2.2.1《二项分布及其应用-条件概率》课件ppt

合集下载

高中数学选修2(新课标)课件2.2.1二项分布及其应用

高中数学选修2(新课标)课件2.2.1二项分布及其应用
所以 P(B|A)=122=16.
类型三 条件概率的性质及应用 例 3 把外形相同的球分装三个盒子,每盒 10 个.其中,第一 个盒子中有 7 个球标有字母 A,3 个球标有字母 B;第二个盒子中有 红球和白球各 5 个;第三个盒子中有红球 8 个,白球 2 个.试验按 如下规则进行:先在第一个盒子中任取一个球,若取得标有字母 A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母 B 的 球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则 称试验成功.求试验成功的概率.
【答案 100 个,但要求的是甲机床
加工的合格品概率,故只要在甲加工的 40 个零件中考虑问题即可, 同理,(2)只要在甲抽到的为奇数的所有可能中找出乙抽到的数比甲 大的结果.
方法归纳
利用缩小基本事件范围计算条件概率的方法 将原来的基本事件全体 Ω 缩小为已知的条件事件 A,原来的事 件 B 缩小为 AB.而 A 中仅包含有限个基本事件,每个基本事件发生 的概率相等,从而可以在缩小的事件空间上利用古典概型公式计算
(2) 把 一 枚 硬 币 连 续 抛 两 次 . 记 “ 第 一 次 出 现 正 面 ” 为 事 件 A.“第二次出现正面”为事件 B.则 P(B|A)等于( )
1
1
A.2
B.4
1
1
C.6
D.9
解析:(2)由题知本题是一个条件概率,第一次出现正面的概率
是 P(A)=12,第一次出现正面且第二次也出现正面的概率是 P(AB)
【解析】 (2)将甲抽到数字 a,乙抽到数字 b,记作(a,b), 甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2), (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共 15 个,在 这 15 个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5), (1,6),(3,4),(3,5),(3,6),(5,6),共 9 个,所以所求概率 P=195=35.

人教a版数学【选修2-3】2.2.1《条件概率》ppt课件

人教a版数学【选修2-3】2.2.1《条件概率》ppt课件

2 有 2 个红球,5 个蓝球,故第二次取到红球的概率为 P1=7. (2)第一次取到蓝球后不放回,这时口袋里有 3 红 4 蓝 7 个 3 小球,从中取出一球,取到红球的概率为7. (3)第一次取到蓝球后不放回,这时口袋里有 3 红 4 蓝 7 个 4 小球,从中取出一球,取到蓝球的概率为 P3=7.
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
条件概率
思维导航
在 10 件产品中有 9 件产品的长度合格, 8 件产品的质量合 格,7件产品的长度、质量都合格. 令A={任取一件产品其长度合格 },B={任取一件产品其 质量合格 } , AB = { 任取一件产品其长度、质量都合格 } , C =
{任取一件产品,在其长度合格的条件下,其质量也合格},试
讨论概率P(A),P(B),P(AB),P(C)的值,你发现了什么?
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
新知导学 1.条件概率
PAB PA 一般地, 设 A、 B 为两个事件, 且 P(A)>0, 称 P(B|A)=_______
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
通过实例,了解条件概率的概念,能利用条件概率的公式 解决简单的问题.
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
重点:条件概率的定义及计算.
难点:条件概率定义的理解.
成才之路 · 数学
人教A版 · 选修2-3

学案二项分布及其应用PPT演示课件

学案二项分布及其应用PPT演示课件

【解析】(1)解法一:记“有r人同时上网”为事 件Ar,则“至少3人同时上网”即为事件A3+A4+A5+A6, 因为A3,A4,A5,A6为彼此互斥事件,所以可应用概率加 法公式,得“至少3人同时上网”的概率为
P=P(A3+A4+A5+A6)
=P(A3)+P(A4)+P(A5)+P(A6)
=1
64
,P(AB)=P(A|B)·P(B)+P(B|A)·P(A).
P(B)
•8
某地区气象台统计,该地区下雨的概率为 4 ,刮风的
15
概率为
,152 既刮风又下雨的概率为
1 10
,设A为下雨,
B为刮风,求(1)P(A|B);(2)P(B|A).
•9
根据题意知
4
2
1
P(A)= 15 ,P(B)= 15 ,P(AB)= 10 .
了解条件概率的概念,了解两个事件相互独立 二项分布 的概念;理解n次独立重复试验模型及二项分布, 及其应用 并能解决一些简单问题.
•1
2013年高考,试题难度以中低档题为主,很可能与期望、 方差一起在解答题中考查.
•2
1.条件概率
一般地,设A,B为两个事件,且P(A)>0,称P
(B|A)= P(AB ) 为在事件A发生的条件下,事件B发生 P(A)
•16
【解析】
•17
考点3 独立重复试验与二项分布
某单位6个员工借助互联网开展工作,每个员工上网的 概率都是0.5(相互独立). (1)求至少3人同时上网的概率; (2)至少几人同时上网的概率小于0.3?
【分析】因为6个员工上网都是相互独立的,所以 该题可归结为n次独立重复试验与二项分布问题.

2018-2019学年高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.1 条件概率课件

2018-2019学年高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.1 条件概率课件

答案:23
3 5
探究一 条件概率的计算 [典例 1] 现有 6 个节目准备参加比赛,其中 4 个舞蹈节目,2 个语言类节目,如果 不放回地依次抽取 2 个节目,求: (1)第 1 次抽到舞蹈节目的概率; (2)第 1 次和第 2 次都抽到舞蹈节目的概率; (3)在第 1 次抽到舞蹈节目的条件下,第 2 次抽到舞蹈节目的概率.
[双基自测]
1.设 A,B 为两个事件,且 P(A)>0,若 P(AB)=31,P(A)=23,则 P(B|A)=( )
1
2
A.2
B.9
1
4
C.9
D.9
1 解析:由 P(B|A)=PPAAB=32=21,故选 A.
3
答案:A
2.下列说法正确的是( )
A.P(B|A)=P(AB) C.0<P(B|A)<1
又 P(A)=0.9,P(B|A)=PPAAB,得 P(AB)=P(B|A)·P(A)=0.8×0.9=0.72. [答案] 0.72
[错因与防范] 处容易误将事件 B|A 认为事件 AB,导致答案不正确.解决此类问
题的关键是细心审题,首先明确是否为条件概率问题,然后正确设出“事件 A”“事 件 AB”“事件 B|A”,在此基础上,选择恰当的概率公式.如本例中若将“事件 B|A” 和“事件 AB”混淆,则易造成解题失误.
1.某气象台统计,该地区下雨的概率为145,刮四级以上风的概率为125,既刮四级以
上的风又下雨的概率为110,设 A 为下雨,B 为刮四级以上的风,求 P(B|A).
1 解析:由题意知 P(A)=145,P(B)=125,P(AB)=110,故 P(B|A)=PPAAB=140=38.
15

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)
( 互独事件 互独事件)
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,

《条件概率》课件

《条件概率》课件
答案2
两次都取到白球的概率为$frac{6}{10} times frac{6}{10} = frac{36}{100} = frac{9}{25}$。解析:第一次取到白球 的概率为$frac{6}{10}$,第二次取到白球的概率为 $frac{6}{10}$,因此两次都取到白球的概率为 $frac{6}{10} times frac{6}{10} = frac{36}{100} =
《条件概率》ppt课件
contents
目录
• 条件概率的定义 • 条件概率的性质 • 条件概率的应用 • 条件概率的实例分析 • 条件概率的习题与解答
CHAPTER 01
条件概率的定义
条件概率的数学定义
定义
在事件B发生的条件下,事件A发生的概率称为条件概率,记作P(A|B)。
公式
P(A|B) = P(A∩B) / P(B)
条件概率的几何意义
条件概率P(A|B)表示在事件B发生的条 件下,事件A发生的概率,这可以表示 为在事件B发生的条件下,事件A发生 的区域与整个样本空间的比值。
CHAPTER 02
条件概率的性质
条件概率的加法性质
总结词
条件概率的加法性质是ቤተ መጻሕፍቲ ባይዱ当某一事件B发 生时,另一事件A发生的概率等于两事件 A和B同时发生的概率加上A不发生但B发 生的概率。
贝叶斯决策
贝叶斯决策是一种基于贝叶斯定理的决策方法,通过计算不 同行动方案在不同自然状态下的期望效用值,选择最优的行 动方案。贝叶斯决策中需要用到条件概率来计算不同自然状 态下的期望效用值。
在机器学习中的应用
分类器设计
在分类器设计中,常常需要计算不同类别下的条件概率,以设计最优的分类器。例如, 在朴素贝叶斯分类器中,通过计算不同特征在不同类别下的条件概率,实现分类器的设

《二项分布及其应》课件

《二项分布及其应》课件
• a. 样本量较小:二项分布适用于独立重复试验,当样本量较小时,分布的精确度降低。 • b. 分布参数难以确定:在实际应用中,往往难以确定二项分布的参数,如试验次数和单次试验的成功概率。
• 改进方向: a. 引入其他分布:对于样本量较小的情况,可以考虑使用泊松分布等其他分布来近似二项分布。 b. 利 用贝叶斯推断:贝叶斯推断可以用于估计未知的分布参数,提高二项分布在实际应用中的精确度。 c. 考虑其他模型: 对于某些特定问题,可以考虑使用其他模型来描述实际数据,如正态分布、泊松分布等。
贝叶斯估计法的定义和原理 贝叶斯估计法在二项分布参数估计中的应用 贝叶斯估计法的优缺点分析 贝叶斯估计法与其他参数估计方法的比较
最小二乘估计法
定义:最小二乘法是一种数学统计方法,通过最小化误差的平方和来估计参数
原理:最小二乘法通过最小化预测值与实际值之间的误差平方和来估计参数,从而得到最佳的 参数估计值
假设检验的步骤和实例
提出假设
构造检验统计量
确定临界值
做出推断
实例演示
06
二项分布在实际应用中的案例分析
实验设计和数据分析
实验设计:确 定实验目的、 设计实验方案、 选择实验样本
数据分析:对 实验数据进行 整理、分析和 解释,得出结

实验结果:展 示实验结果, 包括数据表格、
图表等
结论与讨论: 对实验结果进 行讨论,提出 改进意见和建

二项分布在实际应用中的案例介绍
案例一:医学研究计学中的 二项分布
案例四:计算机科学中的 二项分布
二项分布在实际应用中的优缺点分析
优点:适用于独立 重复试验,可以快 速准确地计算概率
缺点:不适用于连 续性随机变量,需 要满足独立同分布 的条件

高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.1 条件概率 新人教A版选修2

高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.1 条件概率 新人教A版选修2
解答
反思与感悟 将原来的基本事件全体Ω缩小为已知的条件事件A,原
来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发
生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计 算条件概率,即P(B|A)=nAB ,这里n(A)和n(AB)的计数是基于缩小
nA 的基本事件范围的.
跟踪训练2 5个乒乓球,其中3个新的,2个旧的,每次取一个,不放
良,则随后一天的空气质量为优良的概率是
√A.0.8
B.0.75
C.0.6
D.0.45
解析 设某天的空气质量为优良是事件B,随后一天的空气质量为优良
是事件A,
故所求概率为 P(A|B)=PPABB=00..765=0.8.
解析 答案
命题角度2 缩小基本事件范围求条件概率 例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取 (不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的 数大的概率. 解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有 (1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1), (5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的 数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共 9个,所以所求概率 P=195=35.
第二章 §2.2 二项分布及其应用
2.2.1 条件概率
学习目标 1.理解条件概率的定义. 2.掌握条件概率的计算方法. 3.利用条件概率公式解决一些简单的实际问题.
内容索引

二项分布PPT课件

二项分布PPT课件

P X 2 x 2 0P X x 2 0X !n n !X !X 1 n X
P0P1P2
15!00.13010.13150 15!00.13110.13149
0!15!0
1!14!9
15!00.13210.13148
2!14!8
2.31107
2021/6/16
23
至少有2名感染的概率为:
n=3×0.6=1.8(只)
方差为 2 n1
30.60.40.7( 2 只)
标准差为 n1
30.60.40.85(只)
2021/6/16
18
如果以率表示,将阳性结果的频率记为 p ,X
n
则P的总体均数 p
总体方差为
p2
1
n
总体标准差为
p
1
n
式中 p 是频率p的标准误,反映阳性频率的
卫生统计学(第六版)
卫生统计学与数学教研室
2021/6/16
1
第二节 二项分布
一、二项分布的概念与特征
(一)成败型实验(Bernoulli实验)
在医学卫生领域的许多实验或观察中,人们感兴
趣的是某事件是否发生。如用白鼠做某药物的毒性实
验,关心的是白鼠是否死亡;某种新疗法临床实验观
察患者是否治愈;观察某指标的化验结果是否呈阳性
等。将我们关心的事件A出现称为成功,不出现称为失
败,这类试验就称为成-败型实验。指定性资料中的二
项分类实验。观察对象的结局只有相互对立的两种结
果。 2021/6/16
3
成-败型(Bernoulli)实验序列:
满足以下三个条件的n次实验构成的序列称为成 -败型实验序列。
1)每次实验结果,只能是两个互斥的结果之一 (A或非A)。

二项分布PPT精选课件

二项分布PPT精选课件
20
21
四、二项分布的应用
1.正态近似法
当n足够大,p和1-p均不太小时 , 即np和n(1-p)均大于5时,二项分布 近似正态分布N(nπ, nπ(1-π) )
可信度为1-α的可信区间:
(p-Zasp,p+Zasp)
22
例5.4 某医院用复方当归注射液, 静脉滴注治疗脑动脉硬化症188例; 其中显效83例,试估计复方当归注 射液显效率的95%可信区间。
二项分布和Poisson 分布及其应用
1
学习要点: 二项分布和Poisson分布的定义、性
质及应用
2
第一节 二项分布
3
第一节 二项分布及其应用
*离散型随机变量及其概率分布列
4
离散型随机变量:假如用3只小白鼠 作一定剂量某种毒物的毒性试验, 那么试验后3只小白鼠“死亡数X” 的可能取值能够一一列出,分别为 0,1,2,3。这种可能取值能够一 一列出的随机变量称为离散型随机 变量。其概率分布特征 见下表
X 的 均 数 X = n
X




2 X
=
n

(1-
)
X 的 标 准 差 X = n 1
前例
B( n, )=B(3,0.8)的 鼠 死 亡 数 X 的
总体均数
X =3×0.8=2.4(只 )
总体方差

2 X
=3×0.8×0.2=0.48(只
)
总体标准差
X = 3 0.8 0.2 = 0 . 6 9 ( 只 )
K X !(n X )!
27
例5.7 一种鸭通常感染某种传染病的 概率是0.2,现将一种药物注射到25 只鸭后发现有1只鸭发生感染,试判 断这种药物对预防感染是否有效。

2.2.1二项分布-条件概率

2.2.1二项分布-条件概率
概率.
【解】 法一:记“第一次取到白球”为事 件 A,“第二次取到黑球”为事件 B. 显然,事件“第一次取到白球,第二次取到 黑球”的概率为 P(AB)=160××49=145. 由条件概率的计算公式,得
4 P(B|A)=PPAAB=165=49.
10
练练习习32 一个口袋内装有2个白球和2个黑球,那么
则P(A)=20%,P(B)=18%,P(AB)=12%,
(1)乙地为雨天时甲地也为雨天的概率是
P( A B) P( AB) 12% 2 P(B) 18% 3
(2)甲地为雨天时乙地也为雨天的概率是
P(B A) P( AB) 12% 3 P( A) 20% 5
练习2 一个盒子中有6个白球、4个黑球,每 次从中不放回地任取1个,连取两次,求第 一次取到白球的条件下,第二次取到黑球的
识与技能
学习目标
掌握一些简单的条件概率的计算.
与方法
过对具体情景的分析,了解条件概率的定义
学习重难点
重 点 条件概率定义的理解 难 点 概率计算公式的应用
探究:一3般张地奖,券我中们只用有1张来能中奖,现分别由3名同学
无放回地表抽示取所,有问基最本后事一件名的同学抽到中奖奖券的概率是
否比其他集同合学,小叫?做基本事件
(1)因为事件Ai与事件 A1 A2互斥,由概率的加法公式得
P(
A)
P( A1)
P( A1 A2
)
1 10
91 10 9
1 5
例2、一张储蓄卡的密码共有6位数字,每位数字都可 从0~9中任选一个,某人在银行自动提款机上取钱时, 忘记了密码的最后一位数字,求 (1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次

人教版高中数学第二章2.2-2.2.1条件概率

人教版高中数学第二章2.2-2.2.1条件概率

类型 3 条件概率的性质及其应用
[典例 3] 在一个袋子中装有 10 个球,设有 1 个红球, 2 个黄球,3 个黑球,4 个白球,从中依次摸 2 个球,求 在第一个球是红球的条件下,第二个球是黄球或黑球的 概率.
解:法一 设“摸出第一个球为红球”为事件 A,“摸 出第二个球为黄球”为事件 B,“摸出第三个球为黑球” 为事件 C,则 P(A)=110,P(AB)=110××29=415,P(AC)= 110××39=310.
答案:甲抽到的数大于 4 的情形有(5,1),(5,2), (5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),共 12 个,其中甲、乙抽到的两 数之和等于 7 的情形有(5,2),(6,1),共 2 个.所以 P(B|A) =122=16.
第二章 随机变量及其分布
2.2 二项分布及其应用 2.2.1 条件概率
[学习目标] 1.通过对具体情景的分析,了解条件概 率的定义(重点). 2.掌握求条件概率的两种方法(难 点). 3.利用条件概率公式解决一些简单的问题(重点、 难点).
[知识提炼·梳理]
1.条件概率
条件 设 A,B 为两个事件,且 P(A)>0
解析:由题意可知,n(B)=C1322=12,n(AB)=A33=6.
所以 P(A|B)=nn((ABB))=162=12.
答案:12
5.在 5 道题中有 3 道数学题和 2 道物理题.如果不 放回地依次抽取 2 道题,则在第 1 次抽到数学题的条件下, 第 2 次抽到数学题的概率是________.
生的条件下,事件 B 不会发生.
(2)对,因为事件 A 等于事件 B,所以事件 A 发生, 事件 B 必然发生.

2.2二项分布及其应用习题课ppt课件

2.2二项分布及其应用习题课ppt课件

整理ppt
14
【解析】(1)设甲,乙,丙中奖的事件分别为A,B,C,则
PAPBPC1.
6
P (A B C ) P (A )P (B )P C ( 5 ) 3 = 1 2 5 . 6 2 1 6
故三位同学都没有中奖的概率为 1 2 5 .
216
(2)方法一: 1 P ( A B C A B C A B C A B C )
整理ppt
24
ξ的分布列如下:
ξ0 p 0.95
1 0.5×0.94
2
3
4
0.1×0.93
0.01×0.92
4.5× 0.14
5 0.15答案:ξ01 Nhomakorabea2
3
4
p
0.95
0.5×0.94
0.1×0.93
0.01×0.92
4.5× 0.14
5 0.15
整理ppt
25
2.取到黑球数X的可能取值为0,1,2,3.又由于每次取到黑球
= 1 1 1 1 1 ( 1 1 ) 1 ( 1 1 ) 1 3 .
22222 22 228
=
整理ppt
18
2.分别记这段时间内开关JA,JB,JC能够闭合为事件A,B,C. 由题意,这段时间内3个开关是否能够闭合相互之间没有影 响.根据相互独立事件的概率乘法公式,这段时间内3个开关都 不能闭合的概率是
整理ppt
12
P(A+B)
A,B互斥 P(A)+P(B)
B相互独立
1PAP(B)
P(A·B)
P(A B) P(ABAB)
0 1-[P(A)+P(B)]
P(A)+P(B)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3、一张储蓄卡的密码共有6位数字,每位数字都可 从0~9中任选一个,某人在银行自动提款机上取钱时, 忘记了密码的最后一位数字,求 (1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次 就按对的概率。
解:设第i次按对密码为事件Ai ( i 1, 2) 则A A1 ( A1 A2 )表示不超过 2次就按对密码。
若抽到中奖奖券用"Y " 表示,没有抽到用" N " 表示,
不妨设“第一名同学没有抽到中奖奖券”为事件A,
则A { NYN , NNY }
用B表示最后一名同学抽到中奖奖券的事件, 则B { NNY }
n( B ) 1 最后一名同学抽到奖券的概率为P ( B | A) n( A) 2
n( AB) 6 1 P( B A) n( A) 12 2
解法三:第一次抽到理科题,则还剩下两道理科、 两道文科题 故第二次抽到理科题的概率为1/2
练习:甲乙两地都位于长江下游,根据一百多年的气象 记录,知道甲乙两地一年中雨天所占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少? 解:设A={甲地为雨天}, B={乙地为雨天}, 则P(A)=20%,P(B)=18%,P(AB)=12%,
但因为最后一名中奖的情况只有一种{NNY} 故概率会发生变化.
分析:求P(B|A)的一般思想: 因为已经知道事件A必然发生,所以只需在A发生 的范围内考虑问题,即现在的样本空间为A。
因为在事件A发生的情况下事件B发生,等价于事 件A和事件B同时发生,即AB发生。 故其条件概率为
n( AB ) P ( B | A) n( A)
用B表示最后一名同学抽到中奖奖券的事件,
一般地,n(A)表示 由古典概型可知,最后一名同学抽到中奖奖券的 事件A包含的基本 事件的个数 n( B ) 1
则B { NNY }
概率为:P ( B )
n( )

3
思考:如果已经知道第一名同学没有抽到中奖奖券, 你知道第一名同学
的抽奖结果为什么 那么最后一名抽到中奖奖券的概率又是多少? 会影响最后一名同 分析: 学的抽奖结果吗?
解:设“第1次抽到理科题”为事件A, “第2次抽到理科题 为事件B,则“第1次和第2次都抽到理科题”为事件AB. (1)从5道题中不放回地依次抽取2道的事件数为
n() A 20
2 5
根据分步乘法计数原理,n( A) A A 12 n( A) 12 3 P ( A) n( ) 20 5
2.2.1《二项分布及其应用 -条件概率》
教学目标
• 知识与技能:通过对具体情景的分析,了解条件 概率的定义。 • 过程与方法:掌握一些简单的条件概率的计算。 • 情感、态度与价值观:通过对实例的分析,会进 行简单的应用。 • 教学重点:条件概率定义的理解 • 教学难点:概率计算公式的应用 • 授课类型:新授课 课时安排:1课时
解:设第i次按对密码为事件Ai ( i 1, 2) 则A A1 ( A1 A2 )表示不超过 2次就按对密码。
(2)用B表示最后一位按偶数的事件,则
1 41 2 P ( A B) P ( A1 B) P ( A1 A2 B) 5 5 4 5
练习1: 一批同型号产品由甲、乙两厂生产,产品
称为在事件A发生的条件下,事件B发生的条件概率。 一般把P(B|A)读作A发生的条件下B的概率。 注意: (1)条件概率的取值在0和1之间,即0≤P(B|A) ≤1 (2)如果B和C是互斥事件,则 P(B∪C |A)= P(B|A)+ P(C|A) (3)要注意P(B|A)与P(AB)的区别,这是分清条件概率 与一般概率问题的关键。
概率 P(B|A)与P(AB)的区别与联系 联系:事件A,B都发生了 区别:
样本空间不同: 在P(B|A)中,事件A成为样本空间; 在P(AB)中,样本空间仍为。
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
注:P(B|A)表示在事件A发生的条件下B发生的概率.
思考:你知道第一名同学的抽奖结果为什么会影响
最后一名同学的抽奖结果吗? 分析: 若不知道第一名同学的抽奖结果,则样本空间为:
{YNN , NYN , NNY }
若知道了第一名同学的抽奖结果,则样本空间变成
ቤተ መጻሕፍቲ ባይዱ
A { NYN , NNY }
(1)因为事件Ai 与事件 A1 A2互斥,由概率的加法公式得
1 91 1 P ( A) P ( A1 ) P ( A1 A2 ) 10 10 9 5
例3、一张储蓄卡的密码共有6位数字,每位数字都可 从0~9中任选一个,某人在银行自动提款机上取钱时, 忘记了密码的最后一位数字,求 (1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次 就按对的概率。
为了把条件概率推广到一般情形,不妨记原来的 样本空间为,则有
n( AB ) / n( ) P ( AB ) P ( B | A) n( A) / n( ) P ( A)
条件概率的定义:
一般地,设A,B为两个事件,且P(A)>0,则
P ( AB ) P ( B A) P ( A)
在原样本空间 的概率
3 P( AB) 10 1 P( B A) 3 2 P( A) 5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题 的概率。
解法二:因为n(AB)=6,n(A)=12,所以
1 3 1 4
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
解:设“第1次抽到理科题”为事件A, “第2次抽到理科题 为事件B,则“第1次和第2次都抽到理科题”为事件AB.
(2) n( AB) A 6
(1)乙地为雨天时甲地也为雨天的概率是 P ( AB ) 12% 2 P ( A B) P ( B ) 18% 3 (2)甲地为雨天时乙地也为雨天的概率是 P ( AB ) 12% 3 P ( B A) P ( A) 20% 5
练习:甲乙两地都位于长江下游,根据一百多年的气象 记录,知道甲乙两地一年中雨天所占的比例分别为20% 和18%,两地同时下雨的比例为12%,问: (3)甲乙两市至少一市下雨的概率是多少? 解:设A={甲地为雨天}, B={乙地为雨天}, 则P(A)=20%,P(B)=18%,P(AB)=12%, ∵{甲乙两市至少一市下雨}=A∪B 而 P(A∪B)=P(A)+P(B)-P(AB) =20%+18%-12% =26% ∴甲乙两市至少一市下雨的概率为26%.
小结:
1、条件概率的定义: 设A,B为两个事件,则在事件A发生的条件下, 事件B发生的概率就叫做条件概率. 2、条件概率的计算公式:
n( AB ) P ( AB ) P ( B A) n( A) P ( A)
结构如下表:
数量 厂别
甲厂
乙厂
合计
等级 合格品
475 25 500
644 56 700
1 119
次 品
合 计
81
1 200
(1)从这批产品中随意地取一件,则这件产品恰好是 27 次品的概率是_________; 400 (2)在已知取出的产品是甲厂生产的,则这件产品恰好 1 是次品的概率是_________; 20
2 3
n( AB ) 6 3 P ( AB ) n( ) 20 10
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题 的概率。 (3)解法一:由(1)(2)可得,在第一次抽到理科题 的条件下,第二次抽到理科题的概率为
探究:3张奖券中只有1张能中奖,现分别由3名同学
一般地,我们用来 无放回地抽取,问最后一名同学抽到中奖奖券的概率是 表示所有基本事件的 集合,叫做基本事件 否比其他同学小? 空间(或样本空间)
分析:
若抽到中奖奖券用"Y " 表示,没有抽到用" N " 表示, 那么所有可能的抽取情况为 {YNN , NYN , NNY }
相关文档
最新文档