带电粒子在复合场中运动专题(含答案)

合集下载

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。

2022年高考物理命题猜想与仿真押题——专题09 带电粒子在复合场中的运动(命题猜想)(解析版)

2022年高考物理命题猜想与仿真押题——专题09 带电粒子在复合场中的运动(命题猜想)(解析版)

【考向解读】1.2022年主要考试热点:(1)带电粒子在组合复合场中的受力分析及运动分析.(2)带电粒子在叠加复合场中的受力分析及运动分析.(3)带电粒子在交变电磁场中的运动.2.带电粒子在复合场中的运动应当是2022年高考压轴题的首选.(1)复合场中结合牛顿其次定律、运动的合成与分解、动能定理综合分析相关的运动问题.(2)复合场中结合数学中的几何学问综合分析多解问题、临界问题、周期性问题等.【命题热点突破一】带电粒子在组合场中的运动磁偏转”和“电偏转”的差别电偏转磁偏转偏转条件带电粒子以v⊥E进入匀强电场带电粒子以v⊥B进入匀强磁场受力状况只受恒定的电场力只受大小恒定的洛伦兹力运动状况类平抛运动匀速圆周运动运动轨迹抛物线圆弧物理规律类平抛学问、牛顿其次定律牛顿其次定律、向心力公式基本公式L=vt,y=12at2,a=qEm,tan θ=atvr=mvqB,T=2πmqB,t=θ2πT例1.如图所示,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN 进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;QN=2d、PN=3d,离子重力不计.(1)求加速电场的电压U;(2)若离子恰好能打在Q点上,求矩形区域QNCD内匀强电场场强E0的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面对里的匀强磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围.(3)离子在匀强磁场中做匀速圆周运动,洛伦兹力供应向心力,依据牛顿其次定律,有qBv=mv2r则r=1BEmRq离子能打在QN上,则既没有从DQ边出去也没有从PN边出去,则离子运动径迹的边界如图中Ⅰ和Ⅱ.由几何关系知,离子能打在QN上,必需满足:32d<r≤2d则有12dEmRq≤B<23dEmRq.答案(1)12ER(2)3ER2d(3)12d EmRq≤B <23dEmRq【变式探究】如图所示的坐标系中,第一象限内存在与x轴成30°角斜向下的匀强电场,电场强度E=400 N/C;第四象限内存在垂直于纸面对里的有界匀强磁场,x轴方向的宽度OA=203cm,y轴负方向无限大,磁感应强度B=1×10-4T.现有一比荷为qm=2×1011 C/kg的正离子(不计重力),以某一速度v0从O点射入磁场,α=60 °,离子通过磁场后刚好从A点射出,之后进入电场.(1)求离子进入磁场B的速度v0的大小;(2)离子进入电场后,经多少时间再次到达x轴上;(3)若离子进入磁场B后,某时刻再加一个同方向的有界匀强磁场使离子做完整的圆周运动,求所加磁场磁感应强度的最小值.解析离子的运动轨迹如图所示离子沿电场方向做初速度为零的匀加速直线运动,加速度为a,位移为l2Eq=ma l2=12at2由几何关系可知tan 60°=l2l1代入数据解得t=3×10-7s(3)由Bqv=mv2r知,B越小,r越大.设离子在磁场中最大半径为R由几何关系得R=12(r1-r1sin 30°)=0.05 m由牛顿运动定律得B1qv0=mv20R得B1=4×10-4T则外加磁场ΔB1=3×10-4T答案(1)4×106 m/s(2)3×10-7s(3)3×10-4T【感悟提升】带电粒子在组合场中的运动问题,一般都是单物体多过程问题,求解策略是“各个击破”:(1)先分析带电粒子在每个场中的受力状况和运动状况,抓住联系相邻两个场的纽带——速度(一般是后场的入射速度等于前场的出射速度),(2)然后利用带电粒子在电场中往往做类平抛运动或直线运动,在磁场中做匀速圆周运动的规律求解.【命题热点突破二】带电粒子在叠加复合场中的运动例2.如图所示,水平线AC和竖直线CD相交于C点,AC上开有小孔S,CD上开有小孔P,AC与CD间存在磁感应强度为B的匀强磁场,磁场方向垂直纸面对里,∠DCG=60°,在CD右侧、CG的下方有一竖直向上的匀强电场E(大小未知)和垂直纸面对里的另一匀强磁场B1(大小未知),一质量为m、电荷量为+q的塑料小球从小孔S处无初速度地进入匀强磁场中,经一段时间恰好能从P孔水平匀速飞出而进入CD右侧,小球在CD右侧做匀速圆周运动而垂直打在CG板上,重力加速度为g.(1)求竖直向上的匀强电场的电场强度E的大小;(2)求CD右侧匀强磁场的磁感应强度B1的大小;(3)若要使小球进入CD右侧后不打在CG上,则B1应满足什么条件?解析(1)因小球在CD右侧受重力、电场力和洛伦兹力作用而做匀速圆周运动,所以有mg=qE,即E=mgq.(2)小球进入磁场后,由于重力作用,速率不断增大,同时在洛伦兹力的作用下小球右偏,当小球从小孔P水平匀速飞出时,受力平衡有Bqv =mg ,即v =mgBq从S 到P 由动能定理得mg CP =12mv 2,即CP =m 2g2q 2B2因小球从小孔P 水平飞入磁场B 1后做匀速圆周运动而垂直打在CG 上,所以C 点即为小球做圆周运动的圆心,半径即为r =CP 又因B 1qv =m v 2r联立得B 1=2B .答案 (1)mgq(2)2B (3)B 1≥4.3B【变式探究】如图所示,离子源A 产生的初速度为零、带电荷量为e 、质量不同的正离子被电压为U 1的加速电场加速后进入一电容器中,电容器两极板之间的距离为d ,电容器中存在磁感应强度大小为B 的匀强磁场和匀强电场.正离子能沿直线穿过电容器,垂直于边界MN 进入磁感应强度大小也为B 的扇形匀强磁场中,∠MNQ =90°.(不计离子的重力)(1)求质量为m 的离子进入电容器时,电容器两极板间的电压U 2; (2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上正离子的质量范围.解析 (1)设离子经加速电场后获得的速度为v 1,应用动能定理有U 1e =12mv 21离子进入电容器后沿直线运动,有U 2ed =Bev 1得U 2=Bd2U 1em又ON =R 2-R 1由几何关系可知S 1和S 2之间的距离ΔS =R 22-ON 2-R 1联立解得ΔS =2(3-1)2U 1mB 2e由R ′2=(2R 1)2+(R ′-R 1)2 解得R ′=52R 1再依据12R 1≤R x ≤52R 1解得m ≤m x ≤25m 答案 (1)Bd 2U 1em(2)2U 1mB 2e(3)m ≤m x ≤25m【命题热点突破三】带电粒子在交变电磁场中的运动及多解问题例3、如图甲所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面对里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E 0,E >0表示电场方向竖直向上.t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点.Q 为线段N 1N 2的中点,重力加速度为g .上述d 、E 0、m 、v 、g 为已知量.(1)求微粒所带电荷量q 和磁感应强度B 的大小. (2)求电场变化的周期T .(3)转变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值.(2)设微粒从N 1运动到Q 的时间为t 1,做圆周运动的周期为t 2,则d2=vt 1⑤(1分)qvB =m v 2R⑥(2分)2πR =vt 2⑦(1分)联立③④⑤⑥⑦得t 1=d 2v ;t 2=πvg⑧(2分)电场变化的周期T =t 1+t 2=d 2v +πvg⑨(1分)【感悟提升】空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点.交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场、磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽,应留意以下两点:(1)认真确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联. (2)把粒子的运动过程用直观草图进行分析.【变式探究】如图甲所示,两竖直线所夹区域内存在周期性变化的匀强电场与匀强磁场,变化状况如图乙、丙所示,电场强度方向以y 轴负方向为正,磁感应强度方向以垂直纸面对外为正.t =0时刻,一质量为m 、电量为q 的带正电粒子从坐标原点O 开头以速度v 0沿x 轴正方向运动,粒子重力忽视不计,图乙、丙中E 0=3B 0v 04π,t 0=πm qB 0,B 0已知.要使带电粒子在0~4nt 0(n ∈N)时间内始终在场区运动,求:(1)在t 0时刻粒子速度方向与x 轴的夹角; (2)右边界到O 的最小距离; (3)场区的最小宽度.解析 (1)由牛顿其次定律,得E 0q =ma v y =qE 0mt 0(2分)E 0=3B 0v 04πtan θ=v yv 0(1分) θ=37°(1分)(2)x 1=v 0t 0(1分)如图所示,由几何关系得x 2=R 1-R 1cos 53°(1分)B 0qv =m v 2R 1(1分) v =v 0cos 37°(1分)x =x 1+x 2=(π+0.5)mv 0qB 0(1分)答案 (1)37° (2)(π+0.5)mv 0qB 0(3)(1.5n +1.5+π)mv 0qB 0【高考真题解读】1.(2021·福建理综,22,20分)如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面对外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开头沿MN 下滑,到达C 点时离开 MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v C ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块连续运动到水平地面上 的P 点.已知小滑块在D 点时的速度大小为v D ,从D点运动到P 点的时间 为t ,求小滑块运动到P 点时速度的大小v P .(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤 去磁场后小滑块将做类平抛运动,等效加速度为g ′g ′=(qE m)2+g 2⑥ 且v 2P =v 2D +g ′2t 2⑦解得v P =v 2D +⎣⎡⎦⎤(qE m )2+g 2t 2⑧ 答案 (1)E B (2)mgh -mE 22B 2(3)v 2D+⎣⎡⎦⎤(qE m )2+g 2t 22.(2021·重庆理综,9,18分)如图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面对外的匀强磁场.其中MN 和M ′N ′是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ′,O ′N ′=ON =d ,P 为靶点,O ′P =kd (k 为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U .质量为m 、带电量为q 的正离子从O 点由静止开头加速,经O ′进入磁场区域.当离子打到极板上O ′N ′区域(含N ′点)或外壳上时将会被吸取.两虚线之间的区域无电场和磁场存在,离子可匀速穿过,忽视相对论效应和离子所受的重力.求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的全部可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间. 解析 (1)粒子经电场加速一次后的速度为v 1,由动能定理得 qU =12mv 21①粒子能打到P 点,则在磁场中的轨道半径r 1=kd2②对粒子在磁场中由牛顿其次定律得qv 1B 1=mv 21r 1③联立①②③式解得B 1=22Uqmqkd④答案 (1)22Uqm qkd (2)22nUqmqkd(n =1,2,3,…,k 2-1)(3)(2k 2-3)πkmd22Uqm (k 2-1)h 2(k 2-1)mUq3.(2021·天津理综,12,20分)现代科学仪器常利用电场、磁场把握带电粒子的运动.真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d .电场强度为E ,方向水平向右;磁感应强度为B ,方向垂直纸面对里,电场、磁场的边界相互平行且与电场方向垂直.一个质量为m 、电荷量为q 的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.(1)求粒子在第2层磁场中运动时速度v 2的大小与轨迹半径r 2;(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn , 试求sin θn ;(3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的状况 下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.(2)设粒子在第n 层磁场中运动的速度为v n ,轨迹半径为r n (各量的下标均代表 粒子所在层数,下同). nqEd =12mv 2n ⑤qv n B =m v 2nr n⑥图1粒子进入第n 层磁场时,速度的方向与水平方向的夹角为αn ,从第n 层磁场右侧边界穿出时速度方向与水平方向的夹角为θn ,粒子在电场中运动时,垂直于电场线方向的速度重量不变,有v n -1sin θn -1=v n sin αn ⑦ 由图1看出r n sin θn -r n sin αn =d ⑧由⑥⑦⑧式得r n sin θn -r n -1sin θn -1=d ⑨由⑨式看出r 1sin θ1,r 2sin θ2,…,r n sin θn 为一等差数列,公差为d ,可得r n sin θn =r 1sin θ1+(n -1)d ⑩图2粒子穿出时的速度方向与水平方向的夹角为θn ,由于 q ′m ′>q m ⑮则导致 sin θn ′>1⑯说明θn ′不存在,即原假设不成立.所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.答案 (1)2qEd m 2BmEdq(2)B nqd2mE(3)见解析4.(2021·江苏单科,15,16分)一台质谱仪的工作原理如图所示, 电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最终打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发觉MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调整加速电压后,原本打在MQ 的离子即可在QN 检测到.(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调整范围;(3)为了在QN 区域将原本打在MQ 区域的全部离子检测完整,求需要调整U 的最少次数.(取lg 2=0.301,lg 3=0.477,lg 5=0.699) 解析 (1)离子在电场中加速: qU 0=12mv 2在磁场中做匀速圆周运动:qvB =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081 离子打在N 点时r =L ,U =16U 09,则电压的范围 100U 081≤U ≤16U 09 (3)由(1)可知,r ∝U由题意知,第1次调整电压到U 1,使原本Q 点的离子打在N 点L 56L =U 1U 0此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝⎛⎭⎫562L答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09(3)3次5.(2022·浙江理综,25,22分)离子推动器是太空飞行器常用的动力系统.某种推动器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出肯定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推动器工作时,向Ⅰ区注入淡薄的氙气.电子使氙气电离的最小速率为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电荷量为e .(电子遇到器壁即被吸取,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请推断Ⅰ区中的磁场方向(按图2说明是“垂直纸面对里”或“垂直纸面对外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围;(4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系. 解析 (1)由动能定理得12Mv 2M=eU ①U =Mv 2M2e②a =eE M =e U ML =v 2M 2L③(4)电子运动轨迹如图所示, OA =R -r ,OC =R2,AC =r依据几何关系得r =3R4(2-sin α)⑨由⑥⑨式得v max =3eBR4m (2-sin α)答案 (1)Mv 2M 2e v 2M2L (2)垂直纸面对外(3)v 0≤v <3eBR 4m (4)v max =3eBR4m (2-sin α)6.(2022·重庆理综,9,18分)如图所示,在无限长的竖直边界NS 和MT 间布满匀强电场,同时该区域上、下部分分别布满方向垂直于NSTM 平面对外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上、下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h .质量为m 、带电荷量为+q 的粒子从P 点垂直于NS 边 界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的全部可能值. 解析 (1)设电场强度大小为E . 由题意有mg =qE得E =mgq,方向竖直向上.(2)如图1所示,设粒子不从NS 边飞出的入射速度最小值为V min ,对应的粒子 在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ. 由r =mvqB有r 1=mv min qB ,r 2=12r 1由(r 1+r 2)sin φ=r 2 r 1+r 1cos φ=hv min =(9-62)qBhm答案 (1)mg q ,方向竖直向上 (2)(9-62)qBhm(3)见解析7.(2022·大纲全国,25,20分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度放射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与Y 轴负方向的夹角为θ,求(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间.解析 (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛仑兹力公式 及牛顿其次定律得qv 0B =m v 20R 0①由题给条件和几何关系可知R 0=d ②答案 (1)12v 0tan 2θ (2)2dv 0tan θ。

带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(2007年全国卷2)25。

(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。

在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。

试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。

(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。

在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。

一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。

粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。

粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。

已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。

(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。

一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。

带电粒子在复合场中的运动(含详细解析过程)

带电粒子在复合场中的运动(含详细解析过程)

带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。

一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。

3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。

(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。

高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。

如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。

匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。

下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。

一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。

不计粒子的重力。

(1)求粒子第一次离开电场时的速度。

(2)为使粒子能再次进入电场,求磁感应强度B的最小值。

4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。

一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。

(1)求M点到O点的距离。

高考物理一轮复习考点规范练30带电粒子在复合场中的运动(含解析)新人教版

高考物理一轮复习考点规范练30带电粒子在复合场中的运动(含解析)新人教版

考点规范练30带电粒子在复合场中的运动一、单项选择题1.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是()A.①②B.③④C.①③D.②④答案:B解析:①图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定变化,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动;②图中小球受重力、向上的电场力、垂直向外的洛伦兹力,合力与速度一定不共线,故一定做曲线运动;③图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动;④图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动。

故选项B正确。

2.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法正确的是()A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外答案:C解析:由左手定则知,A、B离子均带正电,A错误;两束离子经过同一速度选择器后的速度相同,在偏转磁场可知,半径大的离子对应的比荷小,但离子的质量不一定相同,故选项B错误,C正确;速度选择中,由R=mmmm器中的磁场方向应垂直纸面向里,D错误。

3.右图是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。

现分别加速氘核(12H)和氦核(24He)。

下列说法正确的是( )A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率可能不相同D.仅增大高频电源的频率可增大粒子的最大动能 答案:A 解析:根据qvB=m m 2m ,得v=mmm m 。

高考物理一轮复习课时规范练31 带电粒子在复合场中的运动(含答案)

高考物理一轮复习课时规范练31 带电粒子在复合场中的运动(含答案)

课时规范练31带电粒子在复合场中的运动基础对点练1.(感应加速器)(2022安徽宣城期末)无论周围空间是否存在闭合回路,变化的磁场都会在空间激发涡旋状的感应电场,电子感应加速器便应用了这个原理。

电子在环形真空室被加速的示意图如图所示,规定垂直于纸面向外的磁场方向为正,用电子枪将电子沿图示方向注入环形室。

它们在涡旋电场的作用下被加速。

同时在磁场内受到洛伦兹力的作用,沿圆形轨道运动。

下列变化规律的磁场能对注入的电子进行环向加速的是()2.(等离子体发电)下图为等离子体发电机的示意图。

高温燃烧室产生的大量的正、负离子被加速后垂直于磁场方向喷入发电通道的磁场中。

在发电通道中有两块相距为d的平行金属板,两金属板外接电阻R。

若磁场的磁感应强度为B,等离子体进入磁场时的速度为v,系统稳定时发电通道的电阻为r。

则下列表述正确的是()A.上金属板为发电机的负极,电路中电流为BdvRB.下金属板为发电机的正极,电路中电流为BdvR+rC.上金属板为发电机的正极,电路中电流为BdvR+rD.下金属板为发电机的负极,电路中电流为BdvR3.(电磁流量计)有一种污水流量计原理可以简化为如图所示模型:废液内含有大量正、负离子,从直径为d的圆柱形容器右侧流入,左侧流出。

流量值等于单位时间通过横截面的液体的体积。

空间有垂直纸面向里的磁感应强度为B的匀强磁场,下列说法正确的是()A.M点的电势高于N点的电势B.负离子所受洛伦兹力方向竖直向下C.MN两点间的电势差与废液的流量值成正比D.MN两点间的电势差与废液流速成反比4.(霍尔效应)右图为霍尔元件的工作原理示意图,导体的宽度为h、厚度为d,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,CD两侧面会形成电势差U,其,式中比例常数k为霍尔系数,设载流子的大小与磁感应强度B和电流I的关系为U=k IBd电荷量的数值为q,下列说法正确的是()A.霍尔元件是一种重要的电传感器B.C端的电势一定比D端的电势高C.载流子所受静电力的大小F=q UdD.霍尔系数k=1,其中n为导体单位体积内的电荷数nq5.(回旋加速器)右图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场的电场强度大小恒定,且被限制在AC板间,虚线中间不需加电场,如图所示,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动,对这种改进后的回旋加速器,下列说法正确的是()A.加速粒子的最大速度与D形盒的尺寸无关B.带电粒子每运动一周被加速一次C.带电粒子每运动一周P1P2等于P2P3D.加速电场方向需要做周期性的变化6.(多选)(组合场)如图所示,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等。

重难点08 带电粒子在复合场中的运动(解析版)

重难点08 带电粒子在复合场中的运动(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。

设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。

下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。

高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。

带电粒子在复合场中的运动(含知识目标、五套练习、详细解答)

带电粒子在复合场中的运动(含知识目标、五套练习、详细解答)

专题二:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛仑兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛仑兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速.喷入偏转磁场B中.在洛仑兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.3.电磁流量计.电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛仑兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B4.质谱仪如图所示组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.原理:加速场中qU=½mv2选择器中:v=E/B1偏转场中:d=2r,qvB2=mv2/r比荷:122q Em B B d=质量122B B dqmE=作用:主要用于测量粒子的质量、比荷、研究同位素.5.回旋加速器如图所示.组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.关于回旋加速器的几个问题:(1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动.(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:12qBfT mπ==(3)回旋加速器最后使粒子得到的能量,可由公式2222122Kq B RE mvm==来计算,在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M 点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c 和d,外筒的半径为r0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中).ac专题二:带电粒子在复合场中的运动(2)姓名______________1.如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场?A.增大电场强度E,减小磁感强度BB.减小加速电压U ,增大电场强度EC.适当地加大加速电压UD.适当地减小电场强度E2.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内加速后,穿过A'中心的小孔沿中心轴010的方向进入到两块水平正对放置的平行极板P和P/,间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心0点处,形成了一个亮点;加上偏转电压U后,亮点偏离到0'点,(O'与0点的竖直间距为d,水平间距可忽略不计).此时,在P和P/间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到0点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏0点的电子速度的大小.(2)推导出电子的比荷的表达式.3.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.专题二:带电粒子在复合场中的运动(3)姓名______________1.回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D 形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核(H 31)和α粒子(e H 42)比较它们所加的高频交流电源的周期和获得的最大动能的大小,有( )A .加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B .加速氚核的交流电源的周期较大,氚核获得的最大动能较小C .加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D .加速氚核的交流电源的周期较小,氚核获得的最大动能较大2.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n .(2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可). (5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域. (1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度;(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.3.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求: (1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.图甲图乙-专题二:带电粒子在复合场中的运动(5)姓名______________1.如图所示,在倾角为30°的斜面OA的左侧有一竖直档板,其上有一小孔P,OP=0.5m.现有一质量m=4×10-20kg,带电量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射向磁感应强度B=0.2T、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径;(2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.2.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz(x轴正方向水平向右,y 轴正方向竖直向上).匀强磁场方向与Oxy平面平行,且与x轴的夹角为︒45,重力加速度为g.(1)一质量为m、电荷量为q+的带电质点沿平行于z轴正方向以速度v0做匀速直线运动,求满足条件的电场强度的最小值minE及对应的磁感应强度B;(2)在满足(1)的条件下,当带电质点通过y轴上的点(0,,0)P h时,撤去匀强磁场,求带电质点落在Oxz平面内的位置;(3)当带电质点沿平行于z轴负方向以速度v0通过y轴上的点(0,,0)P h时,改变电场强度大小和方向,同时改变磁感应强度的大小,要使带点质点做匀速圆周运动且能够经过x轴,问电场强度E和磁感应强度B大小满足什么条件?zB专题二:带电粒子在复合场中的运动——参考答案(1) 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+(R 1一d/2)2,R 1=5d/4……④ R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U. 4、解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。

高考物理《带电粒子在叠加场中的运动》真题练习含答案

高考物理《带电粒子在叠加场中的运动》真题练习含答案

高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。

带电粒子在复合场中运动的17个经典例题

带电粒子在复合场中运动的17个经典例题

经典习题1、(15分)如图所示,MN 、PQ 是平行金属板,板长为L ,两板间距离为d ,在PQ 板的上方有垂直纸面向里的匀强磁场。

一个电荷量为q 、质量为m 的带负电粒子以速度v 0从MN 板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ 板左边缘飞进磁场,然后又恰好从PQ 板的右边缘飞进电场。

不计粒子重力。

试求: (1)两金属板间所加电压U 的大小; (2)匀强磁场的磁感应强度B 的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。

2.(16分)如图,在x oy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于x oy 平面的匀强磁场,y 轴上离坐标原点4 L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子(质量为m ,电量为e )。

如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x 轴上距坐标原点3L 的C 点离开磁场.不计重力的影响,求:(1)磁感应强度B 和电场强度E 的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D 点(图中未标出)离开电场,求D 点的坐标; (3)电子通过D 点时的动能。

3.(12分)如图所示,在y >0的空间中,存在沿y 轴正方向的匀强电场E ;在y <0的空间中,存在沿y 轴负方向的匀强电场,场强大小也为E ,一电子(电量为-e ,质量为m )在y 轴上的P (0,d )点以沿x 轴正方向的初速度v 0开始运动,不计电子重力,求: (1)电子第一次经过x 轴的坐标值 (2)电子在y 方向上运动的周期(3)电子运动的轨迹与x 轴的各个交点中,任意两个相邻交点间的距离 (4)在图上画出电子在一个周期内的大致运动轨迹B4.(16分)如图所示,一个质量为m =2.0×10-11kg ,电荷量q =+1.0×10-5C 的带电微粒(重力忽略不计),从静止开始经U =100V 电压加速后,水平进入两平行金属板间的偏转电场中。

10 静电场2高考真题分项详解(解析板)

10 静电场2高考真题分项详解(解析板)

十年高考分类汇编专题10静电场2(2011—2020)目录题型一、带电粒子在复合场中的运动 ................................................................................................ 1 题型二、带电粒子在纯电场、复合场中运动的综合类问题 (5)题型一、带电粒子在复合场中的运动1.(2019天津)如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A .动能增加212mvB .机械能增加22mv C .重力势能增加232mv D .电势能增加22mv【考点】:功能关系、动能定理、运动的独立性、电场力做功【答案】:C【解析】:小球的动能增加量为2222321)2(21mv mv v m E E KM KN =-=-;故A 错误;除重力外其它力对小球做功的大小为小球机械能的增加量,在本题中电场力对小球做功的大小为小球机械能的增加量,在水平方向上研究小球可知电场力对其做正功,电势能减小,可求得电场力对小球做功大小为小球水平方向动能的增量2221)(v m ;即小球的机械能增加了22mv ;电势能减小了22mv ;故B 对,D 错;从M 点到N 点对小球应用动能定理得:2221)2(21mv v m W W G D -=-;又22mv W D =;可求得221mv W G =故C 错;2.(2016江苏)如图所示,水平金属板A 、B 分别与电源两极相连,带电油滴处于静止状态.现将B 板右端向下移动一小段距离,两金属板表面仍均为等势面,则该油滴( )A. 仍然保持静止B. 竖直向下运动C. 向左下方运动D. 向右下方运动【考点】带电粒子在复合场中的运动、受力分析【答案】D【解析】两极板平行时带电粒子处于平衡状态,则重力等于电场力,当下极板旋转时,板间距离增大场强减小,电场力小于重力;由于电场线垂直于金属板表面,所以电荷处的电场线如图所示,所以重力与电场力的合力偏向右下方,故粒子向右下方运动,选项D正确.3.(2013广东)喷墨打印机的简化模型如图所示.重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( )A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关【考点】带电粒子在复合场中的运动、受力分析、类平抛运动【答案:C】【解析】选C.带电微滴垂直进入电场后,在电场中做类平抛运动,根据平抛运动的分解——水平方向做匀速直线运动和竖直方向做匀加速直线运动.带负电的微滴进入电场后受到向上的静电力,故带电微滴向正极板偏转,选项A错误;带电微滴垂直进入电场受竖直方向的静电力作用,静电力做正功,故墨汁微滴的电势能减小,选项B错误;根据x=v0t,y =12at 2及a =qE m ,得带电微滴的轨迹方程为y =qEx22mv 20,即运动轨迹是抛物线,与带电量有关,选项C 正确,D 错误.4.(2016全国1) 如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P 的竖直线对称。

带电粒子在复合场中的运动-高中物理专题(含解析)

带电粒子在复合场中的运动-高中物理专题(含解析)

带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。

重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。

知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O ­xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。

带电粒子在复合场中运动专题训练卷

带电粒子在复合场中运动专题训练卷

带电粒子在电场与磁场衔接中运动专项训练卷考试范围:电场与磁场;命题人:王占国;审题人:孙炜煜注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明试卷第2页,总48页第II 卷(非选择题)请点击修改第II 卷的文字说明 一、计算题(题型注释)1.(21分)图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为0B ,方向平行于板面并垂直于纸面朝里。

图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。

假设一系列电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。

不计重力。

(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。

(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为34a 。

求离子乙的质量。

(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。

【答案】 (1)032qaBB d m V ⎫=⎪⎭(2)04qaBB dm V'=(3)所以,磁场边界上可能有离子到达的区域是:EF 边上从O 到I '点。

EG 边上从K 到I 。

【解析】(21分)(1)由题意知,所有离子在平行金属板之间做匀速直线运动,它所受到的向上的磁场力和向下的电场力平衡,有00qvB qE =①式中,v 是离子运动的速度,0E 是平行金属板之间的匀强电场的强度,有0V E d=②由①②式得0V v B d=③在正三角形磁场区域,离子甲做匀速圆周运动。

设离子甲质量为m ,由洛仑兹力公式和牛顿第二定律有2v qvB m r=④式中,r 是离子甲做圆周运动的半径。

8.3带电粒子在复合场中的运动

8.3带电粒子在复合场中的运动
答案:BC
2.如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L, 一带电粒子从ad的中点垂直于电场和磁场方向射入,恰沿直线从bc边 的中点P射出,若撤去磁场,则粒子从c点射出;若撤去电场,则粒子 将(重力不计)( )
A.从b点射出 B.从b、P间某点射出 C.从a点射出 D.从a、b间某点射出
(1)M、N两点间的电势差UMN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M点运动到P点的总时间t. [思路点拨] 根据粒子在不同区域内的运动特点和受力特点画出轨 迹,分别利用类平抛和圆周运动的分析方法列方程求解.
[自主解答] (1)设粒子过 N 点时的速度大小为 v,有vv0=cos θ v=2v0 粒子从 M 点运动到 N 点的过程,有 quMN=12mv2-12mv20, UMN=3m2qv20. (2)粒子在磁场中以 O′为圆心做匀速运动, 半径为 O′N,有 qvB=mrv2,r=2qmBv0.
律求解. ③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律 求解. ④对于临界问题,注意挖掘隐含条件.
2.复合场中粒子重力是否考虑的三种情况 (1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况 下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体, 如带电小球、液滴、金属块等一般应当考虑其重力.
(3)由几何关系得 ON=rsin θ
设粒子在电场中运动的时间为 t1,有 ON=v0t1
t1=
3m qB
粒子在磁场中做匀速圆周运动的周期 T=2qπBm
设粒子在磁场中运动的时间为 t2,有 t2=π2-πθT,故 t2=23πqmB
t=t1+t2,t=3
3+2πm 3qB .
[答案]

2022年高考物理大一轮复习:带电粒子在复合场中运动的应用实例(含答案)

2022年高考物理大一轮复习:带电粒子在复合场中运动的应用实例(含答案)

带电粒子在复合场中运动的应用实例1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止在加速电场中被加速,根据动能定理可得关系式qU =12m v 2.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r由以上两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 22.回旋加速器1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次.3.粒子的最大速度:由q v B =mv 2R ,得v =BqR m ,粒子获得的最大速度由磁感应强度B 和盒半径R 决定,与加速电压无关.4.粒子在磁场中运动的总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E km qU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U .3.速度选择器(如图所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B .4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L =qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下发生偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q U d ,所以v =U Bd ,因此液体流量Q =Sv =πd 24·U Bd =πdU 4B .6.霍尔效应:1. 霍尔效应:应如图,厚度为h ,宽度为d 的导体板放在垂直于它的磁感强度为B 的匀强磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A '之间会产生电势差,这种现象称为霍尔效应,所产生的电势差称为霍尔电势差,其原理如图所示.实验表明,当磁场不太强时,电势差U 、电流I 和磁感应强度B 的关系为hIB k U ,式中的比例系数k 称为霍尔系数,霍尔效应可解释为外部磁场产生的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧出现多余的正电荷,从而形成横向电场,横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板上下两侧之间会形成稳定的电势差.2.霍尔电压的正负判断及应用(1)金属导体或N型半导体中自由运动的电荷是自由电子,在洛伦兹力作用下侧向移动产生霍尔电压的电荷是电子,不是正电荷,如上图上表面A积累负电荷(自由电子),下表面A'积累正电荷,形成的霍尔电压.注意:通常出现的错误是用左手定则直接判断出正电荷受力向上,其原因是忽视了相对于磁场运动的电荷是自由电子,而不是正电荷.(2)P型半导体形成电流的多数载流子是空穴(相当于正电荷),在上图中产生的霍尔电压应该是.可见用霍尔效应可以区分P型还是N型半导体.题型一、速度选择器例题1. 如图所示,两平行金属板水平放置,开始开关S合上使平行板电容器带电.板间存在垂直纸面向里的匀强磁场.一个不计重力的带电粒子恰能以水平向右的速度沿直线通过两板.在以下方法中,能使带电粒子仍沿水平直线通过两板的是()A.将两板的距离增大一倍,同时将磁感应强度增大一倍B.将两板的距离减小一半,同时将磁感应强度增大一倍C.将开关S断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度减小一半D.将开关S断开,两板间的正对面积减小一半,同时将板间磁场的磁感应强度增大一倍【答案】BD【解析】A、电容器处于通电状态,把两板间距离增大一倍,由U=可知,电Ed场强度变为原来的一半,根据Eq qvB=可知,要使粒子匀速通过,同时将磁感应强度减小一倍,故A 错误;B 、电容器处于通电状态,把两板间距离减小一倍,由U E d=可知,则电场强度增加一倍,根据Eq qvB =可知,要使粒子匀速通过,磁场应该增大一倍,故B 正确;CD 、如果把开关S 断开,根据4U Q k Q E d Cd s πε===,因两极间的电量不变,当两板间的正对面积减小一半,则两极板之间的电场强度增强一倍,因此根据Eq qvB =可知,要使粒子匀速通过,磁场强度增大一倍,故C 错误,D 正确.故选:BD【总结升华】装置是否构成速度选择器使运动电荷匀速直线穿过复合场,取决于电场力与洛伦兹力的大小,即电场、磁场和速度三者之间的关系,与电荷的电性以及比荷无关.跟踪训练:如图所示,充电的两平行金属板间有场强为E 的匀强电场,和方向与电场垂直(垂直纸面向里)的匀强磁场,磁感应强度为B ,构成了速度选择器。

物理带电粒子在复合场中的运动题20套(带答案)及解析

物理带电粒子在复合场中的运动题20套(带答案)及解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。

极板间存在方向向上的匀强电场,两极板间电压为U 。

质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。

两虚线之间的区域无电场和磁场存在,离子可匀速穿过。

忽略相对论效应和离子所受的重力。

求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。

【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。

【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。

设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。

带电粒子在复合场运动专题

带电粒子在复合场运动专题

带电粒子在复合场中运动(2)1、(18分)在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为B,今有一质子以速度v0由Y轴上的A点沿Y轴正方向射人磁场,质子在磁场中运动一段时间以后从C点进入χ轴下方的匀强电场区域中,在C点速度方向与χ轴正方向夹角为 450,该匀强电场的强度大小为E,方向与Y轴夹角为450且斜向左上方,已知质子的质量为 m,电量为q,不计质子的重力,(磁场区域和电场区域足够大)求:(1)C点的坐标。

(2)质子从A点出发到第三次穿越χ轴时的运动时间。

(3)质子第四次穿越χ轴时速度的大小及速度方向与电场E方向的夹角。

(角度用反三角函数表示)2、( 16分)如图所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为 d ,电场方向在纸平面内,而磁场方向垂直纸面向里.一带正电粒子从 O 点以速度 v0沿垂直电场方向进入电场,在电场力的作用下发生偏转,从 A 点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C 点穿出磁场时速度方向与进入电场O点时的速度方向一致,(带电粒子重力不计)求:(l)粒子从 C 点穿出磁场时的速度v;(2)电场强度 E 和磁感应强度 B 的比值 E / B(3)拉子在电、磁场中运动的总时间。

3、(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。

一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。

(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。

(1)中间磁场区域的宽度d为多大;(2)带电粒子在两个磁场区域中的运动时间之比;(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.4、(18分)一绝缘“”形杆由两段相互平行的足够长的水平直杆PQ、MN和一半径为R的光滑半圆环MAP 组成,固定在竖直平面内,其中MN杆是光滑的,PQ杆是粗糙的,整个装置处在水平向左的匀强电场中.在PM左侧区域足够大的范围内同时存在垂直竖直平面向里的匀强磁场,磁感应强度为B.现将一质量为m、带正电电量为q的小环套在MN杆上,小环所受的电场力为重力的1/2.(已知重力加速度为g)(1)若将小环由D点静止释放,则刚好能到达P点,求DM间的距离(2)在满足第一问的情况下,小环在A点对圆环的压力(3)若将小环由M点右侧5R处静止释放,设小环与PQ杆间的动摩擦因数为μ,小环所受最大静摩擦力与滑动摩擦力大小相等,求小环在整个运动过程中克服摩擦力所做的功.5、如图所示,xOy是位于足够大的绝缘光滑水平桌面内的平面直角坐标系,虚线MN是∠xOy的角平分线.在MN的左侧区域,存在着沿x轴负方向、场强为E的匀强电场;在MN的右侧区域,存在着方向竖直向下,磁感应强度为B的匀强磁场.现有一带负电的小球a从y轴上的P(0,l)点,在电场力作用下由静止开始运动,a球到达虚线MN上的Q点时与另一个不带电的静止小球b发生碰撞,碰后两小球粘合在一起进入磁场,它们穿出磁场的位置恰好在O点.若a、b两小球的质量相等且均可视为质点,a、b碰撞过程中无电荷量损失.求: (1)a、b两球碰撞合在一起进入磁场中的速度大小(2)a球的比荷k(即电荷量与质量之比)(3)过O点后,粘在一起的两个小球再次到达虚线MN上的位置坐标(结果用E、B、l表示)6.如图所示,一束具有各种速率的两种质量数不同的一价铜离子,水平地经过小孔S1射入垂直的匀强电场和匀强磁场区域,已知匀强电场的场强E=1×l05V/m,匀强磁场的磁感应强度为B l=0.4T.求:(1)速度多大的一价铜离子,才能通过与S l小孔正对的S2小孔射入另一匀强磁场B2中?(2)如果这些一价铜离子在匀强磁场B2中发生偏转后,打在过小孔S2且与两磁场分界面重合的照相底片上,已知分界面与小孔S l S2连线垂直,若感光点到小孔S2的距离分别为d1=0.654m,d2=0.674m ,那么对应的两种铜离子的质量数之比为多大?。

带电粒子在复合场中的运动(含答案)

带电粒子在复合场中的运动(含答案)

带电粒子在复合场中的运动1、 如图,在平面直角坐标系xOy 内,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以速度v 垂直于y 轴射出磁场。

不计粒子重力。

求:(1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径; (3)粒子离开磁场时的位置坐标。

2、 如图所示,在xoy 平面的第一象限内,分布有沿x 轴负方向的场强4410/3E N C =⨯的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度10.2B T =的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度2B 的匀强磁场。

在x 轴上有一个垂直于y 轴的挡板OM ,挡板上开有一个小孔P ,P 处连接有一段长度2110d m -=⨯内径不计的准直管,管内由于静电屏蔽没有电场。

y 轴负方向上距O 点210h m -的粒子源S 可以向第四象限平面内各个方向发射带正电的粒子,粒子速度大小均为50210/v m s =⨯,粒子的比荷7510/qC kg m=⨯,不计粒子重力和粒子间的相互作用,求:(1)粒子在第四象限的磁场中运动时的轨道半径r ; (2)粒子第一次到达y 轴的位置与O 点的距离H ;(3)要使离开电场的粒子只经过第二、三象限回到S 处,磁感应强度2B 应为多大。

3、 如图所示,空间存在方向与xoy 平面垂直,范围足够大的匀强磁场。

在0x ≥区域,磁感应强度大小为B 0,方向向里;x <0区域,磁感应强度大小为2B 0,方向向外。

某时刻,一个质量为m 、电荷量为q (q >0)的带电粒子从x 轴上P (L ,0)点以速度02qB Lv m=垂直x 轴射入第一象限磁场,不计粒子的重力。

求:(1)粒子在两个磁场中运动的轨道半径;(2)粒子离开P 点后经过多长时间第二次到达y 轴。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在复合场中运动专题
1、如图43所示,匀强电场水平向左,带正电物体沿绝缘水平板向右运动。

经过A点时的动能为100J,到达B点时,动能减少了原来的4/5,减少的动能中有3/5转化为电势能,则该物体第二次经过B点时的动能大小为:
A、4J;
B、6J,
C、8J,
D、12J.
2、有3个质量相等的粒子,一个带正电,一个带负电,一个不带电,均由左侧极板中央以相同的水平初速度射入在竖直方向的匀强电场中,分别落在正极板上的A、B、C三点,如图44所示,则:
A、它们在电场中的运动时间相同;
B、粒子A带负电、B不带电、C带正电;
C、它们在电场中的加速度a A>a B>a C;
D、它们到达正极板时的动能E KA>E KB>E KC.
3、空间某一区域中存在着方向互相垂直的水平匀强电场和水平匀强磁场,电场的方向水平向右,磁场方向如图45所示。

若不计重力,带电粒子在这区域中运动时动能保持不变。

则带电粒子运动的方向可能是()A.水平向右B.水平向左C.竖直向上D.竖直向下
4、如图46所示,三条虚线表示某电场中的三个等势面,其中U1=10V,U2=20V,U3=30V,一个带电粒子只受电场力作用,按图中实线轨迹从A点运动到B点,由此可知
A、粒子带正电
B、粒子速度变大
C、粒子加速度变小
D、粒子电势能变大
5、一个匀强电场的电场强度随时间变化的图象如图47所示,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力的作用,电场力的作用和带电粒子的运动情况是:
A、带电粒子将向一个方向运动;
B、0---3S内,电场力的冲量等于0,电场力的功亦等于0
C、3s末带电粒子回到原出发点;
D、2----4s内电场力的冲量不等于0,而电场力的功等于0.
6、质量为m的物块,带正电Q,开始时让它静止在倾角α=600的固定光滑绝缘斜面顶端,整个装置放在水平方向的E=的匀强电场,如图48所示,斜面高为H,释放物体后,物块落地的速度大小为:
A、B、C、2D、2.
7.如图49所示,甲是一带负电的小物块,乙是一不带电的绝缘物块。

甲、乙叠放在一起置于粗糙的水平地板上,地板上方空间有垂直纸面向里的匀强磁场。

现用水平恒力拉乙物块,使甲、乙无相对滑动地一起向左加速运动,在加速运动阶段()
A.甲、乙两物块间摩擦力不断减小B.甲、乙两物块间摩擦力不断增大
C.甲、乙两物块间摩擦力大小不变D.乙物块与地之间摩擦力不断减小
8、如图50所示,一根长直导线穿过通有恒定电流的金属圆环的中心且垂直于环的平面,导线和环中的电流方向如图50,那么金属环受到的磁场力为:
A.沿圆环的半径向外;B.沿环的半径向内;
C.水平向左;D.等于零。

9、如图51,一带负电的液滴在竖直向下的匀强电场和匀强磁场同时存在的空间,在水平面内做半径为r的匀速圆周运动,电场强度为E,磁感强度为B,不计空气阻力和浮力,则沿场的方向看,液滴沿时针方向运动,运动的线速度大小有。

10、:如图52所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感强度为B,方向如图52,在x轴上有一点M,离O点距离为L,现有一带电量为+q的粒子,从静止开始释放后能经过M点,求如果此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)
11.如图53所示,水平放置的铜棒ab长0.1m,质量为6×10-2kg,两端与长为1m的轻铜线相连,静止于竖直平面上。

整个装置处在斜向纸内与竖直方向成370角斜向下的匀强磁场中,磁场方向与ab垂直,磁感应强度B=0.5T。

现接通电源,使铜棒中保持有恒定电流通过,铜棒垂直纸面向外发生摆动。

已知铜棒摆动的最大偏角与竖直方向成740角,求通过的电流大小为多少?方向如何?(不计空气阻力,sin370=0.6,cos370=0.8,g取10m/s2)
12、如图54所示,正方形匀强磁场区边界长为a、由光滑绝缘壁围成,质量为m、电量为q的带正电粒子垂直于磁场方向和边界,从下边界正中央的A孔射入磁场中。

粒子碰撞时无能量和电量损失,不计重力和碰撞时间,磁感应强度的大小为B,粒子在磁场中运动的半径小于a。

欲使粒子仍能从A孔处射出,粒子的入射速度应为多少?在磁场中运动时间是多少?
带电粒子在复合场中运动专题
1.A;
2.BCD;
3.C;
4.BC;
5.BCD;
6.C;
7.BCD;
8.D;
9.顺时针,Bqr/E;
10.解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域,物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度V进入磁场,在磁场中受洛仑力作用作匀速圆周运动,向x轴偏转,回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距离O点2R处再次越过x轴,在磁场回转半周后又从距O点4R处飞越x,……如图30所示(图中电场力与磁场未画出)故有:当L=n·2R时粒子能经过M点,即R=L/2n(n=1、2、3……)设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒mV2/2=qEh 对粒子在磁场中受洛仑兹力作用而作匀速圆周运动有:R=mv/qB 解上述各式得:h=B2qL2/8n2mE (n=1,2,3………)11.解析:对ab棒,受到重力、安培力和绳对棒的拉力,而重力和安培力都是恒力,由功能关系可知ab棒将在0°——74°之间来回摆动,ab棒位于θ=37°的位置为中心对称位置。

对ab棒,在θ=37°的位置,受力分析如图31所示,θ=37°时的安培力F安与重力mg的合力与绳的拉力T共线反向,由力的平行四边形定则和正弦定理得:
F安/sinθ=mg/sinα ,即:BIL/sinθ=mg/sin(π/2-2θ)
则通过的导体棒ab的电流大小为
I=mgsinθ/BLsin(π/2-2θ)=mgsinθ/BLcos2θ=mgsinθ/BL(cos2θ-sin2θ)
=6×10-2×10sin37°/0.5×0.1×(cos237°-sin237°)=25.7A
12.解析:欲使粒子仍能从A孔处射出,粒子的运动轨迹可能是如图32甲、乙所示的两种
情况。

对图32甲所示的情形,粒子运动的半径为R,则
R=a/2(2n+1),n=0,1,…… 又qVB=mV2/R,T=2πm/qB,
所以V=qBa/2(2n+1)m,
t=(4n+1)T=2(2n+1)πm/qB
n=0,1,2,……
对图32乙所示的情形,粒子运动的半径为R1,则
R1=a/4k,k=1,2,……
又qV1B=mV12/R1,
所以V1=qBa/4km,t=2kT=2k(π+2)πm/qB,k=1,2,……。

相关文档
最新文档