八年级数学培优题
人教版数学八年级上册第11章《三角形》培优测试题(含答案)
第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
八年级下册数学期末试卷(培优篇)(Word版含解析)
八年级下册数学期末试卷(培优篇)(Word 版含解析)一、选择题1.要使二次根式2a +有意义,那么a 的取值范围是( ) A .2a >- B .2a ≥- C .2a < D .2a ≥2.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( ) A .4个B .3个C .2个D .1个3.下面关于平行四边形的说法中,不正确的是( ) A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .302B .303C .24D .366.如图,点D 在ABC 的BC 边上,把ADC 沿AD 折叠,点C 恰好落在直线AB 上,则线段AD 是ABC 的( )A .中线B .角平分线C .高线D .垂直平分线7.如图,△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且l 1、l 2之间的距离为1,l 2、l 3之间的距离为3,则AC 的长是( )A .4B .5C .52D .108.如图,在平面直角坐标系中,点1A ,2A ,3A 在直线15y x b =+上,点1B ,2B ,3B 在x 轴上,11OA B ∆,122B A B ∆,233B A B ∆都是等腰直角三角形,若已知点()11,1A ,则点3A 的纵坐标是( )A .32B .23C .49D .94二、填空题9.函数y =23x-中,自变量x 的取值范围是__. 10.已知一个菱形有一个内角为120︒,周长为16cm ,那么该菱形的面积等于________ . 11.如图所示:分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,若125S =,39S =,则BC 的长为__________.12.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,6AB =,8AD =,M 点是AD 的中点,那么阴影部分的面积是______.13.若直线y=kx+b与直线y=2x﹣3平行且经过点A(1,﹣2),则kb=_____.14.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是____(写出一个即可).15.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是 ___.16.已知矩形ABCD,点E在AD边上,DE AE>,连接BE,将ABE△沿着BE翻折得到BFE△,射线EF交BC于G,若点G为BC的中点,1FG=,6DE=,则BE长为________.三、解答题17.计算(1)321224843274⎛⎫÷+- ⎪ ⎪⎝⎭(2)()()()()221123223431+-+++---18.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向AB 由A 向B 移动,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为:300km,400km,500km AC BC AB ===,以台风中心为圆心周围250km 以内为受影响区域.(1)请计算说明海港C 会受到台风的影响;(2)若台风的速度为20km/h ,则台风影响该海港持续的时间有多长?19.如图,方格纸中每个小正方形的边长均为1,线段AB 和线段CD 的端点均在小正方形的顶点上.(1)在方格纸中画以AB 为一边的正方形ABEF ,点E 和点F 均在小正方形的顶点上; (2)在方格纸中画以CD 为一边的菱形CDGH ,点G 和点H 均在小正方形的顶点上,菱形CDGH 的面积为20,连接FG ,并直接写出线段FG 的长.20.如图,在△ABC 中,AB =AC .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O .(1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由. 21.观察与计算: 323⨯=6;(31)(31)+-=2;137(7)3⨯-= ; (252)(252)+-= .象上面各式左边两因式均为无理数,右边结果为有理数,我们把符合上述等式的左边两个因式称为互为有理化因式.当有些分母为带根号的无理数时,我们可以分子、分母同乘分母的有理化因式进行化简.例如:22232333(3)==;26632322822(2)===;22(31)3 1.31(31)(31)-==-++- 【应用】(1)化简:① 727; ②332332-+. (2)化简:111142648620202018+++⋅⋅⋅+++++ 22.某书定价a 元,如果一次购买10本以上.超过10本部分打8折,下面用列表法表达了购买书的数量和付款金额这两个变量的对应关系. 购买书数量(本) 1 5 10 1520付款金额(元)a 40 80 112 b(1)请直接写出上表中a ,b 的值.(2)请用解析法求出购买书数量与付款金额之间的函数关系.(3)小强一次购买书恰好花了92元8角,小华购买了8本书,分别计算他们的购买书量和付款金额.23.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连,试证明;(2)如图2,连接,并延长交对角线BD 于点N ,试探究线段之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长至P ,连若,且,则.(直接写出结果)24.如图所示,在平面直角坐标系中,点B 的坐标为(4,8),过点B 分别作BA ⊥y 轴,BC ⊥x 轴,得到一个长方形OABC ,D 为y 轴上的一点,将长方形OABC 沿着直线DM 折叠,使得点A 与点C 重合,点B 落在点F 处,直线DM 交BC 于点E .(1)直接写出点D 的坐标 ;(2)若点P 为x 轴上一点,是否存在点P 使△PDE 的周长最小?若存在,请求出△PDE 的最小周长;若不存在,请说明理由.(3)在(2)的条件下,若Q 点是线段DE 上一点(不含端点),连接PQ .有一动点H 从P 点出发,沿线段PQ 以每秒1个单位的速度运动到点Q ,再沿着线段QE 以每秒5个单位长度的速度运动到点E 后停止.请直接写出点H 在整个运动过程中所用的最少时间t ,以及此时点Q 的坐标.25.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF = ①求证:EF 与BD 互相平分; ②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246BP PD +=时,求PD 之长.【参考答案】一、选择题 1.B 解析:B 【分析】根据二次根式有意义的条件:被开方数大于或等于0,可以求出a 的范围. 【详解】解:根据题意得:20a +≥, 解得:2a ≥- 故选:B. 【点睛】考查二次根式有意义的条件:被开方数大于或等于0.2.C解析:C 【分析】判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案. 【详解】解:①222345+=,能构成直角三角形; ②222346+≠,不能构成直角三角形; ③22251213+=,能构成直角三角形;④22251112+≠,不能构成直角三角形; ∴其中直角三角形有2个; 故选:C . 【点睛】本题主要考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形.3.C解析:C 【解析】 【分析】根据平行四边形的判定分别对各个选项进行判断即可. 【详解】A 、∵对角线互相平分的四边形是平行四边形, ∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形, ∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形, ∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形, ∴选项D 不符合题意; 故选:C . 【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.4.A解析:A 【解析】 【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可. 【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数, 要判断是否进入前8名,故应知道自己的成绩和中位数. 故选:A . 【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】根据折叠前后对应角相等即可得出CAD C AD '∠=∠,从而得出结论. 【详解】解:根据折叠的性质可得CAD C AD '∠=∠, ∴线段AD 是ABC 的角平分线, 故选:B . 【点睛】本题考查折叠的性质,角平分线的定义.注意折叠前后对应角相等.7.C解析:C 【解析】 【分析】过点A 作AE ⊥3l ,垂足为E ,过点C 作CF ⊥3l ,垂足为F ,交2l 于点G ,证明△ABE ≌△BCF ,得到BF =AE =3,CF =4,运用勾股定理计算即可.【详解】过点A 作AE ⊥3l ,垂足为E ,过点C 作CF ⊥3l ,垂足为F ,交2l 于点G , ∵1l ∥2l ∥3l , ∴CG ⊥2l ,∴AE =3,CG =1,FG =3,∵∠ABC =90°,AB =BC ,∴∠ABE +∠CBF =90°,∠ABE +∠BAE =90°, ∴∠CBF =∠BAE , ∴△ABE ≌△BCF , ∴BF =AE =3,CF =4, ∴BC 2234+, ∴AC 2255+2, 故选C . 【点睛】本题考查了平行线间的距离,三角形的全等和性质,勾股定理,熟练掌握三角全等判定,灵活运用勾股定理是解题的关键.8.D解析:D 【分析】作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴,设2A 纵坐标为m ,再根据等腰直角三角形的性质,将坐标表示为()22,A m m +,代入直线解析式算出m ,再用同样的方法设()35,A n n +,代入解析式求出n . 【详解】解:如图,作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴, 把()11,1A 代入15y x b =+,求出45b =,则直线解析式是1455y x =+, 已知()11,1A ,根据等腰直角三角形的性质,得到111111OC A C B C ===, 设2A 纵坐标为m ,22A C m =,22OC m =+,得()22,A m m +,代入直线解析式,得()14255m m =++,解得32m =,设3A 纵坐标为n ,33A C n =,35OC n =+,得()35,A n n +,代入直线解析式,得()14555n n =++,解得9n 4=. 故选:D .【点睛】本题考查一次函数的图象和几何综合,解题的关键是抓住等腰直角三角形的性质去设点坐标,再代入解析式列式求解.二、填空题9.x≤2【解析】【分析】根据二次根式的被开方数大于等于零解答.【详解】解:由题意得,2﹣x≥0,解得,x≤2,故答案为:x≤2.【点睛】此题考查函数自变量的取值范围,熟记二次根式的被开方数大于等于零是解题的关键. 10.E解析:283cm【解析】【分析】作AE BC ⊥于E ,由三角函数求出菱形的高AE ,再运菱形面积公式=底×高计算即可;【详解】作AE BC ⊥于E ,如图所示,∵四边形ABCD 是菱形,周长为16cm ,120BCD ∠=︒,∴4AB BC cm ==,60B ∠=︒,∴()sin 4sin 6042AE AB B cm ==⨯︒=⨯=, ∴菱形的面积()24BC AE cm ==⨯=.故答案为2.【点睛】本题主要考查了菱形的性质,结合三角函数的计算是解题的关键.11.A解析:【解析】【分析】先设Rt △ABC 的三边分别为a 、b 、c ,再分别用a 、b 、c 表示S 1、S 2、S 3的值,由勾股定理即可得出S 2的值.【详解】解:设Rt △ABC 的三边分别为a 、b 、c ,∴S 1=a 2=25,S 2=b 2,S 3=c 2=9,∵△ABC 是直角三角形,∴c 2+b 2=a 2,即S 3+S 2=S 1,∴S 2=S 1-S 3=25-9=16,∴BC=4,故答案为:4.【点睛】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键. 12.A解析:18【分析】据矩形的性质可得OB OD OA OC ===,利用ASA 可证明EBO FDO △≌△,可得阴影部分的面积32AEO EBO MOD AOB S S S S ==++△△△△,根据等底等高的两个三角形面积相等可得12AOB COB ABC S S S ==,即可得出14AOB ABCDS S =矩形,即可得答案. 【详解】解:∵四边形ABCD 为矩形,∴OB OD OA OC ===,AB //CD ,∴∠EBO =∠FDO ,在EBO △与FDO △中,EOB DOF OB ODEBO FDO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()EBO FDO ASA ≌,∴=DOF EBO S S △△,∵M 是AD 的中点, ∴12MOD AOD S S =△△, 又∵O 是BD 的中点,∴AOD AOB S S =△△, ∴12MOD AOB S S =△△ ∴阴影部分的面积32AEO EBO MOD AOB S S S S ==++△△△△, ∵AOB 与COB △等底等高, ∴12AOB COB ABC SS S ==, ∵12ABC ABCD SS =矩形, ∴14AOB ABCD S S =距形. ∴阴影部分的面积13423188ABCD AB D S A =⨯==距形, 故答案为:18.【点睛】 本题考查了矩形的性质及全等三角形的判定与性质,熟练掌握矩形当性质并熟练掌握是解题关键.13.A解析:-8【分析】由平行线的关系得出k =2,再把点A (1,﹣2)代入直线y =2x +b ,求出b ,即可得出结果.【详解】解:∵直线y =kx +b 与直线y =2x ﹣3平行,∴k =2,∴直线y =2x +b ,把点A (1,﹣2)代入得:2+b =﹣2,∴b =﹣4,∴kb =﹣8.故答案为:﹣8.【点睛】本题主要考查了一次函数图像的性质,求一次函数的解析式,解题的关键在于能够熟练掌握相关知识进行求解.14.C解析:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).【分析】根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.【详解】解:根据题意可得出:四边形CBFE是平行四边形,当CB=BF时,平行四边形CBFE是菱形,当CB=BF;BE⊥CF;∠EBF=60°;BD=BF时,都可以得出四边形CBFE为菱形.故答案为:如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,解析:①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断④.【详解】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.故①正确;②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,故②错误;③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+34=334,点B纵坐标为120﹣60×34=75,故③正确;④设快递车从乙地返回时的速度为y千米/时,则(y+60)(134344)=75,y=90,故④正确.故答案为①③④.【点睛】本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是解题关键.16.【分析】先设,根据,,可得,,再根据,可得,进而得出方程,即可得到的长,可求得,再利用勾股定理可以,再用一次勾股定理即可算出.【详解】解:设,,,,,又为的中点,,由折叠可得,,解析:【分析】先设AE EF x ==,根据6DE =,1FG =,可得6AD x BC =+=,1EG x =+,再根据GEB GBE ∠=∠,可得EG BG =,进而得出方程612x x ++=,即可得到AE 的长,可求得EG BG =,再利用勾股定理可以BF ,再用一次勾股定理即可算出BE .【详解】解:设AE EF x ==,6DE =,1FG =,6AD x BC ∴=+=,1EG x =+,又G 为BC 的中点,1622x BG BC +∴==, 由折叠可得,AEB GEB ∠=∠,由//AD BC ,可得AEB GBE ∠=∠,GEB GBE ∴∠=∠,EG BG ∴=,612x x +∴+=, 解得4x =,即4AE =,5EG BG EF FG ∴==+=,90BAE BFE ∠=∠=︒,BF ∴BE ∴=故答案是:【点睛】本题主要考查了折叠问题,勾股定理、三角全等、解题的关键是折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可; (2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)=;(2);【点睛】解析:(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)⎛ ⎝=(4==;(2))())0211241++- ()1312140=-++-=-; 【点睛】本题主要考查了二次根式的混合运算,结合平方差公式,零指数幂,绝对值的性质,完全平方公式计算是解题的关键.18.(1)计算见解析;(2)台风影响该海港持续的时间为7小时【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(2)利用勾股解析:(1)计算见解析;(2)台风影响该海港持续的时间为7小时【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图,过点C 作CD AB ⊥于点D∵300km,400km,500km AC BC AB ===∴222AC BC AB +=∴ABC 是直角三角形 ∴1122AC BC AB CD ⨯=⨯ ∴300400500CD ⨯=⨯∴240(km)CD =∵以台风中心为圆心周围250km 以内为受影响区域240250<∴海港C 会受台风影响;(2)当250km,250km EC FC ==时,台风在EF 上运动期间会影响海港C在Rt CED 中222225024070(km)ED EC CD =--在Rt CFD △中222225024070(km)FD FC CD =--∴140km EF =∵台风的速度为20千米/小时∴140207÷=(小时)答:台风影响该海港持续的时间为7小时.【点睛】本题考查了勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)见解析;(2)见解析,【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为,高为的菱形即可,利用勾股定理求出.【详解】解:(1)如图,正方形即为所求;(2)如图,菱解析:(1)见解析;(2)见解析,26FG=【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为5,高为4的菱形即可,利用勾股定理求出FG.【详解】解:(1)如图,正方形ABEF即为所求;(2)如图,菱形CDGH即为所求,22FG=+=.5126【点睛】本题考查作图-应用与设计作图,勾股定理,菱形的性质,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.20.(1)见解析;(2)当为的中点时,四边形是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出解析:(1)见解析;(2)当E为BC的中点时,四边形AECD是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可.【详解】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.【点睛】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.21.(1)观察与计算:-7;18;应用:(1)①;;(2)【解析】【分析】观察与计算:根据二次根式的乘法和平方差公式求解即可;应用:(1)仿照题意进行分母有理化即可;(2)先对原式每一项进行分解析:(1)观察与计算:-7;18;应用:(1)732966-2150522【解析】【分析】观察与计算:根据二次根式的乘法和平方差公式求解即可;应用:(1)仿照题意进行分母有理化即可;(2)先对原式每一项进行分母有理化即可得到1(42648620202018)2,由此求解即可.【详解】解:观察与计算:137773⎛=-⎝,((2252525220218=-=-=,故答案为:-7,18;应用:(1)===2==;(2=2+⋅⋅⋅+=12=12=12.【点睛】本题主要考查了二次根式的乘法运算,平方差公式和分母有理化,解题的关键在于能够准确理解题意进行求解.22.(1)a=8;b=144;(2)y=;(3)12本书,64元【分析】(1)根据买5本书花费40元可以求出书的定价a,根据一次购买10本以上,超过10本部分打8折可以求出b;(2)分购买数量小于解析:(1)a=8;b=144;(2)y=()()80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数;(3)12本书,64元【分析】(1)根据买5本书花费40元可以求出书的定价a,根据一次购买10本以上,超过10本部分打8折可以求出b;(2)分购买数量小于等于10和大于10两种情况写出购买书数量与付款金额之间的函数关系;(3)把92.8分别代入(2)中解析式,求解即可;小华购买了8本书直接代入y=8x即可.【详解】解:(1)由表中数据可知:a=40÷5=8,b=8×10+8×810×(20−10)=80+64=144,∴a=8,b=144;(2)由(1)可知:a=8,∴每本书的售价为8元,设购买书的数量为x本,付款金额为y元,当0≤x≤10,且x为整数时,y=8x;当x>10,且x为整数时,y=8×10+8×810×(x−10)=6.4x十16;综上所述,购买书数量x(本)与付款金额y(元)之间的函数关系为:y=()() 80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数;(3)由(2)可知:购买书数量x(本)与付款金额y(元)之间的函数关系为:y=()() 80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数,把y=92.8代入到y=8x(0≤x≤10,x为整数)中,得92.8=8x,解得:x=11.6(不合题意,舍去);把y=92.8代入到y=6.4x十16(x>10,x为整数)中,得92.8=6.4x+16,解得:x=12,∴小强一次购买书恰好花了92元8角,买了12本书,把x=8代入到y=8x(0≤x≤10,x为整数)中,得y=8×8=64,∴小华购买了8本书,付款金额为64元,综上所述,小强一次买了12本书,小华付款金额为64元.【点睛】本题考查了一次函数和一元一次方程的应用,关键是根据题意列出函数关系式.23.(1)见解析;(2),理由见解析;(3)【分析】(1)由直角三角形的性质得AO=MO=BE=BO=EO,得∠ABO=∠BAO,∠OBM=∠OMB,证出∠AOM=∠AOE+∠MOE=2∠ABO+2解析:(1)见解析;(2),理由见解析;(3)【分析】(1)由直角三角形的性质得AO=MO=12BE=BO=EO,得∠ABO=∠BAO,∠OBM=∠OMB,证出∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°即可;(2)在AD上方作AF⊥AN,使AF=AN,连接DF、MF,证△ABN≌△ADF(SAS),得BN=DF,∠DAF=∠ABN=45°,则∠FDM=90°,证△NAM≌△FAM(SAS),得MN=MF,在Rt△FDM中,由勾股定理得FM2=DM2+FD2,进而得出结论;(3)作P关于直线CQ的对称点E,连接PE、BE、CE、QE,则△PCQ≌△ECQ,∠ECQ=∠PCQ=135°,EQ=PQ=9,得∠PCE=90°,则∠BCE=∠DCP,△PCE是等腰直角三角形,得CE=CP=PE,证△BCE≌△DCP(SAS),得∠CBE=∠CDB=∠CBD=45°,则∠EBQ=∠PBE=90°,由勾股定理求出BE=,PE=6,即可得出PC的长.【详解】解:(1)证明:四边形ABCD是正方形,,,,,是BE的中点,,,,;(2),理由如下:在AD上方作,使,连接DF、,如图2所示:则,四边形ABCD是正方形,∴=,,AB AD,,,在和中,,,,,,,,在和中,,,,在中,,即;(3)作P关于直线的对称点E,连接、BE、CE、,如图3所示:则,,,,,是等腰直角三角形,,在和中,,,,,,,,,,,;故答案为:32.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的判定、勾股定理、轴对称的性质等知识;本题综合性强,熟练掌握正方形的性质和勾股定理,证明三角形全等是解题的关键.24.(1)D(0,3);(2)存在,6;(3)5秒,Q(,)【解析】【分析】(1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解解析:(1)D(0,3);(2)存在,3)5秒,Q(32,154)【解析】【分析】(1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解即可;(2)如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求,此时△PDE的周长最小,运用勾股定理可得CE=5,BE=3,作EG⊥OA,在Rt△DEG中,可得DE=Rt△D′EG中,可得'D E(3)运用待定系数法求得直线D′E的解析式为y=2x﹣3,进而求得P(32,0),过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P交DE于点Q′,利用待定系数法可得直线DE的解析式为y=12x+3,设Q(t,12t+3),则H(t,5),再运用勾股定理即可求出答案.【详解】解:(1)设D(0,m),且m>0,∴OD=m,∵四边形OABC是矩形,∴OA=BC=8,AB=OC=4,∠AOC=90°,∵将长方形OABC沿着直线DM折叠,使得点A与点C重合,∴CD=AD=OA﹣OD=8﹣m,在Rt△CDO中,OD2+OC2=CD2,∴m2+42=(8﹣m)2,解得:m=3,∴点D的坐标为(0,3);(2)存在.如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求,此时△PDE的周长最小,在Rt△CEF中,BE=EF=BC﹣CE,EF2+CF2=CE2,BC=8,CF=4,∴CE=5,BE=3,作EG⊥OA,∵OD=AG=BE=3,OA=8,∴DG=2,在Rt△DEG中,EG2+DG2=DE2,EG=4,∴DE=25在Rt△D′EG中,EG2+D′G2=D′E2,EG=4,D′G=8,∴D′E=45∴△PDE周长的最小值为DE+D′E=5(3)由(2)得,E(4,5),D′(0,﹣3),设直线D′E的解析式为y=kx+b,则453k bb+=⎧⎨=-⎩,解得:23kb=⎧⎨=-⎩,∴直线D′E的解析式为y=2x﹣3,令y=0,得2x﹣3=0,解得:x=32,∴P(32,0),过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P 交DE于点Q′,设直线DE 的解析式为y =k ′x +b ′,则345b k b =⎧⎨+='''⎩, 解得:123k b ⎧=⎪⎨⎪='⎩', ∴直线DE 的解析式为y =12x +3,设Q (t ,12t +3),则H (t ,5),∴QH =5﹣(12t +3)=2﹣12t ,EH =4﹣t ,由勾股定理得:DE 22221(2)(4)2QH EH t t +-+-52﹣12t 5, ∴点H 在整个运动过程中所用时间=15PQ PQ +QH , 当P 、Q 、H 在一条直线上时,PQ +QH 最小,即为PH ′=5,点Q 坐标(32,154), 故:点H 在整个运动过程中所用最少时间为5秒,此时点Q 的坐标(32,154). 【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,一次函数的性质,线段的动点问题,以及最短路径问题,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行分析.25.(1)①详见解析;②详见解析;(2)当BE≠DF 时,(BE+DF )2+EF2=2AB2仍然成立,理由详见解析;(3)【分析】(1)①连接ED 、BF ,证明四边形BEDF 是平行四边形,根据平行四边形 解析:(1)①详见解析;②详见解析;(2)当BE ≠DF 时,(BE +DF )2+EF 2=2AB 2仍然成立,理由详见解析;(3)2622PD =-【分析】(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.【详解】(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=12BD,OE=OF=12EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP2BE,∵2+2PD=6,∴2BE+2PD=6,即BE+PD=6∵AB=4,∴(6)2+PE2=2×42,解得,PE=2∴BE=2∴PD=6﹣2.【点睛】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.。
北师大版八年级上学期数学培优试题
八年级上学期培优试题一 一、选择题 1. 关于直线l :y=kx+kk≠0,下列说法不正确的是A.点0,k 在l 上B.l 经过定点﹣1,0C.当k >0时,y 随x 的增大而增大D.l 经过第一、二、三象限2.已知一次函数y=x+a 与y=﹣x+b 的图象都经过点A ﹣2,0,且与y 轴分别交于B,C 两点,那么△ABC 的面积是A .2B .3C .4D .5二、填空题3. 81的平方根是 ;4.若三角形的周长为24,它的三边长a,b,c 满足4a=3b,c=2b-a,则这个三角形的三边长分别是 ;5.如图是“赵爽弦图”,△ABH、△BCG、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,AH =6,那么EF 等于 .6.如图3,直线L 上有三个正方形a,b,c,若a,c 的面积分别为5和11,则b 的面积为 ;7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 dm .8.我国古代有这样一道数学问题:“枯木一根直立地上'高二丈 周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几 何,题意是:如图所示,把枯木看作一个圆柱体,因一丈是 十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是 尺.9. 若点M k ﹣1,k+1关于y 轴的对称点在第四象限内,则一次函数y=k ﹣1x+k 的图象不经过第 象限.10.如图,在矩形ABCD 中,AB=3,BC=5,在CD 上任取一点E,连接BE,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为 .11.如图,直线132y x =-+与坐标轴分别交于点A 、B ,与直线y x =交于点C , 线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连接CQ .若△OQC 是等腰直角三角形,则t 的值为 .1如果两班联合起来购买服装,那么比各自购买服装共可以省多少钱2两班各有多少名学生参加演出12.如图,在平面直角坐标系中,过点B 6,0的直线AB 与直线OA 相交于点 A 4,2,动 点M 在线段OA 和射线AC 上运动.1求直线AB 的解析式.2求△OAC 的面积.3是否存在点M ,使△OMC 的面积是△OAC 的面积的14若存在求出此时点M 的坐标;若不存在,说明理由.。
八年级初二数学 数学二次根式的专项培优练习题(附解析
一、选择题1.下列式子中,属于最简二次根式的是()A.9B.13C.20D.72.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(8﹣3cm2B.(4﹣3cm2C.(16﹣3cm2D.(﹣3)cm232的倒数是()A2B.22C.2-D.22-4.下列各式是二次根式的是()A3B1-C35D4π-5.已知:x3,y31,求x2﹣y2的值()A.1 B.2 C3D.36.设a3535+-b633633+-21b a-的值为()A621+B621+C621D621 7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.013323)=5;④如果点P(3-2n,1)到两坐标轴的距离相等,那么n=1,其中假命题的有()A.1个B.2个C.3个D.4个8.以下运算错误的是()A3535⨯=B.2222⨯=C169+169D2342a b ab b=a>0)9.使式子212 4xx+-x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x>﹣2,且x≠2D.x≥﹣2,且x≠210.x ≥3是下列哪个二次根式有意义的条件( ) A .3x +B .13x - C .13x + D .3x -二、填空题11.已知2216422x x ---=,则22164x x -+-=________.12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.14.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 15.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.=_______.18.mn =________.19.n 为________.20.能合并成一项,则a =______.三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,故答案为5=256;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.D解析:D 【分析】根据正方形的面积求出边长AB =4cm ,BC =()cm ,利用四边形ABCD 的面积减去两个阴影的面积即可列式求出答案. 【详解】∵两张正方形纸片的面积分别为16cm 2和12cm 2,4cm=cm,∴AB=4cm,BC=(+4)cm,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,故选:D.【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.3.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】,;2故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 4.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.5.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.6.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A 、x+3≥0,解得:x≥-3,故此选项错误;B 、x-3>0,解得:x >3,故此选项错误;C 、x+3>0,解得:x >-3,故此选项错误;D 、x-3≥0,解得:x≥3,故此选项正确,故选D .【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.二、填空题11.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.14.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.15.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<< ∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
人教版八年级上册数学《轴对称》培优试题
人教版八年级上册数学《轴对称》培优试题一.选择题(共7小题)1.已知,如图,△ABC中,AB=AC,∠A=120°,BC=18cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AB于点F,则MN的长为()A.18cm B.12cm C.6cm D.3cm2.如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°3.已知等腰三角形一腰上的高线与另一腰的夹角为60°,那么这个等腰三角形的顶角等于()A.15°或75°B.30°C.150°D.150°或30°4.如图,在△ABC中,∠B=∠C,点D在BC边上,点E在AC上,∠ADE=∠AED,若∠BAD=40°,则∠CDE的度数为()A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D为AB边上一点,且AD=CD=BC,则∠A的度数为()A.38°B.36°C.32°D.30°6.如图,∠AOB=60°,点P是∠AOB内的定点且OP=4,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6D.37.下列说法正确的个数有()①有两组边对应相等,一组角对应相等的两个三角形全等;②垂直于同一条直线的两直线平行;③三角形的中线把三角形的面积平分;④等腰三角形高所在的直线是对称轴.A.1个B.2个C.3个D.4个二.填空题(共9小题)8.如图,在等腰△ABC中,CA=CB,∠C=50°,DE⊥AC,FD⊥AB,则∠EDF=.9.如图,DE是△ABC的边AB的垂直平分线,垂足为点D,DE交AC于点E,且AC=7,△BEC的周长为11,则BC的长为.10.如图,∠AOB=30°,M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP =6cm,则△PMN的周长的最小值为cm.11.如图,已知△ABC与△ABD关于AB所在的直线对称,延长AD交CB的延长线于点E,若AC+BC=AE,且∠C=40°,则∠E的度数为.12.如图,在△ABC中,DE垂直平分AC,交AC边于点E,交BC边于点D,若AE=3,△ABD的周长为14,则△ABC的周长为.13.若等腰三角形一腰上的中线将它的周长分成了15cm和18cm两部分,则它的腰长为cm.14.如果等腰三角形的一个内角等于40°,则它两底角的平分线所夹的钝角为.15.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为13cm.分别连接OA、OB、OC,若△OBC的周长为27cm,则OA的长为cm.16.如图,在△ABC中,边AB,AC的垂直平分线交于点P,连接AP,BP,CP,若∠BAC=50°,则∠BPC=°.三.解答题(共6小题)17.如图,AB=AC,AE=ED=DB=BC,求∠A的度数.18.计算:△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于y轴成轴对称的△A1B1C1,并写出A1、B1、C1的坐标;(2)在y轴上有一点P,使P A+PB的值最小,请在坐标系中标出点P的位置.19.如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且满足∠B=∠1,CE平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,请说明∠FEC=3∠3.20.如图,在△ABC中,∠BAC=105°,MP垂直平分AB,分别交AB、BC于点M、P,NQ垂直平分AC,分别交AC.BC于点N、Q,连接AP、AQ,求∠P AQ的度数.21.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.22.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)当t为何值时,△DEF为直角三角形?请说明理由.。
全等图形 苏科版数学八年级上册培优练习(含答案)
1.1全等图形培优练习一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对4、下列图形是全等图形的是()A.B.C.D.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④6、在下列各组图形中,是全等的图形是()A.B.C.D.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.9、下列各组图形中不是全等图形的是()A.B.C.D.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.612、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是. 的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个3316、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)19、如图,把大小为4⨯4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4⨯4的正方形方格图形分割成两个全等图形.20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形. (2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.参考答案一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形【解析】解:A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形.故答案为:C.2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.【答案】C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对【答案】C【分析】能够完全重合的两个图形叫做全等形.【详解】图中全等图形是:笑脸,箭头,五角星.故选C4、下列图形是全等图形的是()A.B.C.D.【答案】B【详解】试题解析:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选B.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④【答案】D【分析】全等形要求两图形大小及形状完全相同,观察发现其中两个图形恰巧是可以通过旋转得到的,结合旋转前后的两个图形是全等的,即可确定最终答案.【详解】观察图形,经过旋转,②和④可以完全重合,因此全等的图形是②和④.故选D.6、在下列各组图形中,是全等的图形是()A.B.C.D.【答案】C【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,对各个选项进行判断即可得答案.【详解】解:由全等形的概念可以判断:C中图形的形状和大小完全相同,符合全等形的要求;A、B、D中图形很明显不相同,A中图形的大小不一致,B、D中图形的形状不同.故选:C.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.【解析】解:如图所示:图形分割成两个全等的图形,.故选B.9、下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.【详解】解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.【答案】C【解析】【分析】根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.【详解】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选:C.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.6【答案】A【分析】根据14=(1+6)×2=(2+5)×2=(3+4)×2,可知能围出不全等的长方形有3个.解:∵长为4、宽为3的长方形,∴周长为2×(3+4)=1414=(1+6)×2=(2+5)×2=(3+4)×2,∴能围出不全等的长方形有3个,故选:A.12、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解析】(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)【分析】根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个33【答案】180°.【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.【详解】解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.16、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .【解析】解:,.由全等图形的性质得.故答案为60cm.三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角,可得对应顶点,对应边与对应角,进而可得a,b,c,d,e,α,β各字母所表示的值.【解答】解:对应顶点:A和G,E和F,C和I,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)【解析】解:如图所示:19、如图,把大小为4 4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4 4的正方形方格图形分割成两个全等图形.【解析】解:四种不同的分法:20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?【解答】解:如图所示:.21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形.(2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.【答案】(1)见解析;(2)见解析.【解析】【分析】先将点C 对折到点E ,将对折后的纸片再沿DE 对折.此题要理解折叠的实质是重合,根据重合可以得到BC =BE ,AD =BD ,∠DBE =∠DAE =30°,∠BDE =∠ADE =60°,∠AED=∠BED =90°. 【详解】(1) 如下图1(2) 如下图2 .。
八年级数学培优考试题
一,单项选择题(本大题共8小题,每题5分,共40分)1.如果实数x,y满足(+x)(+y)=1,那么x+y值为()A.0B.﹣1C.1D.22.如图,在△ABC中,D,E分别是BC,AC的中点,若∠ACB=90°,BE=4,AD=7,则AB的长为()A.10B.5C.2D.23.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,若甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论中正确的是()A.乙的速度为5米/秒B.乙出发10秒钟将甲追上C.当乙到终点时,甲距离终点还有20米D.m=385.已知x为实数,化简的结果为()A.B.C.D.6.两条直角边长分别是整数a,b(其中b<100),斜边长是b+1的直角三角形的个数为()A.4个B.5个C.6个D.7个7.如图,在△ABC中,AB=17,BC=26,BD平分∠ABC,AD⊥BD,点E是AC的中点,则线段DE的长为()A.4.5B.9C.5.5D.118.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二、填空题(本大题共6小题,每题5分,共30分)9.在平行四边形ABCD中,AM⊥BC,AN⊥CD,M、N为垂足,若AB=13,BM=5,MC =9,则MN的长度为.10.已知三个非负实数a,b,c满足:3a+2b+c=6,a+b﹣3c=2,若m=a﹣b+c,则m的最小值为.11.四边形ABCD中,∠A=∠B=60°,BC=8,CD=,AD=10,求AB=.12.已知﹣=2,则+=.13.在某海防观测站的正东方向12海浬处有A、B两艘船相会之后,A船以每小时12海浬的速度往南航行,B船则以每小时3海浬的速度向北漂流.则经过小时后,观测站及A、B两船恰成一个直角三角形.14.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.三、解答题(本大题共4小题,15题,16题7分,17,18题8分,共30分。
人教版数学八年级下册期末综合培优复习题(四)(含答案)
期末综合培优复习题(四)一.选择题(每题3分,满分36分)1.下列一定是二次根式的是()A.B.C.D.2.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣13.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.已知n是一个正整数,是整数,则n的最小值是()A.3 B.5 C.15 D.455.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A.1个B.2个C.3个D.4个6.若a=1﹣,b=1+,则代数式的值为()A.2B.﹣2C.2 D.﹣27.有20个班级参加了校园文化艺术节感恩歌咏大赛,他们的成绩各不相同,其中李明同学在知道自己成绩的情况下,要判断自己能否进入前十名,还需要知道这十个班级成绩的()A.平均数B.加权平均数C.众数D.中位数8.已知直线y=x+b和y=ax﹣3交于点P(2,1),则关于x,y的方程组的解是()A.B.C.D.9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连结EG.若AE=1,AB=4,则EG=()A.2B.2C.3D.11.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(每题3分,满分18分)13.若点A (2,y 1),B (﹣1,y 2)都在直线y =﹣2x +1上,则y 1与y 2的大小关系是 . 14.使二次根式有意义的x 的取值范围是 .15.某公司招聘员工一名,某应聘者进行了三项素质测试,其中创新能力为70分,综合知识为80分,语言表达为90分,如果将这三项成绩按5:3:2计入总成绩,则他的总成绩为 分.16.已知一次函数y =kx ﹣3的图象与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则k 的取值范围是 .17.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 度.18.如图,过点N (0,﹣1)的直线y =kx +b 与图中的四边形ABCD 有不少于两个交点,其中A (2,3)、B (1,1)、C (4,1)、D (4,3),则k 的取值范围 .三.解答题 19.(6分)计算 (1)(3﹣2+)÷2 (2)×﹣(+)(﹣)20.已知一次函数y =(2m +1)x +3﹣m(1)若y 随x 的增大而减小,求m 的取值范围; (2)若图象经过第一、二、三象限,求m 的取值范围.21.(8分)为弘扬泰山文化,我市某校举办了“泰山诗文大赛”活动,小学、初中部根据初赛成绩,各选出5名选手组成小学代表队和初中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如下图所示.(1)根据图示填写图表;平均数(分)中位数(分)众数(分)小学部85初中部85 100 (2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(6分)如图,在△ABC中,AD⊥BC,AB=15,AD=12,AC=13.求BC的长.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.24.(6分)已知y+m与x﹣n成正比例,(1)试说明:y是x的一次函数;(2)若x=2时,y=3;x=1时,y=﹣5,求函数关系式;(3)将(2)中所得的函数图象平移,使它过点(2,﹣1),求平移后的直线的解析式.25.(9分)为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的T恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.(1)求甲、乙两种品牌每件的进价分别是多少元?(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.参考答案一.选择题1. A .2. D .3. A .4. B .5. C .6. A .7. D .8. B .9. D 10. B .11. A . 二.填空题 13. y 1<y 2. 14. x ≤2. 15. 77. 16. 1≤k ≤. 17. 100或40. 18. <k ≤2. 三.解答题19.解:(1)原式=(9﹣+4)÷2=12÷2=6; (2)原式=﹣(5﹣3)=3﹣2 =1.20.解:(1)由2m +1<0,可得m <﹣, ∴当m <﹣时,y 随着x 的增大而减小; (2)由,可得﹣<m <3, ∴当﹣<m <3时,函数图象经过第一、二、三象限.21.解:(1)填表:小学部平均数 85( 分),众数85(分);初中部中位数 80( 分). 故答案为85,85,80.(2)小学部成绩好些.因为两个队的平均数都相同,小学部的中位数高,所以在平均数相同的情况下中位数高的小学部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,,∴,因此,小学代表队选手成绩较为稳定.22.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=15,AD=12,AC=13,∴BD===9,CD===5,∴BC=BD+CD=9+5=14.23.(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.24.解:(1)已知y+m与x﹣n成正比例,设y+m=k(x﹣n),(k≠0),y=kx﹣kn﹣m,因为k≠0,所以y是x的一次函数;(2)设函数关系式为y=kx+b,因为x=2时,y=3;x=1时,y=﹣5,所以2k+b=3,k+b=﹣5,解得k=8,b=﹣13,所以函数关系式为y=8x﹣13;(3)设平移后的直线的解析式为y=ax+c,由题意可知a=8,且经过点(2,﹣1),可有2×8+c=﹣1,c=﹣17,平移后的直线的解析式为y=8x﹣17.25.解:(1)设甲品牌每件的进价为x元,则乙品牌每件的进价为(x+30)元,,解得,x=30经检验,x=30是原分式方程的解,∴x+30=60,答:甲品牌每件的进价为30元,则乙品牌每件的进价为60元;(2)设该商场购进甲品牌T恤衫a件,则购进乙品牌T恤衫(100﹣a)件,利润为w元,∵购进甲种品牌的数量不少于乙种品牌数量的4倍,∴a≥4(100﹣a)解得,a≥80w=(50﹣30)a+(100﹣60)(100﹣a)=﹣20a+4000,∵a≥80,∴当y=80时,w取得最大值,此时w=2400元,100﹣a=20,答:获利最大的进货方案是:购进甲品牌T恤衫80件,购进乙品牌T恤衫20件,最大利润是2400元.。
华师版八年级数学上册期中培优测试卷含答案
华师版八年级数学上册期中培优测试卷一、选择题(每题3分,共30分) 1.计算4的结果是( )A .4B .-2C .2D .±22.计算(-a )3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 63.下列说法不正确的是( )A .1的平方根是1B .-2是-8的立方根C .4是64的立方根D .0的平方根是04.估计11-2的值在( )A .3和4之间B .2和3之间C .1和2之间D .0和1之间 5.计算-2a 3b 4÷3a 2b ·ab 3的结果是( )A .-23B .-23abC .-23a 6b 8D .-23a 2b 66.数学课上,老师讲了单项式乘多项式,放学回到家,李刚拿出课堂笔记复习,发现一道题:-4xy (3y -2x -3)=-12xy 2●+ 12xy ,●处被墨水弄污了,你认为●处是( ) A .+8x 2yB .-8x 2yC .+8xyD .-8xy 27.计算:52a ×1 0012-52a ×9992=( )A .5 000aB .1 999aC .10 001aD .10 000a8.在多项式16x 2+1中添加一个单项式,使新得到的多项式能运用完全平方公式分解因式,则下列表述正确的是( ) 嘉琪:添加±8x ,16x 2+1±8x =(4x ±1)2; 陌陌:添加64x 4,64x 4+16x 2+1=(8x 2+1)2; 嘟嘟:添加-1,16x 2+1-1=16x 2=(4x )2. A .嘉琪和陌陌的做法正确 B .嘉琪和嘟嘟的做法正确 C .陌陌和嘟嘟的做法正确D .三名同学的做法都正确9.已知10a =20, 100b =50,则2a +4b -3的值是( )A .9B .5C .3D .610.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+(m+2n)(m-2n)的最大值为()A.24 B.443 C.163D.-4二、填空题(每题3分,共15分)11.写出一个比3大且比4小的无理数:________.12.实数a,b在数轴上的对应点的位置如图所示,那么化简|a+b|+|-a|+3b3的结果为________.(第12题)13.计算:1 2342-1 235×1 233=________.14.若M=(x-2)(x-8),N=(x-3)(x-7),则M与N的大小关系为:M______N. 15.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.已知M是一个“完美数”,且M =x2+4xy+5y2-12y+k(x,y是两个任意整数,k是常数),则k的值为________.三、解答题(20题9分,21题10分,22,23题每题12分,其余每题8分,共75分)16.计算:(1)9+3-27-(-2)2;(2)(-1)2 023-|3-2|+2+14-0.25.17.利用乘法公式计算:(1)(x-y)(x+y)-(x-y)2; (2)3.992-4.01×3.97.18.已知5x+2的立方根是3,3x+y-1的算术平方根是4.求:(1)x,y的值;(2)3x-2y-2的平方根.19.分解因式:(1)a3b-ab; (2)(x+y)2-(2x+2y-1).20.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 009.21.阅读下列材料:因为4<5<9,即2<5<3,所以5的整数部分为2,小数部分为5-2.请仿照上述方法,解答下列问题:(1)7的整数部分是________;(2)7的小数部分为m,11的整数部分为n,求m+n-7的值.22.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n的小正方形,五块是长为m、宽为n的小长方形.(1)观察图形可以发现,代数式2m2+5mn+2n2可以因式分解为______________.(2)若每块小长方形的面积为20,四块正方形的面积和为162.①试求图中所有裁剪线(虚线)长度之和;②求(m-n)2的值.(第22题)23.两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算.例如(7x+2+6x2)÷(2x+1),仿照672÷21计算如图①所示.(第23题)因此(7x+2+6x2)÷(2x+1)=3x+2.(1)阅读上述材料后,试判断x3-x2-5x-3能否被x+1整除,并说明理由;(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,求ab的值;(3)有一个长为x+2,宽为x-2的长方形A,若将它的长增加6,宽增加a就得到一个新长方形B,此时长方形B的周长是A周长的2倍(如图),另有一长方形C,它的一边长为x+10,且长方形B的面积比C的面积大76,求长方形C已知边长的邻边长.答案一、1.C 2.A 3.A 4.C 5.D 6.A7.D8.A9.C10.B二、11.15(答案不唯一)12.-2a13.114.<点拨:∵M=(x-2)(x-8)=x2-10x+16,N=(x-3)(x-7)=x2-10x+21,∴M-N=(x2-10x+16)-(x2-10x+21)=16-21=-5<0,即M<N. 15.36点拨:∵M=x2+4xy+5y2-12y+k=(x+2y)2+(y-6)2+k-36,且M是“完美数”,∴k-36=0,∴k=36.三、16.解:(1)原式=3-3-2=-2.(2)原式=-1+3-2+94-0.5=-3+3+32-12=-2+ 3.17.解:(1)原式=x2-y2-(x2-2xy+y2) =x2-y2-x2+2xy-y2=2xy-2y2.(2)原式=3.992-(3.99+0.02)×(3.99-0.02)=3.992-(3.992-0.022)=3.992-3.992+0.000 4=0.000 4.18.解:(1)由题意得,35x+2=3,3x+y-1=4,∴5x+2=27,3x+y-1=16.∴x=5,y=2.(2)由(1)得,x=5,y=2,∴3x-2y-2=15-4-2=9.∴3x-2y-2的平方根是±3.19.解:(1)a3b-ab=ab(a2-1)=ab(a+1)(a-1).(2)(x+y)2-(2x+2y-1)=(x+y)2-2(x+y)+1=(x+y-1)2.20.解:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2=4-a2+a2-5ab+3a5b3÷a4b2=4-a2+a2-5ab+3ab=4-2ab,当ab=-1 009时,原式=4-2×(-1 009)=4+2 018=2 022.21.解:(1)2(2)m=7-2,因为9<11<16,即3<11<4,所以n=3,所以m+n-7=1.22.解:(1)(2m+n)(m+2n)(2)①由题意知mn=20,2m2+2n2=162,∴m2+n2=81,∴(m+n)2=m2+n2+2mn=121,∴m+n=11(负值已舍去),∴图中所有裁剪线(虚线)长度之和为2(2m+n)+2(m+2n)=6(m+n)=66.②(m-n)2=m2+n2-2mn=81-40=41.23.解:(1)x3-x2-5x-3能被x+1整除.理由如下:(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,则有∴a+9=-3,b=6,∴a=-12,∴ab=-2.(3)长方形A的周长为2(x+2+x-2)=4x,长方形B的周长为2(x-2+a+x+2+6)=4x+2a+12. ∵长方形B的周长是A周长的2倍,∴4x+2a+12=8x.∴a=2x-6.∴长方形B的面积为(x+2+6)(x-2+2x-6)=(x+8)(3x-8)=3x2+16x-64. ∴长方形C的面积为3x2+16x-140.∴所求边长为(3x2+16x-140)÷(x+10)=3x-14.。
人教版2024-2025学年八年级数学上册期中培优试题
人教版2024-2025学年八年级数学上册期中培优试题一、单选题1.下列选项中的四个标志中,是轴对称图形的是( )A .B .C .D .2.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( ) A .8 B .9 C .10 D .113.已知点()11,5P a -和2(2,1)Pb -关于x 轴对称,则2013()a b +的值为( ) A .0 B .1- C .1 D .()20113- 4.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是( )A .90°B .180°C .270°D .360° 5.已知ABC DCB V V ≌,若10BC =,6AB =,7AC =,则CD =( )A .10B .7C .6D .6或7 6.如图,已知ABC V 中,ABC ACB ∠∠=,以点B 为圆心,AB 长为半径的弧分别交AC ,BC 于点D ,E ,连接BD ,ED ,若105CED ∠=︒,求ABC ∠的度数为( )度A .80B .70C .60D .507.ABC V 中,090A B C θαθθααθ∠=-∠=∠=+︒<<<︒,,,.若BAC ∠与BCA ∠的平分线相交于P 点,则APC ∠=( )A .90°B .105°C .120°D .150°8.如图,在△ABC 中,∠ACD =20°,∠B =45°,BC 的垂直平分线分别交AB 、BC 于点D 、E ,则∠A 的度数是( )A .60°B .65°C .70°D .75°9.下图的方格纸中有若干个点,若A 、B 两点关于过某点的直线对称,这个点可能是().A .P 1B .P 2C .P 3D .P 410.在平面直角坐标系中,点A 的坐标是()1,0,点B 的坐标是(),点C 在坐标平面内,以A ,B ,C 为顶点构成的三角形是等腰三角形,且底角为30°,则满足条件的点C 的个数为( )A .3B .4C .5D .6二、填空题11.ABC V 中,30A ∠=︒,高BE ,CF 所在的直线交于点O ,BOC ∠的度数是. 12.AD 为ABC V 的中线,AE 为ABC V 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为.13.如图,△AFD 和△CEB ,点A 、E 、F 、C 同一直线上,在给出的下列条件中,①AE =CF ,②∠D =∠B ,③AD =CB ,④DF BE ∥,选出三个条件可以证明AFD CEB △≌△的是.(用序号表示,写出一种即可).14.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12,则图中△BEF 的面积为.15.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF+CF 取得最小值时,则∠BCF 的度数为.三、解答题16.如图,在ABC V 中,AB AC =,点D 、E 分别在AB 、AC 的延长线上,且13BCD ACB ∠=∠,13CBE ABC ∠=∠.求证:BE CD =.17.如图,在66⨯的方格纸中,线段AB 的两个端分别落在格点上,请按要求画图:(1)在图1中画一个格点四边形APBQ ,且AB 与PQ 垂直.(2)在图2中画一个以AB 为中位线的格点DEF V .18.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,点F 在射线CA 上,且BD=FD .(1)当点F 在线段CA 上时.①求证:BE=CF ;②若AC=6,AF=2,求CD 的长; (2)若∠ADF=15°,求∠BAC 的度数.19.如图,在ABC V 中,BO 平分ABC ∠,CO 平分ACB ∠,过点O 作BC 的平行线与AB ,AC 分别相交于点M ,N .若5AB =,6AC =,求AMN V 的周长.20.已知:如图,AC ∥DF ,AC =DF ,AB =DE .求证:(1)△ABC ≌△DEF ;(2)BC ∥EF .21.如图,ABC V 中,11AB =,5AC =,BAC ∠的平分线AD 与边BC 的垂直平分线DG 相交于点D ,过点D 分别作DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,求BE 的长度.22.如图,CN 是等边△ABC 的外角∠ACM 内部的一条射线,点A 关于CN 的对称点为D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CN 于点E ,P .(1)依题意补全图形;(2)若∠ACN =α,求∠BDC 的大小(用含α的式子表示);(3)用等式表示线段PB ,PC 与PE 之间的数量关系,并证明.23.如图,ABC V 中,点O 为AC 边上的一个动点,过点O 作直线MN BC ∥,设MN 交BCA ∠的外角平分线CF 于点F ,交ACB ∠内角平分线CE 于E .(1)试说明EO OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;(3)在(2)的条件下猜想ABCV满足什么条件能使四边形AECF是正方形,并证明你的结论.。
人教版八年级数学下册期末试卷(培优篇)(Word版含解析)
人教版八年级数学下册期末试卷(培优篇)(Word 版含解析)一、选择题1.要使二次根式3x -有意义,x 的值可以是( )A .﹣1B .0C .2D .4 2.下列条件中,不能得出ABC 是直角三角形的是( ) A .13a =,5c =,12b = B .222a c b -=C .::3:3:4a b c =D .::2:5:3A B C ∠∠∠= 3.如图,在ABCD 中,点E ,F 分别在边BC ,AD 上.若从下列条件中只选择一个添加到图中的条件中.那么不能使四边形AECF 是平行四边形的条件是( )A .//AE CFB .AE CF =C .BE DF =D .BAE DCF ∠=∠ 4.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是该校某班班长统计的全班50名学生一学期课外图书的阅读量(单位本),则这50名学生图书阅读数量的中位数和平均数分别为( )A .18,12B .12,12C .15,14.8D .15,14.5 5.如图1,园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB ⊥BC ,这块草坪的面积是( )A .24米2B .36米2C .48米2D .72米2 6.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°7.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,2AED CED ∠=∠,点G 是DF 的中点,若1BE =,3CD =,则DF 的长为( )A .8B .9C .42D .210 8.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A →C →D 以1cm /s 的速度运动到点D .设点P 的运动时间为(s ),△PAB 的面积为y (cm 2).表示y 与x 的函数关系的图象如图2所示,则a 的值为( )A .5B .52C .2D .25二、填空题9.代数式2021x -中,字母x 的取值范围是____________.10.已知菱形ABCD 的边长为4,∠A =60°,则菱形ABCD 的面积为_________. 11.如图,在Rt ABC ∆中,90C ∠=︒,23AC BC +=,1ABC S ∆=,则斜边AB 的长为____.12.如图,四边形ABDE 是长方形,AC ⊥DC 于点C ,交BD 于点F ,AE =AC ,∠ADE =62°,则∠BAF 的度数为___.13.请你写出一个一次函数的解析式,使其满足以下要求:①图象经过()0,2;②y随x 增大而减小.该解析式可以是_______.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°, AB=2,则BC 的长为___________.15.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为 ________________.16.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B落在ED上的点F 处,若1BE=,3BC=,则CD的长为_________.三、解答题17.计算:(162153(2241086+1218.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________.(2)如图,已知格点(小正方形的顶点)()0,0O ,()3,0A ,()0,4B ,请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的两个勾股四边形OAMB .20.如图,在平行四边形ABCD 中,M ,N 是对角线BD 上的点,且BM DN =,DE 平分ADB ∠交AB 于点E ,BF 平分DBC ∠交CD 于点F .(1)求证:四边形EMFN 是平行四边形;(2)当四边形EMFN 是菱形时,求证:四边形BEDF 是菱形.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.23.如图1,在平面直角坐标系xOy中,直线l1:y=x+6交x轴于点A,交y轴于点B,经过点B的直线l2:y=kx+b交x轴于点C,且l2与l1关于y轴对称.(1)求直线l2的函数表达式;(2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针α度后得到线段DF.①如图2,当点D的坐标为(﹣2,m),α=45°,且点F恰好落在线段BC上时,求线段AE 的长;②如图3,当点D的坐标为(﹣1,n),α=90°,且点E恰好和原点O重合时,在直线y=313G,使得∠DGF=∠DGO?若存在,直接写出点G的坐标;若不存在,请说明理由.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形.(2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.26.在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.【参考答案】一、选择题1.D解析:D【分析】二次根式的被开方数大于等于零,由此计算解答.【详解】解:∵30x -≥,∴3x ≥,观察只有D 选项符合,故选:D .【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.2.C解析:C【分析】根据三角形内角和定理可分析出D 的正误;根据勾股定理逆定理可分析出A 、B 、C 的正误.【详解】解:A 、∵22251213+= ,∴能构成直角三角形,故此选项不符合题意;B 、∵222a c b -=,∴222a b c =+ ,∴能构成直角三角形,故此选项不符合题意;C 、∵()()()222334x x x +≠,∴不能构成直角三角形,故此选项符合题意;D 、设∠A =2x °,∠B =5x °,∠C =3x °,3x +2x +5x =180,解得:x =18,则5x °=90°,△ABC 是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B解析:B【解析】【分析】根据平行四边形的判定条件进行逐一判断即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AF ∥EC ,AD =BC ,∠B =∠D ,AB =CD∵AE ∥CF ,∴四边形AECF 是平行四边形,故A 不符合题意;∵BE =DF∴AF =CE ,∴四边形AECF 是平行四边形,故C 不符合题意;∵∠BAE =∠DCF ,∴△ABE ≌CDF (SAS ),∴AE =CF ,BE =DF ,∴AF =CE∴四边形AECF 是平行四边形,故D 不符合题意;由AE =CF ,一组对边平行另一组对边相等,不能判断四边形AECF 是平行四边形,故B 符合题意,故选B.【点睛】本题主要考查了平行四边形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.4.C解析:C【解析】【分析】根据中位数和平均数的定义求解即可.【详解】解:由折线统计图知,第25、26个数据分别为12、18,∴这50名学生图书阅读数量的中位数为1218152+= (本),平均数为7812171815211014.850⨯+⨯+⨯+⨯=(本), 故选:C .【点睛】本题主要考查中位数和平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.5.B解析:B【分析】连接AC ,先根据勾股定理求出AC 的长,然后利用勾股定理的逆定理证明△ACD 为直角三角形.从而用求和的方法求面积.【详解】连接AC ,则由勾股定理得AC=5米,因为AC 2+DC 2=AD 2,所以∠ACD=90°.这块草坪的面积=S Rt △ABC +S Rt △ACD =12AB•BC+12AC•DC=12(3×4+5×12)=36米2. 故选B .【点睛】此题主要考查了勾股定理的运用及直角三角形的判定等知识点.6.B解析:B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.D解析:D【解析】【分析】由矩形性质及G为中点,可得∠AGE=2∠ADE=2∠CED=∠AED,从而可得AE=AG,由矩形性质AB=CD=3,由勾股定理可得AE,再根据直角形的性质从而可求得DF的长.【详解】∵四边形ABCD是矩形∴∠DAB=∠ABC=∠ABE=90゜,AB=CD=3,AD∥BC∵G点是DF的中点∴AG是Rt△DAF斜边DF上的中线∴AG=DG=1DF2∴∠GAD=∠ADE∴∠AGE=2∠ADE∵AD∥BC∴∠CED=∠ADE∴∠AGE=2∠CED∵∠AED=2∠CED∴∠AED=∠AGE∴AE=AG在Rt△ABE中,由勾股定理得:AE∴AG=∴2==DF AG故选:D.【点睛】本题考查了等腰三角形的判定,勾股定理,矩形的性质,直角三角形斜边上中线的性质等知识,关键是得出∠AED =∠AGE .8.B解析:B【分析】由图2知,菱形的边长为a ,对角线BD 为当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=,即可求解. 【详解】解:由图2知,菱形的边长为a ,对角线AC =则对角线BD 为= 当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=,由图2知,当x =y =a ,即a 12= 解得:a 52=, 故选:B .【点睛】本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题9.x ≥2021【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】解:∵∴20210x -≥,解得:2021x ≥.故答案为:2021x ≥.【点睛】本题主要考查了二次根式有意义的条件,正确掌握定义是解题关键.10.A解析:【解析】【分析】作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.【详解】如图所示,菱形ABCD中,AB=AD=4,∠A=60°,过点D作DE⊥AB于点E,则3sin60432DE AD=︒==∴菱形ABCD的面积为AB∙DE=4×2383故答案为:83【点睛】本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.11.A解析:2【解析】【分析】根据三角形的面积可求得两直角边的乘积的值,再根据完全平方和公式即可求得AB的长.【详解】∵∠C=90°,∴AB2=AC2+BC2,∵S△ABC=12AC•BC=1,∴AC•BC=2,∵3∴(AC+BC)2=AC2+BC2+2AC•BC=AB232,∴AB2=8,∴2故答案为2【点睛】本题考查了勾股定理,完全平方公式,熟练掌握勾股定理的内容以及完全平方公式的变形是解题的关键.12.B解析:34°【分析】由矩形的性质可得∠BAE =∠E =90°,由HL 可证Rt △ACD ≌Rt △AED ,可得∠EAD =∠CAD =28°,即可求解.【详解】解:∵四边形ABDE 是矩形,∴∠BAE =∠E =90°,∵∠ADE =62°,∴∠EAD =28°,∵AC ⊥CD ,∴∠C =∠E =90°∵AE =AC ,AD =AD ,∴Rt △ACD ≌Rt △AED (HL )∴∠EAD =∠CAD =28°,∴∠BAF =90°-28°-28°=34°,故答案为:34°.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.13.满足2(0)y kx k =+<即可,如y=-x+2,【分析】此一次函数解析式只要满足0k <且b=2即可.【详解】解:因为函数y 随x 的增大而减小,所以k <0,因为图象经过()0,2,所以b =2,故该解析式可以是:y =−x +2.【点睛】此题是开放性试题,考查函数图形及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.14.【分析】由条件可求得AOB 为等边三角形,则可求得AC 的长,在Rt ABC 中,由勾股定理可求得BC 的长.【详解】120AOD ∠=︒,∴60AOB ∠=︒,四边形ABCD 为矩形∴AO OC OB==,∴AOB为等边三角形,∴2AO OC OB AB====,∴4AC=,在Rt ABC中,由勾股定理可求得BC=故答案为:【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键. 15.【分析】设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a =kb,b﹣a=kb,求出b=﹣2a,即可求k的值.【详解】解:设C(a,﹣3a),B(b,kb解析:3 2【分析】设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a=kb,b﹣a =kb,求出b=﹣2a,即可求k的值.【详解】解:设C(a,﹣3a),B(b,kb),∵四边形ABCD是正方形,∴BC//x轴,∴﹣3a=kb,∵BC=AB,∴b﹣a=kb,∴b﹣a=﹣3a,∴b=﹣2a,∴﹣3a=﹣2ak,∴k=32,故填32.【点睛】本题主要考查正方形的性质及一次函数的综合运用,根据题意设出点坐标、再根据正方形的性质明确线段间的关系是解答本题的关键.16.【分析】证明△AED≌△FDC可得 ED=CD,据此列方程解即可.【详解】解:由题意可知AD=BC=CF, ∠AED=∠CDF, ∠A=∠CFD=90°,所以△AED≌△FDC,所以ED解析:【分析】证明△AED≌△FDC可得 ED=CD,据此列方程解即可.【详解】解:由题意可知AD=BC=CF, ∠AED=∠CDF, ∠A=∠CFD=90°,所以△AED≌△FDC,所以ED=CD,设AE=x,则x²+3²=(x+1) ²,解得x=4,所以CD=5.故答案是:5.【点睛】本题考查了矩形的性质、三角形全等的判定和性质以及勾股定理,由折叠得到相应的数量关系从而证明三角形全等是解题关键.三、解答题17.(1);(2)2.【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解.【详解】解:(1)()×;解析:(1)2)2.【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解.【详解】解:(1(26=2+=2.【点睛】本题考查了二次根式的运算,熟知二次根式的加减乘除运算法则,并正确计算是解题关键.18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=,∴△ABC 为直角三角形, ∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF 为等腰三角形, ∵70km ED =,∴EF =140km ,∵台风的速度为20km/h ,∴140÷20=7h ,∴台风影响该海港持续的时间有7h .【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方解析:(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形OAMB对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方形都满足一组相邻两边的平方和等于一条对角线的平方,故答案为:矩形,正方形;(2)如图,证明:∵∠AOB=90°,∴222+=,OA OB AB∴四边形OAMB为勾股四边形,由勾股定理得,22OM+345∴AB =OM ,∴四边形OAMB 都是勾股四边形,符合题意.【点睛】本题为新定义问题,考查了勾股定理等知识,矩形、正方形的性质,熟知勾股定理,理解勾股四边形的定义是解题关键.20.(1)见解析;(2)见解析【分析】(1)连接EF 交MN 于O ,证△ADE ≌△CBF (ASA ),得DE=BF ,再证DE ∥BF ,则四边形BEDF 是平行四边形,得OE=OF ,OB=OD ,然后证OM=ON 解析:(1)见解析;(2)见解析【分析】(1)连接EF 交MN 于O ,证△ADE ≌△CBF (ASA ),得DE =BF ,再证DE ∥BF ,则四边形BEDF 是平行四边形,得OE =OF ,OB =OD ,然后证OM =ON ,即可得出结论;(2)由菱形的性质得EF ⊥MN ,由(1)得四边形BEDF 是平行四边形,即可得出结论.【详解】证明:(1)连接EF 交MN 于O ,∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =BC ,AD ∥BC ,∴∠ADB =∠DBC ,∵DE 平分∠ADB ,BF 平分∠DBC ,∴∠ADE =∠EDB =∠CBF =∠FBD ,在△ADE 和△CBF 中,A C AD BCADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CBF (ASA ),∴DE =BF ,∵∠EDB =∠FBD ,∴DE ∥BF ,∴四边形BEDF 是平行四边形,∴OE =OF ,OB =OD ,∵BM =DN ,∴OB -BM =OD -DN ,即OM =ON ,∴四边形EMFN 是平行四边形;(2)∵四边形EMFN 是菱形,∴EF ⊥MN ,由(1)得:四边形BEDF 是平行四边形,∴平行四边形BEDF 是菱形.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的平对于性质等知识;熟练掌握菱形的判定与性质,证明△ADE≌△CBF是解题的关键,属于中考常考题型.21.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i,1,20221i ii--;(2)﹣i﹣6;(32222(24)x a x b+-+25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案.【详解】(1)i3=i2•i=﹣1×i=﹣i,i4=i2•i2=﹣1×(﹣1)=1,设S=i+i2+i3+ (i2021)iS=i2+i3+…+i2021+i2022,∴(1﹣i)S=i﹣i2022,∴S=20221i ii--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a +bi =2543i -=25(43)(43)(43)i i i +-+=10075169i ++=4+3i , ∴a =4,b =3,x ,0)到点A (0,4),B (24,3)的最小距离,∵点A (0,4)关于x 轴对称的点为A '(0,﹣4),连接A 'B 即为最短距离,∴A 'B 25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y2与x 之间的函数关系式,将x=8分别代入y1、y2关于x 的函数解析式,比较即解析:(1)y 1=15x +30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y 2与x 之间的函数关系式,将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.【详解】解:(1)根据题意,得:138430k b b +=⎧⎨=⎩,解得:11830k b =⎧⎨=⎩, ∴方案一所需费用y 1与x 之间的函数关系式为y 1=18x +30,∴k 1=18,b =30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k 2=30×0.8=24;∴y 2=24x ,当游泳8次时,选择方案一所需费用:y 1=18×8+30=174(元),选择方案二所需费用:y 2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①422+;②1213(23G -,313)-或2(2,313)G -或3313(22G +,313)- 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得:26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒,AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆, 22(62)442HF AD ∴==-++=,AE HD =,又6OA OB OC ===,90AOB COB ∠=∠=︒,ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,242BH FH ∴==, 62AB =,62442422AE HD AB BH AD ∴==+-=+-=+.②将(1,)D n -代入6y x =+中,得:165n =-+=,(1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒,FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=,(4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠,设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =-时,21323x =-, 1213(23G ∴-,313)-; 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°,∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a ,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴++-+=+,解得:122a a ==,2(2,313)G ∴;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =,33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+, 联立方程组21333313y x y ⎧=-+⎪⎨⎪=⎩, 解得:3132313x y ⎧=⎪⎨⎪=⎩ 3313(2G ∴,313); 综上所述,符合条件的G 的坐标为1213(2G ,313)或2(2,313)G 或3313(2G ,313).【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1);(2)点P 的坐标为(,)或(,);(3)的最小值为;点N 的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线解析:(1)122y x =-+;(2)点P 的坐标为(163,43)或(83,43-);(3)BM MN NC ++的最小值为6N 的坐标为(172,711). 【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••, ∴3AC AP =,∵AC ==∴133AP =⨯, ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴2242(4)(4)243AP x x x =-+-=•-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52, ∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =, ∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-, 2211(24)157B C '++∴BM MN NC ++有最小值为:66157B C '+=+∵点N的横坐标为:517622+=,∴点N的纵坐标为:6177411211y=⨯-=,∴点N的坐标为:(172,711).【点睛】本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)见详解;(2)【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,解析:(1)见详解;(2)722 x=-【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,得四边形EMFN是平行四边形,求出MN=EF,即可得出结论;(2)连接MN,作MH⊥BC于H,则MH=AB=3,BH=AM=x,得HN=BC-BH-CN=4-2x,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt△MHN中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,2222345AB BC+=+,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN 为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得:32+(4-2x )2=42,解得:x=72, ∵0<x <2,∴x=72- 【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键. 26.(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点解析:(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解; ②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解.【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF == , 6OD = ,3OE = ,3OF = ,∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ , 解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a +=, ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.。
八年级数学下《四边形》培优练习卷
八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。
A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。
(完整word版)八年级上数学培优及答案
八年级数学———培优精品教案◆◆◆ 认真解答,一定要细心哟!一、填空题 1、设ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a ,则第三边的长c 的取值范围是 .2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。
3、在△ABC 中,∠B 和∠C 的平分线相交于O,若∠BOC=α,则∠A=_________。
4、直角三角形两锐角的平分线交角的度数是 。
5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 .6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为__ _________。
7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km )和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。
其中正确的说法有_______________。
8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题1、等腰三角形腰上的高与底边的夹角为Cm °则顶角度数为( )A.m B.2mC.(90—m) D 。
(90-2m)2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则Oy (微克/毫升) x (时)314 8 4 当1≤x ≤6时,y 的取值范围是( ) A .错误!≤y ≤错误! B .错误!≤y ≤8 C .错误!≤y ≤8 D .8≤y ≤16八年级数学—--培优精品教案◆◆◆认真解答,一定要细心哟!3、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③B 。
培优测试卷八年级上册数学
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 3.14D. 无理数2. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^23. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a - b < 0D. a + b < 04. 下列图形中,面积最小的是()A. 正方形B. 长方形C. 等腰三角形D. 圆形5. 下列各式中,表示圆的周长的是()A. 2πrB. πr^2C. πdD. 4r6. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 4D. 67. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 28. 下列各式中,表示圆柱体积的是()A. πr^2hB. 2πrhC. πd^2hD. 4πrh9. 若一个三角形的两边长分别为3和4,则第三边的长度范围是()A. 1 < 第三边 < 7B. 2 < 第三边 < 8C. 3 < 第三边 < 7D. 4 < 第三边 < 810. 下列各式中,正确的是()A. √(a^2) = aB. √(a^2) = -aC. √(a^2) = |a|D. √(a^2) = a + b二、填空题(每题5分,共20分)11. 若a > 0,b < 0,则|a + b|的值为________。
12. 若x^2 - 5x + 6 = 0,则x的值为________。
13. 一个等边三角形的边长为6,其面积为________。
14. 若一个数的平方是25,则这个数是________。
八年级初二数学 数学勾股定理的专项培优练习题(含答案
八年级初二数学 数学勾股定理的专项培优练习题(含答案一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 2.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( )A .3B .6C .10D .9 3.如图,在Rt ABC ∆中,90, 5 ,3ACB AB cm AC cm ︒∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当∆ABP 为等腰三角形时,t 的值不可能为( )A .5B .8C .254D .2584.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形5.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .46.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539+B .2539+C .18253+D .25318+ 7.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .88.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )A .6B .2C .8D .109.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .143D .14210.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .3二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.13.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___14.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.15.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.16.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°17.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.18.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.19.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE 的长.22.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.23.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)28.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 6m -n ﹣12)2=0.(1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.C解析:C【分析】做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】过点F 做FH AD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,∴ED=BE ,CF=C F ',3BC CD '==∵ED=BE ,DE=AD-AE=9-AE∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE∴()22293AE AE -=+∴AE=4∴DE=5∴9C F BC BF BF '=-=-∴Rt BC F ',3BC '=,9C F BF '=-∴()22293BF BF -+=∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 3.C解析:C【分析】根据ABP △为等腰三角形,分三种情况进行讨论,分别求出BP 的长度,从而求出t 值即可.【详解】在Rt ABC 中,222225316BC AB AC =-=-=,4BC cm ∴=,①如图,当AB BP =时, 5 ,5BP cm t ==;②如图,当AB AP =时,∵AC BP ⊥,∴28 BP BC cm ==,8t =;③如图,当BP AP =时,设AP BP xcm ==,则4,3( )CP x cm AC cm =-=,∵在Rt ACP 中,222AP AC CP =+,∴()22234x x =+-, 解得:258x =, ∴258t =, 综上所述,当ABP △为等腰三角形时,5t =或8t =或258t =. 故选:C .【点睛】本题考查了勾股定理,等腰三角形的性质,注意分类讨论.4.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.5.B解析:B【分析】过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt △ADE 中,22112+=∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE ,又∵AB=AC,∴△BAE ≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴在Rt △BED 中,()22223211BE DE +=+=故选B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.6.A解析:A【解析】分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.详解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,PF=3AP=332.∴在直角△ABF中,AB2=BF2+AF2=(4+332)2+(32)2=25+123.则△ABC的面积是3•AB2=3•(25+12)253故选A.点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.7.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A的面积等于100-64=36;故选:B.【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.8.A解析:A【分析】设CF=x,则AC=x+2,再由已知条件得到AB=6,BC=6+x,再由AB2+AC2=BC2得到62+(x+2)2=(x+4)2,解方程即可.【详解】设CF=x,则AC=x+2,∵正方形ADOF的边长是2,BD=4,△BDO≌△BEO,△CEO≌△CFO,∴BD=BE,CF=CE,AD=AF=2,∴AB=6,BC=6+x,∵∠A=90°,∴AB2+AC2=BC2,∴62+(x+2)2=(x+4)2,解得:x=6,即CF=6,故选:A.【点睛】考查正方形的性质、勾股定理,解题关键是设CF=x,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.9.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴EF=22+=.1414142故选D.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.10.B解析:B【分析】根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴BC=2286+=10,根据翻折的性质可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.设CD=x,则A′D=8-x,根据勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案为:B.【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.二、填空题11.5【详解】解:如图,延长AE交BC于点F,∵点E是CD的中点,∴DE=CE,,∵AB⊥BC,AB⊥AD,∴AD∥BC,∴∠ADE=∠BCE且DE=CE,∠AED=∠CEF,∴△AED≌△FEC(ASA),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,13AF ==,6.52AF AE == 故答案为:6.5.12.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.13.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P =4.B=S Q =9,C=S K ,根据勾股定理,可得A+B=C ,∴C=13.若A=S P =4.C=S Q =9,B=S K ,根据勾股定理,可得A+B=C ,∴B=9-4=5.∴S K 为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.14.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.15.【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y =;当x=9时,x 、y =;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.16.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.17.78. 【解析】∵∠C =90°,AB =5,BC =4,∴AC .∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78.18.9或9【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= , DH EH ∴=,333AD AH DH =-=, 45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒, 230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= .又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键. 19.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.20.【分析】 根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4, ∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt△ABF中,可由勾股定理求出BF的长;(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在Rt△CEF中,可由勾股定理求出CE的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵AFE是由ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在Rt△ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x ,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,CF+CE=EF,在Rt△CEF中,由勾股定理得:222∴2224+x=(8-x),解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.22.(12)见解析;(3)2【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A作AD⊥AB,且AD=BN.只要证明△ADC≌△BNC,推出CD=CN,∠ACD=∠BCN,再证明△MDC≌△MNC,可得MD=MN,由此即可解决问题;(3)过点B作BP⊥AB,使得BP=AM=1,根据题意可得△CPB≌△CMA,△CMN≌△CPN,利用全等性质推出∠BNP=30°,从而得到NB和NP的长,即得BM.【详解】解:(1)当MN最长时,,当BN最长时,(2)证明:如图,过点A作AD⊥AB,且AD=BN,在△ADC和△BNC中,AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△BNC (SAS ),∴CD=CN ,∠ACD=∠BCN ,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN ,在△MDC 和△MNC 中,CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MDC ≌△MNC (SAS ),∴MD=MN在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN ,∴BN=22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,综上,∠A=45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC<90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.24.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC 绕点C 逆时针旋转60°,得到△CBF ,过点F 作FG ⊥AB ,交AB 的延长线于点G ,连接EF ,∴∠CBE=∠CAD ,∠BCF=∠ACD , BF=AD∵AC=BC ,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF ,FG=3BF ∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF ,CE=CE∴△ECF ≌△ECD∴EF=ED在Rt △EFG 中,EF 2=FG 2+EG 2又∵EG=EB+BG∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(3BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆;④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯112223 22=⨯⨯+⨯⨯13=+,故②正确;③在Rt AHB中,由①知:6EH HB==,∴62AH AE EH=+=+,2222225662322AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)∠CBD=20°;(2)AD=164;(3) △BCD 的周长为m+2 【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x2+62=(8-x)2,解得:x= 74,AD=8-74=164;(3)∵△ABC 的面积为m+1,∴12AC•BC=m+1,∴AC•BC=2m+2,∵在Rt△CAB中,CA2+CB2=BA2,∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB,∴CD+DB+BC=m+2.即△BCD的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.28.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵6m-+(n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F (-2,8),作直线EF 交直线AB 于P ,图2∵直线EC 解析式为y =32x -2,直线CF 解析式为y =-23x +203, ∵32×(-23)=-1, ∴直线CE ⊥CF ,∵EC =13CF =13∴EC =CF ,∴△FCE 是等腰直角三角形,∴∠FEC =45°,∵直线FE 解析式为y =-5x -2,由21252y x y x =-+⎧⎨=--⎩解得143643x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为(1464,33-). 【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.29.(1),CM ME CM EM =⊥;(2)见解析;(3)25CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),∴HM =EM ,EF =BH ,∵CD =BC ,∴CE =CH ,∵∠HCE =90°,HM =EM ,∴CM =ME ,CM ⊥EM .(2)如图2,连接BD ,∵四边形ABCD 和四边形EDGF 是正方形,∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点, ∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒,∴CM ME ⊥.(3)如图3中,连接EC ,EM .由(1)(2)可知,△CME是等腰直角三角形,∵22=+=EC26210∴CM=EM=25【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)AB=45;(2)见解析;(3)CD+CF的最小值为47.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE=2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =43,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【详解】(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,在Rt△ABO中,AB=2245+=AO BO(2)如图,过点D作DF⊥AO,∵DE=DO,DF⊥AO,∴EF=FO,∵m=4,∴AO=BO=4,∴∠ABO=∠OAB=45°,。
人教版八年级数学培优题精选18例(含答案)
A、1.5B、2C、2.25D、2.5爬到点 B ,如果它运动的路径是最短,则 AC 的长度是多少?少?车是否超速?例题6、对实数 a , b ,定义新运算☆如下: a ☆ b =八年级数学培优题精选18例(含答案)例题7、计算八年级数学培优题精选18例(含答案)例题9、点 A(3x + 2y , -2)关于 y 轴的对称点为 B(-1 ,2x + 4y), 则点 M (x , y)关于 x 轴的对称点的坐标为多少?答案:(1,1)。
例题10、如图所示,在平面直角坐标系中有 A , B 两点:八年级数学培优题精选18例(含答案)(1)写出 A , B 两点的坐标;(2)若线段 AB 各顶点的横坐标不变,纵坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A1 ,B1 ,并连接 A1B1 ,所得的线段 A1B1 与线段 AB 有怎样的位置关系?(3)在(2)的基础上,纵坐标不变,横坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A2,B2 ,并连接这两个点,所得的线段 A2B2 与线段 AB 有怎样的位置关系?解:(1)点 A 的坐标为(1,2),点 B 的坐标为(3,1);(2)如图所示,线段 A1B1 与线段 AB 关于 x 轴对称;(3)如图所示,线段 A2B2 与线段 AB 关于原点对称。
例题11、甲乙两人赛跑,所跑路程与时间的关系如图所示。
根据图像得到如下四个信息,其中错误的是(C )八年级数学培优题精选18例(含答案)A、这是一次 1500 m 赛跑B、甲、乙两人中先到达终点的是乙C、甲、乙同时起跑D、甲在这次赛跑中的速度为 5 m/s例题12、如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点 G ,∠BDC = 140°,∠BGC = 110°,则∠A 的度数为(C)八年级数学培优题精选18例(含答案)A、70°B、75°C、80°D、85°例题13、如图所示,已知 AB∥DE ,一个弯形管道 ABCDE 的拐角∠EDC = 140°,∠CBA = 150°,则∠C = ?八年级数学培优题精选18例(含答案)答案:∠C = 70°。
八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)
八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学三角形填空题(难)1.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD至M使DM=AD,连接CM在△ABD和△CDM中,AD MDADB MDCBD CD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△MCD(SAS),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.2.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.3.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.4.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.5.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.cm.【答案】242【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=1×12×4=24cm2.2考点:1.三角形的面积;2.三角形三边关系.6.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B =40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】【分析】【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.8.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
沪科版八年级数学培优试卷
一、选择题(每题5分,共25分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. 3.1415926…2. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. ab > 0D. a/b > 03. 在△ABC中,若∠A = 45°,∠B = 60°,则△ABC是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形4. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 3x^2 - 25. 下列各式中,绝对值最小的是()A. |-3|B. |2|C. |-2|D. |-1|二、填空题(每题5分,共25分)6. 已知一元二次方程 x^2 - 4x + 3 = 0,则该方程的解为 _______。
7. 在等腰三角形ABC中,底边AB=8cm,腰AC=10cm,则三角形ABC的周长为_______ cm。
8. 若函数y=3x-2的图象与x轴的交点坐标为(a,0),则a的值为 _______。
9. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点坐标为 _______。
10. 若a、b、c是等差数列的前三项,且a+b+c=9,a+c=7,则b的值为 _______。
三、解答题(共50分)11. (15分)已知一元二次方程 x^2 - 6x + 9 = 0,求该方程的解,并判断其根的情况。
12. (15分)在△ABC中,已知AB=6cm,BC=8cm,AC=10cm,求△ABC的面积。
13. (20分)已知函数y=kx+b(k≠0),若该函数的图象经过点A(2,3)和B (-1,1),求该函数的解析式。
答案:一、选择题1. D2. B3. D4. C5. C二、填空题6. x1 = x2 = 37. 248. a = 5/39. (2,-3)10. b = 5三、解答题11. 解:由题意知,x^2 - 6x + 9 = (x - 3)^2 = 0,所以x1 = x2 = 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 已知x 为实数,且13-x +14-x +15-x +…+117-x 的值是一个确定的常数,则这个常数是 。
2如图,直线
13
3
+-
=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC=90°,如果在第二象限内有一点
⎪⎭
⎫
⎝⎛21,a P ,且△ABP 的面积与△ABC 的面积相等,a 的值是 ____________.
221
1图59
C
B
3 如图59,△ABC 中阴影部分面积为_________.
4 函数
3|2|y x 的图象如图2所示,则点A 与B 的坐标分别是A ,B
5若直线1103457323=+y
x 与直线897543177=+y x 的交点坐标是(a ,b )
,则22
2004b a
+的值是
6 已知:a 、b 是正数,且a+b=22214a b ++的最小值是
7若n 满足(n-2004)2
+(2005-n )2
=1,则(2005-n )(n-2004)等于 8如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线
y ax =,(1)y a x =+,(2)y a x =+相交,其中0a >.则图中阴影部分的面
积是 . 9若x=2-
2,则x 4
-3x 3
-4x 2
+10x-7=______________.
10已知:不论k 取什么实数,关于x 的方程16
32=--+bk
x a kx (a 、b 是常数)的根总是x =1,则a==______________. 11线段
1
2
y x a =-+(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积
为_____________.
12如图,△ABC 中,∠A=30°以BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在P
O
C
B A x
y 第2题图 y
x
A
O
B
BE 上,此时∠CDB =82°,则原三角形的∠B =____________度。
13 在直角坐标系xOy 中,x 轴上的动点M (,0x )到定点P (5,5)、Q (2,1)的距离分别为MP 和MQ .
当MP
MQ 最小值时,点M 的横坐标x
14 如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是 10,则BC+CD 等于_ 15 如图,在△ABC 中,D 是BC 上的一点,已知AC=5,AD=6,BD=10,CD=5,则△ABC 的面积 16 如图,直线l 上摆放着两块大小相同的直角三角形△ABC 和△ECD,∠ACB=∠DCE=90°,且BC=CE=3,
AC=CD=4,将△ECD 绕点C 逆时针旋转到△E 1CD 1位置,且D 1E 1∥l ,则B 、E 1两点之间的距离为_ 。
17 如图,若长方形APHM 、BNHP 、CQHN 的面积分别是7、4、6,则△PDN 的面积是
18 如图10,已知BD 、CE 分别是△ABC 的边AC 和AB 上的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB 。
求证:(1)AP =AQ ;(2)AP ⊥AQ 。
图10
F
D
E C
P A
Q B
19 在Rt?ABC 中,∠C=900
,AC=6,BC=8, 点E 在直角边AC 上(点E 与A 、C 两点均不重合). (1)若EF 平分Rt?ABC 的周长,设AE 的长为x ,试用含x 的代数式表示?AEF 的面积; (2)是否存在线段EF 将Rt?ABC 的周长和面积同时平分若存在,求出此时AE 的长;若
C D
A B
C
A
D
Q
N
B P M
H
不存在,请说明理由
20 如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分线于E,AE交BC于F,
求证:CE等于AF的一半
21 如图,直线AN:y=kx-4过A(12,0)与y轴交于点N;过点K(8,0)且垂直于x轴的直线与过A点的直
线y=2x+b交于点M.(1)试判断△AMN的形状,并说明理由;(2)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E.当直线l平移时(包括l与直线AN重合),在直线MK上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
A
O
N
D
M
y
E x
l
K
A
O
N
D
M
y
E x
l
K
22 已知,在等腰Rt△ABC中,∠ABC=90°,AB=CB,D为直线AB上一点,连接CD,过C作CE⊥CD,且CE=CD,
连接DE,交AC于F.
(1)如图1,当D、B重合时,求证:EF=BF.
(2)如图2,当D在线段AB上,且∠DCB=30°时,请探究DF、EF、CF之间的数量关系,并说明理由.(3)如图3,在(2)的条件下,在FC上任取一点G,连接DG,作射线GP使∠DGP=60°,交∠DFG的角平分线于点Q,求证:FD+FG=FQ.。