答案为:∠1,∠3;∠4,∠5;内错角,AC,DE,BE;AC,BC,BE;∠7,∠8;∠2=∠6,∠5=∠7.14.如图,请你添加一个条件________,使AB∥CD.【答案】∠1=∠5【解析】添加∠1=∠5.∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5.15.如图,直线a∥b,∠2=∠3,若∠1=45°,则∠4=______.【答案】45°【解析】延长DC交a于E,如图,∵∠2=∠3,∴AB∥DE,∴∠4=∠5,∵a∥b,∴∠1=∠5=45°,∴∠4=∠5=45°.故答案为45°.16.如图,∠1和∠3是直线______、______被直线______所截得到的______角;∠3和∠2是直线______、______被直线______所截得到的______角.【答案】a b c同旁内a c b内错【解析】如题图,∠1和∠3是直线a、b被直线c所截得到的同旁内角;∠3和∠2是直线a、c被直线b所截得到的内错角.故答案为:a,b,c,同旁内;a,c,b,内错角.17.如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠DON为________度.【答案】35【解析】∵∠BOC=110°,∴∠BOD=70°,∵ON为∠BOD平分线,∴∠DON=35°.故答案为35.18.如图,一张三角形纸片ABC,∠B=45°,现将纸片的一角向内折叠,折痕ED∥BC,则∠AEB的度数为________.【答案】90°【解析】∵ED∥BC,∴∠FED=∠B=45°,由折叠可得∠AEF=2∠FED=90°,∴∠AEB=180°-90°=90°,故答案为90°.三、解答题19.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【答案】证明∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【解析】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C =∠2,从而证得AB∥CD.20.(1)图①是将线段AB向右平移1个单位长度,图②是将线段AB折一下再向右平移1个单位长度,请在图③中画出一条有两个折点的折线向右平移1个单位长度的图形.(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩余部分的面积.(3)如图④,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽为1 m,求这块菜地的面积.20.【答案】(1)如图:(2)三个图形中除去阴影部分后剩余部分的面积:①ab-b;②ab-b;③ab-b;(3)40×10-10×1=390(m2).答:这块菜地的面积是390m2.【解析】(1)根据两个折点,可得小路是三个平行四边形;(2)根据路的形状是矩形,可得路的面积,根据面积的和差,可得答案;(3)根据等底等高的面积相等,可得路的面积,根据面积的和差,可得答案.21.直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.【答案】(1)a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;(2)c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【解析】(1)根据平行公理得出即可;(2)根据c∥a和直线d与a相交推出即可.22.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°,求∠AOC的度数.【答案】(1)∵∠AOC=68°,∴∠BOD=68°,∵OE平分∠BOD,∴∠BOE=∠DOE=34°,∵∠DOF=90°,∴∠EOF=∠DOF-∠DOE=90°-34°=56°;(2)∵OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,∴∠COE=∠AOE=x,∵OF平分∠COE,∴∠FOE=x.∴∠BOE=∠FOE-∠BOF=x-15°.又∵∠BOE+∠AOE=180°,∴x-15°+x=180°,解得x=130°,∴∠AOC=2∠BOE=2×=100°.【解析】(1)根据角平分线的定义结合∠AOC=68°即可求出∠BOE=∠DOE=34°,再由∠EOF与∠DOE互余即可求出∠EOF的度数;(2)由角平分线的定义可得出∠BOE=∠DOE,根据∠BOE+∠AOE=180°、∠COE+∠DOE=180°即可找出∠AOE=∠COE=x,再根据角平分线的定义可知∠FOE=x.23.如图,给出下列论断:①∠1=∠E;②∠4=∠B;③∠2+∠B=180°;④∠3+∠E=180°;⑤∠A+∠E=180°;⑥AB∥CD;⑦AB∥EF;⑧CD∥EF.请你从中选出一个论断作为题设,一个论断作为结论,组成一个真命题,至少写出三个.(格式:如果…,那么…)23.【答案】如果①∠1=∠E;那么⑧CD∥EF;如果②∠4=∠B;那么⑥AB∥CD;如果③∠2+∠B=180°;那么⑥AB∥CD.【解析】根据平行线的性质与判定,结合所给条件即可作出答案.24.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8 cm,DB=2 cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.【答案】(1)∵△ABC沿AB方向向右平移得到△DEF,∴AD=BE=CF,BC=EF=3 cm,∵AE=8 cm,DB=2 cm,∴AD=BE=CF==3 cm;(2)四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18 cm.【解析】(1)根据平移的性质可得AD=BE=CF,BC=EF=3 cm,然后根据AE、BD的长度求解即可;(2)根据平移的性质可得EF=BC,CF=AD,然后根据四边形的周长的定义列式计算即可得解.。

第五章《相交线与平行线》单元测试卷(含答案)

第五章《相交线与平行线》单元测试卷(含答案)

第五章 相交线与平行线单元测试班级: 姓名: 考生得分:一、选择题(每小题3分,共30分) 1.已知∠α=35°,则∠α的补角的度数是( ) A.55° B.65° C.145° D.165° 2.将图中所示的图案平移后得到的图案是( )A. B. C. D.3.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数 是( )A.60°B.50°C.40°D.30°4.如图,a ∥b ,∠1=∠2,∠3=40°,则∠4等于( ) A.40° B.50° C.60° D.70° 5.如图所示,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为( ) A .30° B .35° C .40° D .45°6.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( ) A .1个 B .2个 C .3个 D .4个7.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( ) A .∠1=∠2 B .∠3=∠4 C .∠5=∠B D .∠B +∠BDC =180°8.如图,DH ∥EG ∥BC ,DC ∥EF ,那么与∠DCB 相等的角的个数为( ) A .2个 B .3个 C .4个 D .5个 9. 下列条件中能得到平行线的是( )①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线. A .①② B .②③ C .② D .③10. 两平行直线被第三条直线所截,同位角的平分线( ) A .互相重合 B .互相平行 C .互相垂直 D .相交二、填空题(每小题3分,满分24分) 11.图中是对顶角量角器,用它测量角的原理是 .12.如图,l ∥m ,∠1=120°,∠A =55°,则∠ACB 的大小是 . 13.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠, 能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB ,CD ,EF 相交于点O ,且AB ⊥CD ,∠1与∠2的关系是 .15.如图,在△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .16.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,则∠2= .1718第2题图第6题图 第7题图 第8题图第11题图第13题图 第14题图 第15题图 第16题图 第17题图第18题图第3题图三、解答题(共46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)21.(8分)已知:如图,∠BAP+∠APD =180°,∠1 =∠2.求证:∠E =∠F.22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.24.(9分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.25.(10分)如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?第19题图第五章相交线与平行线检测题参考答案1.C 解析:∵∠α=35°,∴∠α的补角的度数为180°35°=145°,故选C.2. C 解析:根据平移的性质可知C正确.3. C 解析:因为FE⊥DB,所以∠FED=90°,由∠1=50°可得∠FDE=90°-50°=40°.因为AB∥CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.4. D 解析:因为a∥b,所以∠2=∠4.又∠2=∠1,所以∠1=∠4.因为∠3=40°,所以∠1=∠4==70°.5. C 解析:由AB∥CD可得,∠FEB=∠C=70°,∵∠F=30°,又∵∠FEB=∠F+∠A,∴∠A=∠FEB∠F=70°30°=40°.故选项C是正确的.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11.对顶角相等解析:根据图形可知量角器测量角的原理是:对顶角相等.12. 65°解析:∵l∥m,∴∠ABC=180°-∠1=180°-120°=60°.在△ABC中,∠ACB=180°-∠ABC-∠A=180°-60°-55°=65°.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与直线a相交于点D,∵a∥b,∴∠ADC=∠DBE=50°. ∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 120 解析:∵AB∥CD,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°.理由:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621×5×621×2×521×4×221××121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD .∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF .∴ AE ∥FP .∴ ∠E =∠F .22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°,∴ ∠EDC =∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.25、解:(1)∵∠AOE +∠AOF =180°(互为补角),∠AOE =40°,∴∠AOF =140°; 又∵OC 平分∠AOF ,∴∠FOC =∠AOF =70°,∴∠EOD =∠FOC =70°(对顶角相等);而∠BOE =∠AOB ﹣∠AOE =50°,∴∠BOD =∠EOD ﹣∠BOE =20°; (2)(3)略。

相交线与平行线单元测试卷(含答案)

相交线与平行线单元测试卷(含答案)

A BC D E(第10题)水面入水点运动员(第14题)ABCDE F G H 第13题12345678(第4题)ab cABCD(第7题)第五章《相交线与平行线》测试卷姓名 _______ 成绩 _______一、选择题(每小题4分,共 40 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图,在正方体中和AB 垂直的边有( )条.A.1B.2C.3D.43、如图AB ∥CD,∠ABE=120°,∠ECD=25°,则∠E=( )A.75°B.80°C.85°D.95°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④ 5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )ABCD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

第五章相交线与平行线测试题

第五章相交线与平行线测试题

第五章《订交线与平行线》检测题一、选择题(第小题 3 分,共 30 分)1、已知∠ A= 40° , 则∠ A 的补角等于(2、以下图,直线a∥ b, 则∠ A 的度数是()A、 50° B )A、 28°、90°CB 、31°、 140° DC 、39°、180°D 、42°A31°aD B70°bC3、以以下图所示,∠ 1 是∠ 2 的对顶角的图形有()11221221A、1 个B、 2 个 C 、3个D、 4 个4、到直线 L 的距离等于 2cm的点有()A、0 个B、 2 个 C 、3个D、 4 个5、如图,以下条件不可以判定AB∥ CD的是()AD214B35CA 、∠ 1=∠ 4B 、∠ 2=∠3C 、∠ 5=∠BD 、∠ BAD+L ∠ D=180°6、如 , AC ⊥ BC , CD ⊥ AB, 中互余的角有()BACDA 、4B 、3C 、2D 、17、如 , AB ∥ CF ∥ DC,EG ∥ DB , 中与∠1 相等的角共有()CDEF1AGBA 、3个B 、4个C 、5个D 、6个 8、在平移 程中, 段()A 、相互平行且相等B 、相互垂直且相等C 、相互平行(或在同一条直 上)且相等D 、相互平行9、若∠ A 和∠ B 是同旁内角,∠ A = 30°, ∠ B 的度数( )A 、 30°B 、 150°C 、 30°或 150°D 不可以确立10、如 , 2 条直最多有2(2 1)= 1 个交点, 3 条直 最多有3(3 1)= 3 个交点, 4 条直 最多有224(41)= 6 个交点,⋯⋯由此猜想,8 条直 最多有___个交点。

2A 、32B 、 16C 、28D 、40二填空 (每个空3分,共 30分)11、如 AB 与 CD 订交所成的四个角中,∠1 的 角是___,∠1 的 角是___。

相交线与平行线单元测试卷(附答案)

相交线与平行线单元测试卷(附答案)

相交线和平行线单元检测卷时间:90分钟满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.如图,直线a,b被直线c所截,∠1和∠2的位置关系是( )A.同位角B.内错角C.同旁内角D.对顶角2.下列图形中,不能通过其中一个四边形平移得到的是( )3.如图,直线a,b被直线c所截,下列说法正确的是( )A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b4.O为直线l外一点,A,B,C三点在直线l上,OA=4cm,OB=5cm,OC=1.5cm.则点O到直线l的距离( )A.大于1.5cm B.等于1.5cmC.小于1.5cm D.不大于1.5cm5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A.30° B.35°C.40° D.45°6.如图,AB∥CD,DA⊥AC,垂足为A.若∠ADC=35°,则∠1的度数为( )A.65° B.55° C.45° D.35°7.如图,下列说法正确的个数有( )①过点A有且只有一条直线AC垂直于直线l;②线段AC的长是点A到直线l的距离;③线段AB,AC,AD中,线段AC最短,根据是两点之间线段最短;④线段AB,AC,AD中,线段AC最短,根据是垂线段最短.A.1个 B.2个C.3个 D.4个8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是( )A.∠2=60° B.∠3=60°C.∠4=120° D.∠5=40°第8题图第9题图9.如图,在甲、乙两城市之间要修建一条笔直的城际铁路,从甲地测得公路的走向是北偏东42°,现在甲、乙两城市同时开工,为使若干天后铁路能准确在途中接通,则乙城市所修铁路的走向应是( )A.南偏西42° B.北偏西42° C.南偏西48° D.北偏西48°10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是BA.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A-∠C+∠D+∠E=180°D.∠E-∠C+∠D-∠A=90°二、填空题(每小题3分,共24分)11.如图,若剪刀中的∠AOB=30°时,则∠COD=________.12.如图,直线AB,CD被直线AE所截,AB∥CD,∠A=110°,则∠1=________度.第11题图第12题图第13题图13.如图,把河水引入试验田P灌溉,沿过P作河岸l的垂线开沟引水的理由是:.14.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=________.第14题图第15题图第16题图15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.16.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .17.对于同一平面内的三条直线a,b,c,给出下列五个结论:①a∥b;②b∥c;③a ⊥b;④a∥c;⑤a⊥c.请以其中两个作为已知条件,一个作为结论,组成一个正确的语句 (用数学语言作答).18.如图,a∥b,c⊥a,∠1=130°,则∠2等于________.三、解答题(共66分)19.(8分)如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.20.(10分)推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,试说明∠B+∠F=180°.解:∵∠B=__ __(已知),∴AB∥CD( ).∵∠DGF=____________(已知),∴CD∥EF( ).∴AB∥EF(___________________).∴∠B+______=180°(____ ).21.(10分)如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=60°,求∠DOG的度数.22.(12分)如图,AD∥BC,∠1=60°,∠B=∠C,DF为∠ADC的平分线.(1)求∠ADC的度数;(2)试说明DF∥AB.23.(12分)如图,BD⊥AC,ED∥BC,∠1=∠2,AC=9cm,且点D为AF的中点,点F为DC 的中点.(1)试说明BD∥GF;(2)求BD与GF之间的距离.24.(14分)已知BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,试说明OB∥AC;(2)如图②,若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于________(在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB∶∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,在平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA的度数等于________(在横线上填上答案即可).参考答案与解析1.B 2.D 3.D 4.D 5.D 6.B 7.C 8.D 9.A 10.C 解析:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,则∠A =∠ACG ,∠EDH =180°-∠E .∵AB ∥EF ,∴CG ∥DH ,∴∠CDH =∠DCG ,∴∠ACD =∠ACG +∠DCG =∠A +∠CDH =∠A +∠CDE -(180°-∠E ),∴∠A -∠ACD +∠CDE +∠E =180°.故选C.11.30° 12.70 13.垂线段最短 14.65° 15.80 16.63°30′17.若a ∥b ,b ∥c ,则a ∥c (答案不唯一) 18.40° 19.解:平移后的小船如图所示.(8分)20.解:∠CGF 同位角相等,两直线平行(2分) ∠F 内错角相等,两直线平行(6分) 平行于同一直线的两直线平行(8分) ∠F 两直线平行,同旁内角互补(10分)21.解:∵∠AOE =60°,∴∠BOF =∠AOE =60°(2分).∵OG 平分∠BOF ,∴∠BOG =12∠BOF =30°.(4分)∵CD ⊥EF ,∴∠COE =90°,∴∠AOC =90°-60°=30°,∴∠BOD =30°,(8分)∴∠DOG =∠BOD +∠BOG =60°.(10分)22.解:(1)∵AD ∥BC ,∴∠B =∠1=60°,∠C +∠ADC =180°.(3分)∵∠B =∠C ,∴∠C =60°,∴∠ADC =180°-60°=120°.(6分)(2)∵DF 平分∠ADC ,∴∠ADF =12∠ADC =12×120°=60°.(8分)又∵∠1=60°,∴∠1=∠ADF ,∴AB ∥DF .(12分)23.解:(1)∵ED ∥BC ,∴∠1=∠DBC .(2分)∵∠1=∠2,∴∠DBC =∠2,(4分)∴BD ∥GF .(6分)(2)∵AC =9cm ,D 为AF 的中点,F 为DC 的中点,∴AD =DF =FC =9÷3=3(cm).(9分)∵DF ⊥BD ,BD ∥GF ,∴BD 与GF 之间的距离为3cm.(12分)24.解:(1)∵BC ∥OA ,∴∠B +∠O =180°.∵∠A =∠B ,∴∠A +∠O =180°,∴OB ∥AC .(3分)(2)40°(6分) 解析:∵∠A =∠B =100°,由(1)得∠BOA =180°-∠B =80°.∵∠FOC =∠AOC ,OE 平分∠BOF ,∴∠EOF =12∠BOF ,∠FOC =12∠FOA ,∴∠EOC =∠EOF +∠FOC=12(∠BOF +∠FOA )=12∠BOA =40°. (3)∠OCB ∶∠OFB 的值不发生变化.(8分)理由如下:∵BC ∥OA ,∴∠OFB =∠FOA ,∠OCB =∠AOC .又∵∠FOC =∠AOC ,∴∠FOC =∠OCB ,∴∠OFB =∠FOA =∠FOC +∠AOC =2∠OCB,(10分)∴∠OCB∶∠OFB=1∶2.(11分)(4)60°(14分) 解析:由(1)知OB∥AC,∴∠OCA=∠BOC,由(2)可设∠BOE=∠EOF =α,∠FOC=∠AOC=β,∴∠OCA=∠BOC=2α+β.∵BC∥OA,∴∠OEB=∠EOA=α+2β.∵∠OEB=∠OCA,∴2α+β=α+2β,∴α=β.∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.。

(完整版)《相交线与平行线》单元测试卷含答案

(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1。

如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D。

对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为( )A.40°B.35° C。

50°D。

45°31 2 3。

如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC。

∠B+∠ECB=180° D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为( )A。

向右平移1格再向下 B。

向右平移3格再向下C.向右平移2格再向下D.以上答案均可5。

如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D。

垂直于同一直线的两直线平行6。

如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是( )A.40°B.70°C.80° D。

140°7。

同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是( )A。

a∥d B。

a⊥c C。

a⊥d D。

b⊥d8。

如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120 ° B。

130° C.140° D。

150°9。

如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )A。

30° B.60° C。

80° D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线章节测试题
一、选择题 (每小题3分,共15分)
1.在下列四个选项中,∠1与∠2属于对顶角的是( ).
2.下列说法不正确的是( ).
A .同位角相等,两直线平行;
B .两直线平行,内错角相等
C .内错角相等,两直线平行;
D .同旁内角互余,两直线平行
3. 如图,∠ADE 和∠CED 是( )
A .同位角
B .内错角
C .同旁内角
D .互为补角
4. 命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④ 同位角相等. 其中错误的有( )
A、1个 B、2个 C、3个 D、4个
5. 在下列图形中,哪组图形中的右图是由左图平移得到的?( )
二、填空题 (每小题4分,共24分)
6. 一个角与它的补角的比是1:5,则这个角的度数是_____________.
7. 对于同一平面内的三条直线a 、b 、c ,给出下列五个论断:①a ∥b ;②b ∥c ;③a ⊥b ;④a ∥c ;⑤a ⊥c .以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:______________________________________.
8. 如图(左),计划把河中的水引到水池M 中,可以先过点M 作MC ⊥AB ,垂足为C ,然后沿MC 开渠,则能使所开的渠最短.这种设计方案的根据是__________________ ____.
9. 如图(中),一张宽度相等的纸条,折叠后,若∠ABC =110°,则∠1的度数为___.
10. 如图(右),AB∥CD,则∠1+∠2+∠3+……+∠2n= 度
.
三、 解答题 (本大题9小题,共65分)
11.(5分)经过平移四边形ABCD的顶点A移到E(如图),作出平移后的四边形.
12. (6分)(读句画图)
如图,直线CD 与直线AB 相交于C ,根据下列语句作图: (1)过点P 作PQ ∥CD ,交AB 于点Q ;
(2)过点P 作PR ⊥CD ,垂足为R.
13. (6分)如图,点A 处是一座小屋,BC 是一条公路,一人在O 处. (1)此人到小屋去,怎样走最近?作图说明理由. (2)此人再要到公路去,怎样走最近?作图说明理由.
14.(6分)如图所示,把一张长方形纸片ABCD 沿EF 折叠后,点C ,D•分别落在C′,D′的位置上,EC′交AD 于点G ,已知∠EFG=58°,求∠BEG 度数.
15.(6分)如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O.求∠2、∠3的度数.
16.(9分)如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC ,EF ∥AB ,下面写出了说明
第(11)题E D
C B
A
第3题
B
A B C
D
O 1
2
3E F
“∠A+∠B+∠C =180°”的过程,请在横线或括号内填空: 解:∵DE ∥AC ,AB ∥EF,
∴∠1=∠ ,∠3=∠ .( ) ∵AB ∥EF ,
∴∠2=∠___.( ) ∵DE ∥AC ,
∴∠4=∠___.( ) ∴∠2=∠A ( ) ∵∠1+∠2+∠3=180°,
∴∠A+∠B+∠C =180°( )
17.(8分)如图,BA ⊥BD,CD ⊥MN,垂足分别是点B 、D,∠FDC=∠EBA. BE 与DE 平行吗?为什么?
18. (8分)如图,已知AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠3,AD 平分∠BAC 吗?若平分,请写出推理过程;若不平分,试说明理由
.
19.(9分)对于同一平面的三条直线,给出下列5个论断:
①a ∥b ;②b ∥c ;③a ⊥b ;④a ∥c ;⑤a ⊥c.以其中两个论断为条件,一个论断为结论,组
成一个你认为正确的命题,并说明理由.
已知: ,结论 .理由:
20. (9分)如图所示.∠1=∠2,∠D=90°,EF ⊥CD .求证:∠3=∠B .
21. (9分) 已知,如图,DB ∥FG ∥EC ,∠ABD=70°,∠ACF=34°,AP 平分∠BAC ,求∠PAG 的度数.
N M F E D C B
A A
B
C
E
D F
123
4。

相关文档
最新文档