2020版高考物理一轮复习 单元高考模拟特训(四)新人教版.

合集下载

2020届新高考物理模拟仿真卷第4卷

2020届新高考物理模拟仿真卷第4卷

2020届新高考物理模拟仿真卷第4卷1、通过学习波粒二象性的内容,你认为下列说法符合事实的是( )A.宏观物体的物质波波长非常小,极易观察到它的波动性B.光和电子、质子等实物粒子都具有波粒二象性C.康普顿效应中光子与静止的电子发生相互作用后,光子的波长变小了D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须大于这个波长,才能产生光电效应2、2019年春晚在舞蹈《春海》中拉开帷幕。

如图所示,五名领舞者在钢丝绳的拉动下以相同的速度缓缓升起,下列说法正确的是()A.观众观赏表演时可把领舞者看做质点B.2号和4号领舞者的重力势能一定相等C.3号领舞者的重力势能可能为负值D.她们在上升过程中机械能守恒3、为落实《青岛市促进中小学生全面发展“十个一”项目行动计划》,各学校在积极培养学生的体育技能。

得如图所示,某同学在训练引体向上。

他先用两手握紧单杠,双臂竖直,身体悬垂;接着用力上拉使下颌超过单杠(身体无摆动),稍作停顿。

下列说法正确的是()A.初始悬垂时若增大两手间的距离,单臂的拉力变小B.初始悬垂时若增大两手间的距离,两臂拉力的合力变大C.在上升过程中单杠对人的作用力始终大于人的重力D.在上升过程中单杠对人的作用力先大于人的重力后小于人的重力 4、在“用油膜法估测分子的大小”实验中,下列说法错误的是( )A.在蒸发皿内盛一定量的水,再滴入一滴油酸酒精溶液,待其散开稳定后撒入痱子粉B.在蒸发皿上覆盖透明玻璃,描出油膜形状,用透明方格纸测量油膜的面积C.油酸未完全散开时就开始测量油酸膜的面积,会导致计算结果偏大D.求面积时以坐标纸上边长为1 cm 的正方形为单位计算轮廓内正方形的个数,不足半个的舍去,多于半个的算一个5、如图所示,小朋友在玩一种运动中投掷的游戏,目的是在运动中将手中的球投进离地面高3m 的吊环,他在车上和车一起以2m/s 的速度向吊环运动,小朋友抛球时手离地面1.2m,当他在离吊环的水平距离为2m 时将球相对于自己竖直上抛,球刚好进入吊环,他将球竖直向上抛出的速度是(g 取210m/s )( )A.1.8m/sB.3.2m/sC.6.8m/sD.3.6m/s6、质量为m 、带电荷量为q 的物体静止在水平面上,某时刻在恒定电场力的作用下由静止开始运动一段时间后撤去电场,其运动的速度随时间变化的v t 图象如图所示,下列说法正确的是( )A.电场强度大小为(N/C)mqB.0~3 s 内物体电势能减少6(J)mC.0~3 s 内物体的机械能增加2(J)mD.0~3 s 内电场力做功的平均功率为3(J)m7、如图所示,上端开口的光滑圆柱形气缸竖直放置,开始时活塞放置在卡环a b 、上,下方封闭了一定质量的理想气体。

2020年普通高等学校招生统一考试物理模拟卷四(含答案解析)

2020年普通高等学校招生统一考试物理模拟卷四(含答案解析)

2020年普通高等学校招生统一考试物理模拟卷四1、下列说法正确的是( )A.图甲中,有些火星的轨迹不是直线,说明炽热微粒不是沿砂轮的切线方向飞出的B.图乙中,两个影子在x、y轴上的运动就是物体的两个分运动C.图丙中,小锤用较大的力去打击弹性金属片,A、B两球可以不同时落地D.图丁中,做变速圆周运动的物体所受合外力F在半径方向的分力大于所需要的向心力2、如图所示为某弹簧振子在0~5 s内的振动图象,由图可知,下列说法中正确的是( )A.振动周期为5 s,振幅为8 cmB.第2 s末振子的速度为零,加速度为负向的最大值C.从第1 s末到第2 s末振子的位移增加,振子在做加速度减小的减速运动D.第3 s末振子的速度为正向的最大值3、有一种灌浆机可以将某种涂料以速度v持续喷在墙壁上,假设涂料打在墙壁上后便完全附着在墙壁上,涂料的密度为ρ,若涂料产生的压强为p,不计涂料重力的作用,则墙壁上涂料厚度增加的速度u为( )A. B. C. D.4、(2019·长春田家炳实验中学模拟)如图所示为一简易起重装置,AC是上端带有滑轮的固定支架,BC为质量不计的轻杆,杆的一端C用铰链固定在支架上,另一端B悬挂一个重力为G的重物,并用钢丝绳跨过滑轮A连接在卷扬机上。

开始时,杆BC与支架AC的夹角∠BCA>90°,现使∠BCA缓缓变小,直到∠BCA =30°。

在此过程中,杆BC所受的力(不计钢丝绳重力及一切阻力,且滑轮和铰链大小可不计)( )A.逐渐增大 B.先减小后增大C.大小不变 D.先增大后减小5、分离同位素时,为提高分辨率,通常在质谱仪内的磁场前加一扇形电场。

扇形电场由彼此平行、带等量异号电荷的两圆弧形金属板形成,其间电场沿半径方向。

被电离后带相同电荷量的同种元素的同位素离子,从狭缝沿同一方向垂直电场线进入静电分析器,经过两板间静电场后会分成几束,不考虑重力及离子间的相互作用,则( )A.垂直电场线射出的离子速度的值相同B.垂直电场线射出的离子动量的值相同C.偏向正极板的离子离开电场时的动能比进入电场时的动能大D.偏向负极板的离子离开电场时动量的值比进入电场时动量的值大6、(2019·天津模拟)如图所示,在纸面内半径为R的圆形区域中有垂直于纸面向里,磁感应强度为B的匀强磁场,一点电荷从图中A点以速度v0垂直磁场射入,速度方向与半径OA成30°角,当该电荷离开磁场时,速度方向刚好改变了180°,不计该点电荷的重力,下列说法正确的是( )A.该点电荷离开磁场时速度方向的反向延长线通过O点B.该点电荷的比荷=C.该点电荷在磁场中的运动时间为t=D.该点电荷带正电7、如图甲所示,A、B两绝缘金属圆环套在同一水平铁芯上,A环中电流i A随时间t的变化规律如图乙所示。

2020版高考物理一轮复习 第四章 教案+课时作业新人教版【共12套97页】

2020版高考物理一轮复习 第四章 教案+课时作业新人教版【共12套97页】

本套资源目录2020版高考物理一轮复习第四章核心素养提升__科学态度与责任stse系列一教案新人教版2020版高考物理一轮复习第四章核心素养提升__科学态度与责任stse系列二教案新人教版2020版高考物理一轮复习第四章核心素养提升__科学思维系列四教案新人教版2020版高考物理一轮复习第四章第1讲曲线运动运动的合成与分解教案新人教版2020版高考物理一轮复习第四章第2讲抛体运动的规律及应用教案新人教版2020版高考物理一轮复习第四章第3讲圆周运动及其应用教案新人教版2020版高考物理一轮复习第四章第4讲万有引力与航天教案新人教版2020版高考物理一轮复习第四章课时作业11曲线运动运动的合成与分解新人教版2020版高考物理一轮复习第四章课时作业12抛体运动的规律及应用新人教版2020版高考物理一轮复习第四章课时作业13圆周运动及其应用新人教版2020版高考物理一轮复习第四章课时作业14万有引力与航天新人教版2020版高考物理一轮复习第四章课时作业15万有引力与航天二新人教版核心素养提升——科学态度与责任(STSE)系列(一)生活中的抛体运动平抛运动与日常生活紧密联系,如乒乓球、足球、排球等运动模型,飞镖、射击、飞机投弹模型等.这些模型经常受到边界条件的制约,如网球是否触网或越界、飞镖是否能击中靶心、飞机投弹是否能命中目标等.解题的关键是能准确地运用平抛运动规律分析对应的运动特征.在分析此类问题时一定要注意从实际出发寻找临界点,画出物体运动的草图,找出临界条件,尽可能画出示意图,应用平抛运动规律求解.考向1 体育运动中的平抛问题如图所示是排球场的场地示意图,设排球场的总长为L ,前场区的长度为L6,网高为h ,在排球比赛中,对运动员的弹跳水平要求很高.如果运动员的弹跳水平不高,运动员的击球点的高度小于某个临界值H ,那么无论水平击球的速度多大,排球不是触网就是越界.设某一次运动员站在前场区和后场区的交界处,正对网前竖直跳起垂直网将排球水平击出,关于该种情况下临界值H 的大小,下列关系式正确的是( )A .H =4948hB .H =16(L +h )15L hC .H =1615hD .H =L +hLh 【解析】 将排球水平击出后排球做平抛运动,排球刚好触网到达底线时,则有L6=v 02(H -h )g ,L 6+L2=v 02H g ,联立解得H =1615h ,故选项C 正确. 【答案】 C1.(多选)在某次乒乓球比赛中,乒乓球先后两次落台后恰好在等高处水平越过球网,过网时的速度方向均垂直于球网,把两次落台的乒乓球看成完全相同的两个球,球1和球2,如图所示,不计乒乓球的旋转和空气阻力,乒乓球自起跳到最高点的过程中,下列说法正确的是( AD )A .起跳时,球1的重力功率等于球2的重力功率B .球1的速度变化率小于球2的速度变化率C .球1的飞行时间大于球2的飞行时间D .过网时球1的速度大于球2的速度解析:乒乓球起跳后到最高点的过程,其逆过程可看成平抛运动.重力的瞬时功率等于重力乘以竖直方向的速度,两球起跳后能到达的最大高度相同,由v 2y =2gh 得,起跳时竖直方向分速度大小相等,所以两球起跳时重力功率大小相等,选项A 正确;速度变化率即加速度,两球在空中的加速度都等于重力加速度,所以两球的速度变化率相同,选项B 错误;由h =12gt 2可得两球飞行时间相同,选项C 错误;由x =vt 可知,球1的水平位移较大,运动时间相同,则球1的水平速度较大,选项D 正确.在解决体育运动中的平抛运动问题时,既要考虑研究平抛运动的思路和方法,又要考虑所涉及的体育运动设施的特点,如乒乓球、排球、网球等都有中间网及边界问题,要求球既能过网,又不出边界;足球的球门有固定的高度和宽度.考向2 生活中的斜抛运动(2018·江苏卷)某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同【审题指导】 弹射管在自由下落过程中沿水平方向先后弹出两只小球,小球被弹出时已具有竖直分速度,故小球不是做平抛运动.【解析】 本题考查运动的合成与分解.由题意知,在竖直方向上,两只小球同时同高度自由下落,运动状态始终相同,由h =12gt 2知落到水平地面的时刻相同.在水平方向上,小球被弹出后做速度相等的匀速直线运动,但先抛出的小球水平方向运动时间较长,由x =v 0t 知,x 先>x 后,即两只小球落到水平地面的地点不同.故选B.【答案】 B2.(2019·广东四校联考)从同一高度同时将a 、b 两个完全相同的小球分别竖直上抛和斜上抛,它们的初速度大小相同;若不计空气阻力,则以下说法中正确的是( A )A .在空中运动的过程中,两球的加速度相同B .两球触地时的瞬时速率不同C .两球在空中运动的时间相同D .两球运动的位移相同解析:两球在空中都只受重力作用,两球的加速度都为重力加速度g ,A 项正确.因两球都只受重力,则机械能均守恒,据机械能守恒定律有12mv 20+mgh =12mv 2t ,可知两球触地时的速率相同,B 项错误.因两球以相同的速率分别竖直上抛和斜上抛,则知两球在空中运动时间不同,C 项错误.因两球初始时运动方向不同,则它们发生的位移不同,D 项错误.3.如图所示,水平地面上不同位置的三个小球斜上抛,沿三条不同的路径运动最终落在同一点,三条路径的最高点是等高的,若忽略空气阻力的影响,下列说法正确的是( C )A .沿路径1抛出的小球落地的速率最小B .沿路径3抛出的小球在空中运动时间最长C .三个小球抛出的初速度竖直分量相等D .三个小球抛出的初速度水平分量相等解析:根据运动的合成与分解,将初速度分解为竖直方向和水平方向的分速度,设初速度方向与竖直方向的夹角为θ,故有小球沿竖直方向的速度分量v 竖直=v 0cos θ,根据小球的运动轨迹可知,三个小球沿竖直方向的分速度相同,根据竖直上抛运动特点可知,三个小球在空中运动时间相同,所以B 错误,C 正确;而θ1>θ2>θ3,故得知v 01>v 02>v 03,落地时重力做功为零,所以落地时的速率与初速度的大小相同,所以A 错误;小球沿水平方向的速度分量v 水平=v 0sin θ,可知沿路径1抛出的小球水平速度分量最大,所以D 错误.(1)斜抛运动的物体只受重力,运动性质为匀变速曲线运动.(2)解决斜上抛运动的基本方法仍然是分解法,其水平分运动为匀速直线运动,竖直分运动为竖直上抛运动.(3)斜上抛运动在最高点的速度水平,若从最高点考虑可按平抛运动处理.核心素养提升——科学态度与责任(STSE)系列(二)“嫦娥”探月四步曲(自主阅读)中国探月工程,又称“嫦娥工程”.2004年,中国正式开展月球探测工程.嫦娥工程分为“无人月球探测”“载人登月”和“建立月球基地”三个阶段.2007年10月24日18时05分,“嫦娥一号”成功发射升空,在圆满完成各项使命后,于2009年按预定计划受控撞月.2010年10月1日18时57分59秒“嫦娥二号”顺利发射,也已圆满并超额完成各项既定任务.2011年离开拉格朗日点L2点后,向深空进发,现今仍在前进,意在对深空通信系统进行测试.2013年9月19日,探月工程进行了嫦娥三号卫星和玉兔号月球车的月面勘测任务.嫦娥四号是嫦娥三号的备份星.嫦娥五号主要科学目标包括对着陆区的现场调查和分析,以及月球样品返回地球以后的分析与研究.要完成“嫦娥”工程的前提是要把卫星成功送到月球,大致经历“发射→转移→环绕→着陆”四步.第一步:卫星发射我国已于2013年12月2日凌晨1点30分使用长征三号乙运载火箭成功发射“嫦娥三号”.火箭加速是通过喷气发动机向后喷气实现的.设运载火箭和“嫦娥三号”的总质量为M ,地面附近的重力加速度为g ,地球半径为R ,万有引力常量为G .(1)用题给物理量表示地球的质量.(2)假设在“嫦娥三号”舱内有一平台,平台上放有测试仪器,仪器对平台的压力可通过监控装置传送到地面.火箭从地面发射后以加速度g2竖直向上做匀加速直线运动,升到某一高度时,地面监控器显示“嫦娥三号”舱内测试仪器对平台的压力为发射前压力的1718,求此时火箭离地面的高度.【解析】 (1)在地面附近,mg =GM 地m R 2, 解得:M 地=gR 2G.(2)设此时火箭离地面的高度为h ,选仪器为研究对象,设仪器质量为m 0,火箭发射前,仪器对平台的压力F 0=G M 地m 0R2=m 0g .在距地面的高度为h 时,仪器所受的万有引力为F =GM 地m 0(R +h )2 设在距离地面的高度为h 时,平台对仪器的支持力为F 1,根据题述和牛顿第三定律得,F 1=1718F 0由牛顿第二定律得,F 1-F =m 0a ,a =g2联立解得:h =R2【答案】 见解析 第二步:卫星转移(多选)如图为嫦娥三号登月轨迹示意图.图中M 点为环地球运行的近地点,N 点为环月球运行的近月点.a 为环月球运行的圆轨道,b 为环月球运行的椭圆轨道,下列说法中正确的是( )A .嫦娥三号在环地球轨道上的运行速度大于11.2 km/sB .嫦娥三号在M 点进入地月转移轨道时应点火加速C .设嫦娥三号在圆轨道a 上经过N 点时的加速度为a 1,在椭圆轨道b 上经过N 点时的加速度为a 2,则a 1>a 2D .嫦娥三号在圆轨道a 上的机械能小于在椭圆轨道b 上的机械能【解析】 嫦娥三号在环地球轨道上运行速度v 满足7.9 km/s≤v <11.2 km/s ,则A 错误;嫦娥三号要在M 点点火加速才能进入地月转移轨道,则B 正确;由a =GMr2,知嫦娥三号在圆轨道a 上经过N 点和在椭圆轨道b 上经过N 点时的加速度相等,则C 错误;嫦娥三号要从b 轨道转移到a 轨道需要在N 点减速,机械能减小,则D 正确.【答案】 BD 第三步:卫星绕月嫦娥三号的飞行轨道示意图如图所示.假设嫦娥三号在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则( )A .若已知嫦娥三号环月段圆轨道的半径、运动周期和引力常量,则可算出月球的密度B .嫦娥三号由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月段椭圆轨道上P 点的速度大于Q 点的速度D .嫦娥三号在动力下降段,其引力势能减小【解析】 利用环月圆轨道半径、运动周期和引力常量,可以计算出月球的质量,月球半径未知,不能计算出月球的密度,A 错误;由环月圆轨道进入椭圆轨道时,在P 点让发动机点火使其减速,B 错误;嫦娥三号在椭圆轨道上P 点速度小于在Q 点速度,C 错误;嫦娥三号在动力下降段,高度减小,引力势能减小,D 正确.【答案】 D 第四步:卫星着陆如图所示为“嫦娥三号”探测器在月球上着陆最后阶段的示意图.首先在发动机作用下,探测器受到推力在距月面高度为h 1处悬停(速度为0,h 1远小于月球半径);接着推力改变,探测器开始竖直下降,到达距月面高度为h 2处的速度为v ;此后发动机关闭,探测器仅受重力下落至月面.已知探测器总质量为m (不包括燃料),地球和月球的半径比为k 1,质量比为k 2,地球表面附近的重力加速度为g ,求:(1)月球表面附近的重力加速度大小及探测器刚接触月面时的速度大小; (2)从开始竖直下降到刚接触月面时,探测器机械能的变化.【解析】 (1)设地球质量和半径分别为M 和R ,月球的质量、半径和表面附近的重力加速度分别为M ′、R ′和g ′,探测器刚接触月面时的速度大小为v t ,则有mg ′=G M ′m R ′2,mg =G Mm R 2,解得g ′=k 21k 2g由v 2t -v 2=2g ′h 2得v t =v 2+2k 21gh 2k 2.(2)设机械能变化量为ΔE ,动能变化量为ΔE k ,重力势能变化量为ΔE p ,有ΔE =ΔE k+ΔE p则ΔE =12m (v 2+2k 21gh 2k 2)-m k 21k 2gh 1得ΔE =12mv 2-k 21k 2mg (h 1-h 2).【答案】 (1)k 21k 2gv 2+2k 21gh 2k 2(2)12mv 2-k 21k 2mg (h 1-h 2)核心素养提升——科学思维系列(四)竖直面内圆周运动的两种模型模型1 轻绳模型轻“绳”模型如图甲,小球用不可伸长的轻绳连接后绕固定点O在竖直面内做圆周运动,小球经过最高点时的速度大小为v,此时绳子的拉力大小为T,拉力T与速度v的关系如图乙所示,图象中的数据a和b包括重力加速度g都为已知量,以下说法正确的是( )A.数据a与小球的质量有关B.数据b与圆周轨道半径有关C.比值ba只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【解析】在最高点对小球受力分析,由牛顿第二定律有T+mg=mv2R,可得图线的函数表达式为T=mv2R-mg,图乙中横轴截距为a,则有0=maR-mg,得g=aR,则a=gR;图线过点(2a,b),则b=m2aR-mg,可得b=mg,则ba=mR,A、B、C错.由b=mg得m=bg,由a=gR 得R =ag,则D 正确.【答案】 D 模型2 轻杆模型轻“杆”模型(多选)如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m的球A 和球B ,杆上距球A 为L 处的点O 装在光滑的水平转动轴上,外界给予系统一定的能量后,杆和球在竖直面内转动.在转动的过程中,忽略空气的阻力.若球B 运动到最高点时,球B 对杆恰好无作用力,则球B 在最高点时,下列说法正确的是( )A .球B 在最高点时速度为gL B .此时球A 的速度大小为2gL2C .杆对球A 的作用力为0.5mgD .杆对水平轴的作用力为1.5mg[审题指导] (1)杆和球在竖直平面内转动→两球做圆周运动. (2)杆对球B 恰好无作用力→重力恰好提供向心力.【解析】 设球B 在最高点时的速度为v 0,有mg =m v 202L,解得v 0=2gL ,选项A 错误;因为A 、B 两球的角速度相等,根据v =rω知,此时球A 的速度为12v 0=122gL ,选项B 正确;根据牛顿第二定律得,F A -mg =m ⎝ ⎛⎭⎪⎫v 022L,解得F A =1.5mg ,A 对杆的作用力为1.5mg ,水平轴对杆的作用力与A 球对杆的作用力平衡,所以F =1.5mg ,选项C 错误、D 正确.【答案】 BD竖直面内圆周运动类问题的解题技巧(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:抓住绳模型中最高点v ≥gR 及杆模型中v ≥0这两个临界条件. (3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况. (4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.1.(2019·黑龙江哈师大附中月考)如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击,使其在瞬间得到一个水平初速度v 0,若v 0大小不同,则小球能够上升的最大高度(距离底部)也不同.下列说法中不正确的是( C )A .如果v 0=gR ,则小球能够上升的最大高度等于R2B .如果v 0=3gR ,则小球能够上升的最大高度小于3R2C .如果v 0=4gR ,则小球能够上升的最大高度等于2RD .如果v 0=5gR ,则小球能够上升的最大高度等于2R解析:如果v 0=gR ,根据机械能守恒定律得12mv 20=mgh ,解得h =R2,当小球运动到h=R 2高度时速度可以为零,则小球能够上升的最大高度为R2,故A 正确;如果v 0=3gR ,根据机械能守恒定律得12mv 20=mgh ,解得h =3R2,根据竖直方向圆周运动向心力公式可知,小球在最高点的速度最小为gR ,则小球在上升到h =3R2处之前做斜抛运动,所以小球能够上升的最大高度小于3R 2,B 正确;如果v 0=5gR ,根据机械能守恒定律得12mv 20=mg ·2R +12mv 2,解得v =gR ,所以小球恰好可以到达最高点,即小球能够上升的最大高度为2R ,故D 正确,C 错误.本题选错误的,故C 符合题意.2.(2019·湖南郴州二模)如图所示,质量为m 的小球置于立方体的光滑盒子中,盒子的棱长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,已知在最高点时盒子与小球之间的作用力恰为0,则下列说法正确的是( D )A .在最高点小球的速度水平,小球既不超重也不失重B .小球经过与圆心等高的位置时,处于超重状态C .盒子在最低点时对小球的弹力大小等于6mg ,方向向上D .该盒子做匀速圆周运动的周期等于2πRg解析:在最高点小球的速度方向沿圆周切线方向,即为水平方向,小球在最高点,重力提供向心力,处于完全失重状态,故A 错误;小球在经过与圆心等高的位置时,水平方向受盒子的弹力,竖直方向受重力和盒子的支持力,而此处小球在竖直方向加速度为0,小球既不超重也不失重,故B 错误;小球在最高点仅受重力作用,重力提供做圆周运动的向心力,即mg =m v 2R ,小球在最低点受重力、盒子的支持力,二力的合力提供做圆周运动的向心力,即F N -mg =m v 2R,解得F N =2mg ,方向向上,故C 错误;小球在最高点仅受重力作用,重力提供做圆周运动的向心力,即mg =m 4π2T2R ,解得T =2πRg,故D 正确.第1讲曲线运动运动的合成与分解考点1 曲线运动性质、轨迹的判断1.运动轨迹的判断(1)若物体所受合力方向与速度方向在同一直线上,则物体做直线运动;若物体所受合力方向与速度方向不在同一直线上,则物体做曲线运动.(2)物体做曲线运动时,合力指向轨迹的凹侧;运动轨迹在速度方向与合力方向所夹的区间.2.速率变化的判断3.合运动的性质的判断合运动的性质由合加速度的特点决定.(1)根据合加速度是否恒定判定合运动的性质:若合加速度不变,则为匀变速运动;若合加速度(大小或方向)变化,则为非匀变速运动.(2)根据合加速度的方向与合初速度的方向关系判定合运动的轨迹:若合加速度的方向与合初速度的方向在同一直线上,则为直线运动,否则为曲线运动.1.下列说法正确的是( A )A.做曲线运动的物体的速度一定变化B.速度变化的运动一定是曲线运动C.加速度恒定的运动不可能是曲线运动D.加速度变化的运动一定是曲线运动解析:做曲线运动的物体,速度方向一定改变,选项A 正确;速度大小改变而方向不变的运动是直线运动,选项B 错误;平抛运动是加速度恒定的曲线运动,选项C 错误;加速度大小改变,但加速度方向与速度方向始终相同,这种运动是直线运动,选项D 错误.2.在美国拉斯维加斯当地时间2011年10月16日进行的印地车世界锦标赛中,发生15辆赛车连环撞车事故,两届印第安纳波利斯500赛冠军、英国车手丹·威尔顿因伤势过重去世.在比赛进行到第11圈时,77号赛车在弯道处强行顺时针加速超越是酿成这起事故的根本原因,下面四幅俯视图中画出了77号赛车转弯时所受的合力的可能情况,你认为正确的是( B )解析:做曲线运动的物体,所受的合力指向轨迹的凹侧,A 、D 错误.因为顺时针加速,F 与v 夹角为锐角,故B 正确,C 错误.3.某质点在几个恒力作用下做匀速直线运动,现突然将与质点速度方向相反的一个力旋转90°,则关于质点运动状况的叙述正确的是( C )A .质点的速度一定越来越小B .质点的速度可能先变大后变小C .质点一定做匀变速曲线运动D .因惯性质点继续保持匀速直线运动解析:将与质点速度方向相反的作用力F 旋转90°时,该力与其余力的合力夹角为90°,这时质点所受的合力大小为2F ,方向与速度的夹角为45°,质点受力的方向与运动的方向之间的夹角是锐角,所以质点做速度增大的曲线运动,故A 、B 错误;根据牛顿第二定律得加速度a =2Fm,所以质点做匀变速曲线运动,故C 正确,D 错误.考点2 运动合成与分解1.合运动的性质判断⎩⎨⎧加速度(或合外力)⎩⎪⎨⎪⎧ 变化:变加速运动不变:匀变速运动加速度(或合外力)与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动2.两个直线运动的合运动性质的判断1.(2019·江苏苏州模拟)(多选)一物体在xOy平面内从坐标原点开始运动,沿x轴正方向和y轴正方向运动的速度v随时间t变化的图象分别如图甲、乙所示,则物体在0~t0时间内( AC )A.做匀变速运动B.做非匀变速运动C.运动的轨迹可能如图丙所示D.运动的轨迹可能如图丁所示解析:由题图甲知:物体在x轴方向做匀速直线运动,加速度为零,合力为零;在y 轴方向做匀减速直线运动,加速度恒定,合力恒定,所以物体所受的合力恒定,一定做匀变速运动,故A正确,B错误;曲线运动中合外力方向与速度方向不在同一直线上,而且指向轨迹弯曲的内侧.由以上分析可知,物体的合力沿y轴负方向,而与初速度不在同一直线上,则物体做曲线运动,根据合力指向轨迹的内侧可知,图丙是可能的,故C正确,D错误.2.(2018·北京卷)根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置.但实际上,赤道上方200 m处无初速下落的小球将落在正下方位置偏东约6 cm处.这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比.现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球( D )A.到最高点时,水平方向的加速度和速度均为零B.到最高点时,水平方向的加速度和速度均不为零C.落地点在抛出点东侧D.落地点在抛出点西侧解析:由于该“力”与竖直方向的速度大小成正比,所以从小球抛出至运动到最高点过程,该“力”逐渐减小到零,将小球的上抛运动分解为水平和竖直两个分运动,由于上升阶段,水平分运动是向西的变加速运动(水平方向加速度大小逐渐减小),故小球到最高点时速度不为零,水平向西的速度达到最大值,故选项A 错误;小球到最高点竖直方向的分速度为零,由题意可知小球这时不受水平方向的力,故小球到最高点时水平方向加速度为零,选项B 错误;下降阶段,由于受水平向东的力,小球的水平分运动是向西的变减速运动(水平方向加速度大小逐渐变大),故小球的落地点在抛出点西侧,选项C 错误,D 正确.运动的合成与分解是研究曲线运动规律最基本的方法,在解决实际物体运动的合成与分解问题时,一定要注意合运动与分运动具有等时性,且分运动相互独立,但每一个运动的变化都会影响到合运动的效果.考点3 小船渡河模型1.船的实际运动:是水流的运动和船相对静水的运动的合运动. 2.三种速度:船在静水中的速度v 船、水的流速v 水、船的实际速度v . 3.两类问题、三种情景有甲、乙两只船,它们在静水中航行速度分别为v 1和v 2,现在两船从同一渡口向河对岸开去,已知甲船想用最短时间渡河,乙船想以最短航程渡河,结果两船抵达对岸的地点恰好相同.则甲、乙两船渡河所用时间之比t 1t 2为( )。

湖南省高三物理高考一轮复习 《高考理科综合模拟训练四》(课件) 新人教版

湖南省高三物理高考一轮复习 《高考理科综合模拟训练四》(课件) 新人教版
A .( F mg ) cos B .( mg F ) sin C . ( mg F ) sin D . ( F mg ) cos
18. AB和CD为圆上两条相互垂直的直径, 圆心为O。将电量分别为+q和-q的两点电荷 放在圆周上,其位置关于AB对称且距离等于 圆的半径,如图所示。要使圆心处的电场强 度为零,可在圆周上再放一个适当的点电荷Q, 则该点电荷Q ( )
(4)在虚线框内画出用伏安法测量该电阻 的阻值时的实验电路图。
24.山地滑雪是人们喜 爱的一项体育运动。一滑 雪坡由AB和BC组成,AB 是倾角为37°的斜坡,BC 是半径为R=5m的圆弧面,圆弧面和斜面相 切于B,与水平面相切于C,如图所示,AB 竖直高度差h1=8.8m,竖直台阶CD高度差为 h2=5m,台阶底端与倾角为37˚斜坡DE相 连。运动员连同滑雪装备总质量为80kg,
①该列波的周期T; ②从t=0时刻起到P点第一次达到波峰时止, O点对平衡位置的位移y0及其所经过的路程s0各 为多少?
③若该列波的传播速
度大小为20m/s,且波形中 由实线变成虚线需要经历
0.525s时间,则该列波的 传播方向如何?
34.[物理选修3—5模块]
(1)放射性元素的原子核
M Z
X 连续经过
表面光滑程度的装置,其中A为标准平板,B为 被检查其表面光滑程度的物体,C为单色入射光. 如要说明能检查平面光滑程度的道理,则需要 用到下列哪些光学概念?
A. 反射和干涉 B. 全反射和干涉 C. 反射和衍射 D. 全反射和衍射
(2)在某介质中形成一列简谐波,波向右传 播,在0.1s时刻刚好传到B点,波形如图中实线 所示,且再经过0.6s,P点也开始起振,求:
()
二、必考题

2020年新课标高考物理一轮复习作业详答 新人教版

2020年新课标高考物理一轮复习作业详答 新人教版

课时作业(一)【基础热身】1.B [解析] 选项A、C、D中的数据都是时间轴上的一个点,指的都是时刻;而选项B中15 s是与跑完100 m这一运动过程相对应的,指的是时间间隔,故选项B正确.2.C [解析] 位移是从起点指向终点的有向线段,是矢量;路程是运动路径的长度,是标量,它没有方向.正确选项只有C.3.B [解析] 加速度描述物体速度变化的快慢程度,选项A错误、B正确;加速度方向与运动方向共线时,物体一定做直线运动,同向时做加速运动,反向时做减速运动,选项C、D错误.4.A [解析] 由图可知,心脏每跳动一次,纸带向前移动大约是4个小方格的距离,约2.0 cm,则心脏每跳动一次所需时间约T=xv=0.80 s;此人心脏一分钟跳动的次数为n=60 s0.80 s/次=75次,故本题只有选项A正确.【技能强化】5.B [解析] 无论加速度正在增大还是正在减小,只要加速度与速度同向,物体速度就一直增大,当同向加速度减小到零时,物体速度达到最大,速度不再增大,但位移会继续增大,由此可知本题只有选项B正确.6.AC [解析] 速度与加速度都是矢量,其正负表示速度与加速度的方向.速度与加速度方向相反,汽车做减速运动;经1 s速度减小Δv=aΔt=1 m/s,所以再过1 s汽车的速度变为5 m/s,故选项A、C正确.7.AB [解析] 如果物体做加速度逐渐减小的加速直线运动,则加速度为零时速度最大,选项A正确;根据加速度定义可知选项B正确;质点某时刻的加速度不为零,但该时刻的速度可以为零,选项C错误;物体速度变化量大小决定于加速度和时间两个因素,选项D错误.8.A [解析] 由于通讯员初、末位置都跟队尾士兵相同,所以位移也相同,由平均速度公式可以判断选项A正确.9.C [解析] 设总位移为x,则甲车运动的总时间t甲=x2v甲1+x2v甲2=v甲1+v甲22v甲1v甲2x,所以甲车的平均速度v甲=xt甲=2v甲1v甲2v甲1+v甲2=48 km/h;设乙车运动的总时间为t乙,则乙车的总位移x=v乙1·t乙2+v乙2·t乙2=v乙1+v乙22t乙,所以乙车的平均速度v乙=xt乙=v 乙1+v乙22=50 km/h.故C项正确.10. 230 m[解析] 为确保行车安全,要求在列车驶过距离L的时间内,已越过停车线的汽车的车尾必须能通过道口.汽车越过停车线至车尾通过道口的过程中,汽车的位移为x′=l+x+x=(15+5+26) m=46 m汽车速度v2=36 km/h=10 m/s通过这段位移需要的时间t=x′v2=4610s=4.6 s高速列车的速度v1=180 km/h=50 m/s所以安全行车的距离为L=v1t=50×4.6 m=230 m. 11.(1)6.61 m/s2(2)9.26 s[解析] (1)末速度v=100 km/h=1003.6m/s=27.78 m/s平均加速度a=v-vt=27.78-04.2m/s2=6.61 m/s2.(2)所需时间t′=v-va′=27.78-03s=9.26 s.12.0.067 m/s2[解析] 遮光板通过第一个光电门的速度v 1=dΔt1=0.030.3m/s=0.10 m/s遮光板通过第二个光电门的速度v 2=dΔt2=0.030.1m/s=0.30 m/s故滑块的加速度a=v2-v1Δt=0.067 m/s2【挑战自我】13.45 km/h[解析] 设甲、丙两地距离为2l,汽车通过甲、乙两地的时间为t1,通过乙、丙两地的时间为t2.从甲到乙是匀加速运动,由l=v甲+v乙2·t1得t1=lv甲+v乙2=2lv乙从乙到丙也是匀加速运动,由l=v乙+v丙2·t2得t2=lv乙+v丙2=2lv乙+v丙所以v甲丙=2lt1+t2=2l2lv乙+2lv乙+v丙=45 km/h.课时作业(二)【基础热身】1.BD [解析] 由匀加速直线运动的位移公式可知x=v t=0+v2t=12vt,选项A错误,选项B正确;匀减速直线运动可以看成是初速度为0的匀加速直线运动的逆过程,故返回后的加速度、位移的大小和起飞前相同,选项C错误,选项D正确.2.B [解析] v0=72 km/h=20 m/s,设刹车时间为t,则at=v,解得t=va=4 s,故刹车距离x=v2t=40 m.3.BC [解析] 当滑块速度大小变为v2时,其方向可能与初速度方向相同,也可能与初速度方向相反,因此要考虑两种情况,即v=v2或v=-v2,代入公式t=v-v0 a 得,t=vg或t=3vg,故选项B、C正确.【技能强化】4.C [解析] 物体开始做匀加速直线运动,a=μg=1 m/s2,速度达到传送带的速度时发生的位移x=v22a=12×1m=0.5 m<L,所经历的时间t1=va=1 s,物体接着做匀速直线运动,所经历的时间t2=L-xv=2.5-0.51s=2 s,故物体从a点运动到b点所经历的时间t总=t1+t2=3 s.5.A [解析] 由逐差法得x6-x1=5aT2,所以a=x6-x15T2=0.01 m/s2,选项A正确.6.D [解析] 用“逆向思维”法解答.由题知,若倒过来分析,子弹向左做匀加速直线运动,初速度为零,设每块木块长为L,则v23=2a·L,v22=2a·2L,v21=2a·3L,v3、v2、v1分别为子弹倒过来向左穿透第3块木块后、穿透第2块木块后、穿透第1块木块后的速度,则v1∶v2∶v3=3∶2∶1,子弹依次向右穿入每个木块时速度比v1∶v2∶v3=3∶2∶1,因此选项A、B错误.由v3=at3,v2=a(t2+t3),v 1=a(t1+t2+t3).三式联立,得t1∶t2∶t3=(3-2)∶(2-1)∶1,因此选项C错误,D正确.7.B [解析] 由x=12at2,解得a=8 m/s2,最后1 s的位移为x1=12×8×12 m=4 m,选项B正确.8.ABD [解析] 小球沿斜面向上做匀减速直线运动,因从a到c和c到d所用时间相等,故经过c点时恰为从a到d所经历时间的中间时刻,vc =xad2T=6+62×2m/s=3 m/s,选项B正确;因xac =xab+xbc=7 m,xcd=xbd-xbc=5 m,由Δx=xac-xcd=aT2得:a=0.5 m/s2,由v2b -v2c=2axbc可得,vb=10 m/s,选项A正确;从c到e所经历的时间tce =va=6 s,故从d到e所用的时间tde=tce-T=4 s,de=12at2de=4 m,选项C错误,选项D正确.9.ABC [解析] 如图所示,物体由A沿直线运动到B,C点为AB的中点,物体到达C点时速度为v1,若物体做匀加速直线运动,A到B的中间时刻应在C点左侧,有v1>v2,若物体做匀减速直线运动,A到B的中间时刻应在C点右侧,仍有v1>v2,故A、B正确,D错误;若物体做匀速直线运动,则v1=v2,C正确.10.12 m/s 没有超速[解析] 设汽车刹车前的速度为v,汽车刹车时加速度大小为a.将汽车刹车到速度为零的运动看成逆向的匀加速运动,则x=12at2v=at解得v=12 m/s因12 m/s=43.2 km/h<50 km/h,故汽车没有超速行驶.11.v≤6 m/s[解析] 设经过时间t,货箱和平板车达到共同速度v.以货箱为研究对象,由牛顿第二定律得,货箱向右做匀加速运动的加速度为a1=μg货箱向右运动的位移为x 箱=12a 1t 2又v =a 1t平板车向右运动的位移为 x 车=v 0t -12at 2又v =v 0-at为使货箱不从平板车上掉下来,应满足 x 车-x 箱≤l 联立得:v 0≤2a +μgl代入数据:v 0≤6 m/s. 【挑战自我】12.(1)99 m 1.25 m (2)8.6 s[解析] (1)设直升机悬停位置距地面高度为H ,伞兵展伞时,离地面的高度至少为h ,此时速度为v 0,着地时,速度为v 1,相当于从h 1高处自由落下.在匀减速运动阶段,有v 21-v 20=-2ah ,即52-v 20=-2×12.5×h在自由落体运动阶段,有v 20=2g(H -h) 即v 20=2×10×(224-h) 联立解得h =99 m ,v 0=50 m/s以5 m/s 的速度落地相当于从h 1高处自由落下 即2gh 1=v 21所以h 1=v 212g =522×10m =1.25 m.(2)设伞兵在空中的最短时间为t ,则在自由落体运动阶段,有v 0=gt 1, 解得t 1=v 0g =5010 s =5 s ,在匀减速运动阶段,有t 2=v 1-v 0a =5-50-12.5s =3.6 s ,故所求时间t =t 1+t 2=(5+3.6) s =8.6 s.课时作业(三) 【基础热身】1.B [解析] 自由落体运动是竖直方向上初速度为零、加速度为g 的匀加速直线运动,满足初速度为零的匀加速直线运动的规律,故选项A 、C 、D 均正确;对B 项,平抛运动在竖直方向上的分运动也满足该规律,故选项B 错误.2.C [解析] 在匀速飞行的飞机上自由释放的物体有一个与飞机相同的水平速度,同时物体在竖直方向上做自由落体运动,所以从飞机上看,物体始终在飞机的正下方,且相对飞机向下运动,故A 、B 均错误;从地面上看,物体做平抛运动,故C 正确,D 错误.3.C [解析] 因曝光时间极短,故AB 段可看作匀速直线运动,小石子到达A 点时的速度为v A =x t =0.0211000m/s =20 m/s ,h =v 2A2g =2022×10 m =20 m ,选项C 正确.4.A [解析] 根据时间的对称性,物体从A 点到最高点的时间为T A2,从B 点到最高点的时间为T B 2,所以A 点到最高点的距离h A =12g ⎝ ⎛⎭⎪⎫T A 22=gT 2A8,B 点到最高点的距离h B =12g ⎝ ⎛⎭⎪⎫T B 22=gT 2B 8,故A 、B 之间的距离为h A -h B =18g(T 2A -T 2B ),正确选项为A.【技能强化】5.D [解析] 自由落体运动初速度为零,据此可排除选项C ;小球与地面碰撞瞬间速度突然反向,据此可排除选项A 、B.综上分析可知本题正确选项为D.6.A [解析] 由题图可知,小球做匀加速直线运动,相邻的两段位移之差为一块砖的厚度,由Δx=d =aT 2可得,a =dT2;位置“3”是位置“2”和位置“4”的中间时刻,由v t 2=v 得,v 3=7d2T.只有选项A 错误.7.C [解析] 根据自由落体运动的规律,尺子下落(a -b)高度对应的时间即乙同学的反应时间.由公式h =12gt 2得t =2a -b g,选项C 正确.8.C [解析] 设中学生的重心位于身体的中点,则重心上升的高度约为:h =2.10 m -12×1.70 m=1.25 m ,由v 20=2gh 得:v 0=2gh =5 m/s. 9.C [解析] 依题意可设第1个小球经时间t 落地,则第2个小球经时间2t 落地,第3个小球经时间3t 落地,第4个小球经时间4t 落地.又因为四个小球做的都是初速度为零的匀加速运动,因此它们下落的高度之比为1∶4∶9∶16,只有选项C 正确.10.A [解析] 磕头虫向下运动的末速度大小与向上运动的初速度大小相等,向下运动过程v 21=2ah 1,反弹起来过程v 21=2gh 2;人向上加速运动过程v 22=2aH 1,离地上升过程中v 22=2gH 2,代入数值得H 2=150 m ,故选项A 正确.11.1.75 s[解析] 由向上跃起的高度h 1=0.45 m 可求得向上跃起的时间为 t 1=2h 1g=2×0.4510s =0.3 s 设运动员从手到脚全长2l ,双手向上立在跳台上时,重心位置O 离跳台为l ,手接触水面时重心位置O 离水面也为l ,运动员从最高点到将入水时,重心下降的高度h 2=H +l +h 1-l =H +h 1=10.45 m 下降过程的时间 t 2=2h 2g=2×10.4510s =1.45 s 所以运动员完成空中动作的时间为 t =t 1+t 2=0.3 s +1.45 s =1.75 s. 12.(1)7.2 m (2)2.5 m/s 2[解析] 设前、后两过程下落的高度分别为h1、h2,所用时间分别为t1、t2,减速过程加速度的大小为a,运动中达到的最大速度为v,则有h 1+h2=40 m-4 mt 1+t2=6 sv2=2gh1=2ah2t 1=vg,t2=va由以上各式联立解得:h1=7.2 m,a=2.5 m/s2.【挑战自我】13.(1)4 s (2)29 m/s≤v′≤32 m/s[解析] (1)取向下为正方向,小球初速度v=-10 m/s,加速度g=10 m/s2,对空管由牛顿第二定律可得mg-F=ma代入数据得a=2 m/s2设经时间t,小球从N端穿出,小球下落的高度h 1=vt+12gt2空管下落的高度h2=12at2则h1-h2=l联立得v0t+12gt2-12at2=l代入数据解得t1=4 s,t2=-1.5 s(舍去)(2)设小球的初速度大小为v0′,空管经时间t′到达地面,则H=12at′2得t′=2Ha=8 s小球经t′时间下落的高度为h=v0′t′+12gt′2小球落入管内的条件是64 m≤h≤88 m解得-32 m/s≤v′≤-29 m/s所以小球的初速度大小必须在29 m/s到32 m/s范围内.课时作业(四)【基础热身】1.C [解析] 选项A、B、D中物体均做往复运动,只有选项C中物体做单向直线运动.2.AC [解析] 由图象可知前5 s做的是匀速运动,选项A正确;5 s~15 s 内做匀加速运动,加速度为0.8 m/s2,选项B错误;15 s~20 s做匀减速运动,其加速度为-3.2 m/s2,选项C正确;质点在20 s末离出发点最远,质点一直做单向直线运动,选项D错误.3. A [解析] 由图可知,两车均做匀变速直线运动,因第5 s时两车第一次相遇,第10 s时速度相同,由对称性可知两车在第15 s时第二次相遇,选项A正确,选项B错误;由于两车在第5 s时第一次相遇,前5 s内va >vb,故a车在后、b车在前,5 s后a车在前、b车在后,15 s后b车超过a车,选项C错误;第10 s时两车速度相同,此后va <vb,两车间距离逐渐减小,第15 s时两车相遇,选项D错误.4. BD [解析] 由图象可知乙在追赶甲,即甲在前、乙在后,且二者速度均为零时,距离最远,其最远距离Δx=x乙-x甲=12×3×4 m-12×2×2 m=4 m,即选项B 、D正确,选项A、C错误.【技能强化】5.A [解析] 甲车中的乘客以甲车为参考系,相当于甲车静止不动,乙车以初速度v向西做减速运动,速度减为零之后,再向东做加速运动,所以选项A正确;乙车中的乘客以乙车为参考系,相当于乙车静止不动,甲车以初速度v向东做减速运动,速度减为零之后,再向西做加速运动,所以选项B错误;以地面为参考系,当两车速度相等时,距离最远,所以选项C、D错误.6.CD [解析] 两图线都在t轴上方,说明A、B两物体运动方向相同,所以选项A错误;4 s内A、B两物体对应的图线与坐标轴所围的面积不同,则位移不同,故选项B错误;4 s时A、B两物体的图线交于同一点,对应速度相同,故选项C正确;A图线斜率的绝对值小,所以A物体的加速度比B物体的加速度小,因此选项D 正确.7.D [解析] 由A车的图线可知,它在4 s时间内速度由0增大到10 m/s,其加速度a=2.5 m/s2,选项A错误;3 s末A车速度为v=at=7.5 m/s,选项B 错误;2 s末时A车与B车之间距离最远,为5 m,4 s末时A车与B车位移相等,A 车追上B车,选项C错误、D正确.8.CD [解析] 汽车A在匀加速过程中的位移xA1=12aAt21=180 m,此过程中汽车B的位移xB1=vBt1=240 m>xA1,故A车在加速过程中没有与B车相遇,选项A错误、C正确;之后因vA =aAt1=12 m/s>vB,故A车一定能追上B车,相遇之后不能再相遇,A、B相遇时的速度一定不相同,选项B错误、D正确.9.ABC [解析] 乙车追上甲车时,若甲、乙两车速度相同,即此时t=T,则x 0=x1,此后甲车速度大于乙车速度,全程甲、乙仅相遇一次;甲、乙两车速度相同时,若x0<x1,则此时乙车已在甲车的前面,以后甲还会追上乙,全程中甲、乙相遇2次;甲、乙两车速度相同时,若x0>x1,则此时甲车仍在乙车的前面,以后乙车不可能再追上甲车了,全程中甲、乙都不会相遇,综上所述,选项A、B、C对,D错.10.A [解析] 根据题意画出两物体运动的v-t图象如图所示,根据图象易得选项A正确.11.1.5 m[解析] 设甲车刹车后经时间t,甲、乙两车速度相等,则:v 0-a1t=v-a2(t-Δt),代入数据得:t=2 s.在这段时间内,甲、乙走过的位移分别为x甲、x乙,则:x甲=vt-12a1t2=26 m;x乙=vΔt+v(t-Δt)-12a2(t-Δt)2=27.5 m;Δx=x乙-x甲=1.5 m即甲、乙两车行驶过程中至少应保持1.5 m的距离.12.0.8 s[解析] 设货车启动后经过时间t1两车开始错车,则有x 1+x2=180 m其中x1=12at21,x2=vt1解得t1=10 s设货车从开始运动到两车错车结束所用时间为t2,则有x 1′+x2′=(180+10+12) m=202 m.其中x1′=12at22,x2′=vt2解得t2=10.8 s故两车错车时间Δt=t2-t1=0.8 s.【挑战自我】13.(1)10 s (2)36 m (3)14 s[解析] Δx=Δt·v=2.5×8 m=20 m.(1)设警车发动起来后要时间t才能追上违章的货车,则12at2-vt=Δx解得t=10 s或t=-2 s(舍去).(2)在警车追上货车之前,两车速度相等时,两车间的距离最大,设警车发动起来后经时间t′两车速度相等,两车间的距离最大为xm,则t′=va=4 sx m =Δx+v·t′-12at′2=(20+8×4-12×2×42) m=36 m.(3)若警车的最大速度是12 m/s,则警车发动起来后加速的时间t 0=vma=122s=6 s设警车发动起来后经过时间t″追上违章的货车,则1 2at2+vm(t″-t)-vt″=Δx解得t″=14 s.课时作业(五)【基础热身】1.A [解析] 长木板不能侧向倾斜,但可以一端高一端低,故选项A错误;实验时,为了能在纸带上得到较多的点迹,释放小车前,小车应停在靠近打点计时器处,选项B正确;如果先释放小车,可能纸带上打不上几个点,选项C正确;为了保护小车,在小车到达定滑轮前要用手使小车停止运动,选项D正确.2.(1) 匀加速直线(2)小于用平均速度求位移(或用v-t图象下的面积求位移)[解析] (1)由表中数据可知,每经过0.1 s,速度大约增大0.25 m/s,在误差允许的范围内,小车做匀加速直线运动;(2)因为小车是不断加速的,而该同学把第一个0.1 s内的运动看成是以最小速度做匀速运动,同样,其他时间段内也是这样运算的,这样算出的位移比实际位移小.可以把时间分割得再细小一些,也可以利用平均速度来求位移,还可以利用v-t图象下的面积求位移.3.(1)0.02 s (2)0.70 cm(0.68 cm~0.72 cm均可) 0.100 m/s[解析] 毫米刻度尺的精确度为0.1 mm,故A、B间的距离为1.70 cm-1.00 cm=0.70 cm,vC =xBD2T=2.00×10-22×0.1m/s=0.100 m/s.【技能强化】4.C [解析] 中间时刻瞬时速度等于全程的平均速度,所以vB =x2+x32T,选项C正确;x6-x1=5(x2-x1),选项B错误;相邻计数点间的时间间隔是0.1 s,选项D错误;按照实验要求应该先接通电源再放开纸带,选项A错误.5. (1)相等匀加速(匀变速) (2)乙同学 1.10 m/s2[解析] (1)由表中数据可知,x4-x3=x3-x2=x2-x1,小球做匀加速直线运动;(2)乙同学采用逐差法求加速度,较准确,加速度值为a=x3+x4-x2-x14T2=1.10 m/s2.6.(1)0.25 0.45 (2)如图所示(3)1.00[解析] (1)相邻两个计数点间的时间间隔为0.1 s,所以vB =xAC2T=0.050.2m/s=0.25 m/s,vCE =xCE2T=0.14-0.050.2m/s=0.45 m/s;(2)如图所示;(3)在v-t图象中,图线的斜率表示加速度,即a=0.55-0.250.3m/s2=1.00 m/s2.7.(1)A C (2) 2.98(2.97~2.99均可) 13.20(13.19~13.21均可) (3)如图所示(4)0.18(0.16~0.20均可) 4.80(4.50~5.10均可)[解析] (1)还需要的实验器材有电压合适的50 Hz交流电源和刻度尺;(2)用毫米刻度读数,注意要估读一位,则x2=2.98 cm,x5=13.20 cm;(3)描点连线如图所示;(4)设打0点时速度为v0,则x=vt+12at2,即:xt=v+12at,由图可读出v=0.18 m/s,图线的斜率k=12a=2.4,a=4.8 m/s2.8.(1)相邻相等时间内的位移差相等(2)如图所示(3)0.800 m/s2[解析] (1)由图中所标纸带每段位移的大小,可知在相邻相等时间内的位移差相等,可近似认为Δy=8 mm.(2)把图中的x轴作为时间轴,以纸带的宽度表示相等的时间间隔T=0.1 s,每段纸带最上端中点对应v轴上的速度恰好表示每段时间的中间时刻的瞬时速度,即vn =ynT;因此可以用纸带的长度表示每小段时间中间时刻的瞬时速度,将纸带上端中间各点连接起来,可得到v-t图象,如图所示.(3)利用图象求斜率或用Δy=aT2均可以求得小车加速度a=0.800 m/s2.【挑战自我】9.3.0×10-2(2.8×10-2~3.1×10-2均可) 9.0×10-2 能利用(x 6-x 4)-(x 4-x 2)=4aT 2可求出x 4的具体位置(其他合理方法均可) [解析] 从图中读出5、6之间的距离为37.5 cm -24.0 cm =13.5 cm,2、3之间的距离为6.0 cm -1.5 cm =4.5 cm ,利用逐差法有x 56-x 32=3aT 2,求出a =3.0×10-2m/s 2;位置4对应的速度为v 4=x 352T =24.0-6.02×10-2 m/s =9.0×10-2m/s ;欲求4的具体位置,可以采用逐差法利用(x 6-x 4)-(x 4-x 2)=4aT 2求解.课时作业(六) 【基础热身】1.AD [解析] 力是物体间的相互作用,受力物体同时也是施力物体,施力物体同时也是受力物体,所以A 正确;产生弹力时,施力物体和受力物体同时发生形变,但弹力是由施力物体形变引起的,反作用力是由受力物体形变引起的,放在桌面上的木块受到桌面给它向上的弹力,这是由于桌面发生微小形变而产生的,故B 不正确;力的作用是相互的,作用力和反作用力同时产生、同时消失,故C 选项错误;根据力的作用效果命名的力,性质可能相同,也可能不相同,如向心力,可以是绳子的拉力,也可以是电场力,还可以是其他性质的力,D 选项正确.2.CD [解析] 地球上的物体运动或静止时都受地球的吸引作用,故运动或静止的物体均受重力,选项A 错误;某物体在地球某点处所受地球吸引而产生的重力一定,与此物体的运动状态无关,选项B 错误,选项C 正确;物体所受重力G =mg ,在g 一定时,G 由m 决定,选项D 正确.3.AD [解析] 弹簧的弹力为 2 N ,有两种可能情形:①弹簧处于拉伸状态,②弹簧处于压缩状态.当弹簧处于拉伸状态时,A 正确;当弹簧处于压缩状态时,D 正确.4.D [解析] 物体B 处于静止状态,则绳子拉力大小T =mg ,A 对绳的作用力的大小为mg,再以物体A为研究对象,在竖直方向根据平衡条件有T+N=Mg,所以地面对A的作用力的大小为N=(M-m)g.选项D正确.【技能强化】5.B [解析] 不拉A时,对A:kx1=mg;B刚要离开地面时,对B:kx2=mg,L=x1+x2.解得L=2mgk.6.C [解析] 弹簧测力计的示数决定于作用在秤钩上力的大小,而与作用在和外壳相连的提环上的力无关,故正确选项为C.7.D [解析] 绳A和绳C的拉力大小与方向均不变,所以其合力不变,对滑轮而言,杆的作用力必与两绳拉力的合力平衡,所以杆的弹力大小与方向均不变,选项D正确.8.D [解析] 根据力的作用是相互的可知:轻质弹簧A、B中的弹力大小是相等的,即k1x1=k2x2,所以两弹簧的压缩量之比x1∶x2=k2∶k1,故选项D正确.9.AB [解析] 小车向左做减速运动时,N可能为零,选项A正确;小车向左做加速运动时,T可能为零,选项B正确;小车向右做加速运动时,N可能为零,选项C错误;小车向右做减速运动时,T可能为零,选项D错误.10.C [解析] 由图象可以看出在直线a对应的阶段,弹簧处于压缩状态,弹力F随着缩短量的减小而减小,当弹簧长度为12 cm时恢复原长;直线b对应的是弹簧的伸长阶段,弹力F随伸长量的增大线性递增.由此可看出当弹力F=100 N时,弹簧对应的形变量x=4 cm,根据胡克定律可求出弹簧的劲度系数k=Fx=2500N/m,选项C正确.11.(1)如图所示(2)433G23+33G[解析] (1)对圆柱体进行受力分析,受力分析图如图所示,其中F N1、F N2、F N3分别为桌面、挡板、细杆对圆柱体的弹力.(2)已知竖直挡板对圆柱体的弹力大小为2G ,即F N2=2G ,根据平衡关系有 F N3sin60°=F N2, 解得F N3=433G设圆柱体对均匀细杆AO 的作用力大小为F′N3,根据牛顿第三定律有 F′N3=433G 由竖直方向的平衡关系有 F N1=F N3cos60°+G代入数据解得F N1=23+33G.12.(1)4mg (2)4mgk[解析] (1)对A 、B 整体:mg +F N =5mg 所以F N =4mg (2)对B :F N =3mg +F k 所以F k =mg物体C 的质量改为5m ,当系统达到新的平衡状态后,进行受力分析. 对A :T =F k ′+2mg 对C :T =5mg 所以F k ′=3mg 即kx 1=3mg x 1=3mg k开始时,弹簧的压缩量为x 2,则kx 2=mg所以A上升的高度为:hA =x1+x2=4mgk.【挑战自我】13.F-(mA +mB)gsinθmA+mBgsinθk[解析] B刚要离开C时,弹簧弹力大小为F弹=mBgsinθ.以A为研究对象,受力如图所示.故合力F合=F-F弹-mAgsinθ=F-(mA+mB)gsinθ,开始时弹簧压缩量Δx1=mAgsinθkB刚要离开时,弹簧伸长量Δx2=mBgsinθk所以A的位移d=Δx1+Δx2=mA+mBgsinθk.课时作业(七)【基础热身】1.CD [解析] 静摩擦力产生在两个相对静止的物体之间,与物体是否运动无关,滑动摩擦力产生于两个相对运动的物体之间,与物体是否运动无关,选项A、B 均错误;静摩擦力的大小与正压力的大小无关,一般由平衡条件或牛顿运动定律来求,滑动摩擦力f=μFN,随着正压力的增大而增大,选项C正确;摩擦力的方向与相对运动或相对运动趋势方向相反,与速度方向无关,选项D正确.2.BC [解析] 容器处于平衡状态,在竖直方向上重力与摩擦力平衡,盛满水前墙面对容器的静摩擦力一直增大,如果一直没有达到正压力F作用下的最大静摩擦力,则水平力F可能不变,选项B、C正确.3.ABD [解析] 题中没有明确F的大小,当F=mgsinθ时,物块M受到的摩擦力为零.当F<mgsinθ时,物体M有下滑趋势,所受摩擦力沿斜面向上.当F>mgsinθ时,物块M有上滑趋势,所受摩擦力沿斜面向下.当0≤F≤mgsinθ时,静摩擦力f的取值范围是:0≤f≤mgsinθ.可见f>F、f<F和f=F均有可能,故A、B、D选项均正确.4.CD [解析] 物块M在传送带启动前匀速下滑,应满足所受滑动摩擦力f=μmgcosθ=mgsinθ,传送带突然启动后物块M所受摩擦力仍为f=μmgcosθ=mgsinθ,且方向不变,选项C、D正确.【技能强化】5.D [解析] 由于物块始终静止在斜面上,物块所受静摩擦力与正压力无直接关系,对物块进行受力分析,沿斜面方向列平衡方程可判断出选项D正确.6.B [解析] 物块静止在斜面上时,物块所受的摩擦力为:f1=Mgsinα.给物块平行于斜面的水平力F作用后,在斜面内,重力沿斜面向下的分力、水平力F、摩擦力f2三力平衡,根据平衡条件有:f2=Mgsinα2+F2,重力沿斜面向下的分力和F的合力与摩擦力f2等大、反向,所以摩擦力的方向和大小都发生了改变,只有选项B正确.7.C [解析] 由于斜面光滑,则物块在斜面上做上下往返运动时对斜面的摩擦力为零,对斜面的正压力始终等于重力沿垂直斜面方向的分力,因此地面对斜面体的摩擦力始终是一个恒力,C正确.8.A [解析] 杆匀加速上升,斜面体水平向右运动,杆相对于斜面体向上滑动,因此杆受的摩擦力沿斜面向下,选项A正确、B错误;杆受的支持力垂直于斜面向上,杆受斜面体的作用力斜向右上方,选项C、D错误.9.D [解析] 取物体B为研究对象,分析其受力情况如图所示,则有F=mgtanθ,T=mgcosθ,在将物体B缓慢拉高的过程中,θ增大,则水平力F和细绳上的拉力F随之变大.对A、B两物体与斜面体这个系统而言,系统处于平衡状态,则地面对斜面体的摩擦力一定变大,而竖直方向并没有增加其他力,故斜面体所受地面的支持力不变;在这个过程中尽管绳子张力变大,但是开始时物体A所受斜面体的摩擦力方向未知,故物体A所受斜面体的摩擦力的情况无法确定.10.D [解析] 弹簧对B有向左的弹力,B保持静止,因此A对B有向右的摩擦力,则B对A的摩擦力向左,选项A、B错误;A、B整体在水平方向不受其他外力作用,因此没有向左或向右的运动趋势,地面对A没有摩擦力,选项C错误、D 正确.11.0.30[解析] 设接触面间的动摩擦因数为μ,物体A与B间的摩擦力为f 1=μGA物体B与地面间的滑动摩擦力为f 2=μ(GA+GB)将B匀速拉出,拉力大小与两个摩擦力的合力大小应相等,有F=f1+f2解得μ=0.3012.0.2[解析] 因为圆柱体匀速滑动,所以水平方向的拉力与摩擦力平衡,即f=200 N.又因为圆柱体两面均与槽接触,所以每一面所受摩擦力f ′=100 N.设V形槽两侧对圆柱体的弹力大小分别为FN1、FN2,在竖直平面内,圆柱体受到重力G、两侧的弹力FN1、FN2作用,如图所示,由对称性可知,FN1=FN2=G.根据f ′=μFN1,解得μ=0.2.【挑战自我】13.7 N[解析] P、Q两点应是静摩擦力最大的两个临界位置,在P点弹簧处于伸长状态,受力分析如图甲所示.f m =F1-mgsinα在Q点弹簧处于压缩状态,受力分析如图乙所示.f m =F2+mgsinα设弹簧原长为x,则有F1=k(0.22-x)F2=k(x-0.08)由以上各式,解得fm=7 N.课时作业(八)【基础热身】1.C [解析] 合力F和两个分力F1、F2之间的关系为|F1-F2|≤F≤|F1+F2|,则应选C.2.C [解析] 由矢量合成法则可知,A图的合力为2F3,B图的合力为0,C图的合力为2F2,D图的合力为2F3,因F2为直角三角形的斜边,故这三个力的合力最大的为C图.3.D [解析] 物体做匀速直线运动,则受力平衡,将拉力F在水平方向和竖直方向上分解,则物体一定要受到滑动摩擦力的作用,再根据摩擦力产生的条件知,一定会受到弹力,因此物体一定会受到四个力的作用.4.BC [解析] 手指所受的拉力等于2mgcosθ,增加重物重量或减小夹角θ,都可以使拉力增大,选项B、C正确.【技能强化】5.D [解析] 细线对天花板的拉力等于物体的重力G;以滑轮为对象,两段绳的拉力都是G,互成120°,因此合力大小是G,根据共点力平衡条件,a杆对滑轮的作用力大小也是G(方向与竖直方向成60°斜向右上方);a杆和细线对滑轮的合力大小为零.6.B [解析] 细绳对A的拉力大小始终等于物体B的重力,选项A错误;系统仍保持静止,则A受到的合力仍为零,选项D错误;斜面倾角由45°增大到50°,A对斜面的压力大小由mA gcos45°减小到mAgcos50°,选项B正确;A受到的静摩擦力大小发生了变化,选项C错误.7.A [解析] 绳子恰好不断时的受力分析如图所示,由于F=mg=10 N,绳子的最大拉力也是10 N,可知F1、F2之间的最大夹角为120°,由几何关系知两个挂。

2020年全国一卷高考物理仿真模拟试卷( 四 )【含解析】

2020年全国一卷高考物理仿真模拟试卷(  四 )【含解析】

解析:选 AD 根据动量定理 I 合=(F-f)t=p,保持水平力 F 不变,经过时间 2t,(F-f)·2t=p′,可 知 p′=2p,故 A 正确;根据动量定理 I 合=(F-f)t=p,若水平力增加为原来的 2 倍,经过时间 t,则有 (2F-f)·t=p′,则 p′>2p,故 B 错误;根据动能定理(F-f)·l=Ek,保持水平力 F 不变,通过位移 2l,有 (F-f)·2l=Ek′,则有 Ek′=2Ek,故 C 错误;根据动能定理(F-f)·l=Ek,将水平力增加为原来的两倍, 通过位移 l,有(2F-f)·l=Ek′,则有 Ek′>2Ek,故 D 正确。

4 × 0.01
m/s2
= 1.95 m/s2。
2f
22
f
(2)由牛顿第二定律:2F-f=ma,即 a=mF-m,则:m=0.5=4,解得 m=0.5 kg;m=2,解得 f=1
f
N,则 μ=mg=0.2。
答案:(1)1.95 (2)0.5 0.2 23.为测量某电压表 V1 的内阻,某同学设计的电路如图 1 所示。可供选择的器材如下:
m
f
度 a 的关系图像的斜率为 k=P,纵轴截距为P=0.1,因此可求出 m、f 和 vmax,选项 A 正确,B、C 错误。
物体做变加速运动,无法求解物体加速运动的时间,选项 D 错误。
17.2017 年 4 月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对 接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。与天宫二号单独运行时相比,组合体运行 的( )
下列说法正确的是( ) A.该放射性物质的半衰期随温度的升高会增大 B.射线 C 中的粒子是原子核的重要组成部分 C.射线 A 中的粒子一定带正电 D.射线 B 中的粒子的穿透性最弱

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

g lcos
θ=
gh,所以小球 A、B 的角速度相等,
线速度大小不相等,故 A 正确,B 错误;
对题图乙中 C、D 分析,设绳与竖直方向的夹角为 θ,小球的质量为 m,绳上拉力为 FT,则有 mgtan θ=man,FTcos θ=mg,得 an=gtan θ,FT =cmosgθ,所以小球 C、D 所需的向心加速度大小相等,小球 C、D 受 到绳的拉力大小也相等,故 C、D 正确.
当转速较大,FN指向转轴时, 则FTcos θ+FN′=mω′2r 即FN′=mω′2r-FTcos θ 因ω′>ω,根据牛顿第三定律可知,小球对杆的压力 不一定变大,C错误; 根据F合=mω2r可知,因角速度变大,则小球所受合外力变大,D正确.
例5 (2022·全国甲卷·14)北京2022年冬奥会首钢滑雪大跳台局部示意图
例7 如图所示,质量相等的甲、乙两个小球,在光滑玻璃漏斗内壁做 水平面内的匀速圆周运动,甲在乙的上方.则 A.球甲的角速度一定大于球乙的角速度
√B.球甲的线速度一定大于球乙的线速度
C.球甲的运动周期一定小于球乙的运动周期 D.甲对内壁的压力一定大于乙对内壁的压力
对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,
√B.弹簧弹力的大小一定不变
C.小球对杆压力的大小一定变大
√D.小球所受合外力的大小一定变大
对小球受力分析,设弹簧弹力为FT,弹簧与水平方向 的夹角为θ, 则对小球竖直方向有 FTsin θ=mg,而 FT=kcMosPθ-l0 可知θ为定值,FT不变,则当转速增大后,小球的高度 不变,弹簧的弹力不变,A错误,B正确; 水平方向当转速较小,杆对小球的弹力FN背离转轴时,则FTcos θ- FN=mω2r 即FN=FTcos θ-mω2r

2020届高考物理一轮复习 新人教版【共24套168页】

2020届高考物理一轮复习 新人教版【共24套168页】

本套资源目录2020届高考物理一轮复习稳中培优计算实验练习五新人教版2020届高考物理一轮复习稳中培优计算实验练习四新人教版2020届高考物理一轮复习稳中培优非选择练习一新人教版2020届高考物理一轮复习稳中培优非选择练习三新人教版2020届高考物理一轮复习稳中培优非选择练习二新人教版2020届高考物理一轮复习稳中培优非选择练习四新人教版2020届高考物理一轮复习计算题夯基练习一新人教版2020届高考物理一轮复习计算题夯基练习三新人教版2020届高考物理一轮复习计算题夯基练习二新人教版2020届高考物理一轮复习计算题夯基练习五新人教版2020届高考物理一轮复习计算题夯基练习四新人教版2020届高考物理一轮复习计算题夯基练习新人教版2020届高考物理一轮复习选择题固基优练一新人教版2020届高考物理一轮复习选择题固基优练三新人教版2020届高考物理一轮复习选择题固基优练二新人教版2020届高考物理一轮复习选择题固基优练六新人教版2020届高考物理一轮复习选择题固基优练四新人教版2020届高考物理一轮复习选择题固基优练新人教版2020届高考物理一轮复习选择题稳优提优优练一新人教版_ 2020届高考物理一轮复习选择题稳优提优优练三新人教版2020届高考物理一轮复习选择题稳优提优优练三新人教版12020届高考物理一轮复习选择题稳优提优优练二新人教版2020届高考物理一轮复习选择题稳优提优优练五新人教版2020届高考物理一轮复习选择题稳优提优优练四新人教版稳中培优计算、实验练习(五)1、合肥开往上海的动车组D3028是由动车和拖车编组而成只有动车提供动力.假定该列动车组由8节车厢组成,第1节和第5节车厢为动车,每节动车的额定功率均为P 0,每节车厢的总质量为m ,动车组运行过程中所受阻力为车重的k 倍.若动车组以额定功率从合肥南站启动,沿水平方向做直线运动,经时间t 0速度达到最大,重力加速度为g.求:(1)当动车组速度达到最大速度一半时的加速度和此时第6节车厢对第7节的拉力;(2)动车组从启动至速度刚达到最大的过程中所通过的路程.【参考答案】(1)kg 4kmg (2)8k 2mg 2P 0t 0-P 2032k 3m 2g 3 解析:(1)设动车组匀速运动的速度为v m ,动车组速度为最大速度一半时动车的牵引力为F ,有2P 0=8kmgv m2P 0=2F v m 2对动车组,由牛顿第二定律2F -8kmg =8maa =2F -8kmg 8m=kg 对第7、8节车厢的整体有:F 67-2kmg =2ma解得:F 67=4kmg(2)由动能定理得:2P 0t 0-8kmgx =12(8m)v 2m -0 x =P 0t 04kmg -P 2032k 3m 2g 3=8k 2mg 2P 0t 0-P 2032k 3m 2g 3 2、如图所示,在xOy 坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的场强大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m 、带电荷量为q 的粒子在第二象限内的P(-L ,L)点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x 轴上的Q(L,0)点进入第一象限,重力加速度为g ,求:(1)粒子从P 点运动到坐标原点的时间;(2)匀强磁场的磁感应强度的大小和方向.【参考答案】(1) 2L g (2)垂直于纸面向里,2m 2gL qL解析:(1)粒子在第二象限内沿角平分线做直线运动,则电场力和重力的合力方向沿PO 方向,则粒子带正电.mg =qE ,2mg =ma.根据运动学公式可知,2L =12at 2. 联立解得t =2L g. (2)粒子在第二象限中做加速直线运动,根据动能定理可知,mgL +qEL =12mv 2-0. 解得,v =2gL ,方向与x 轴正方向成45°角.电场力与重力等大反向,洛伦兹力提供向心力,Bqv =m v 2R ,粒子在第四象限内做匀速圆周运动,轨迹如图所示:根据左手定则可知,磁场方向垂直于纸面向里.根据几何关系可知,粒子做匀速圆周运动的半径R =22L. 解得,B =2m 2gL qL. 3、(实验)利用图1的装置探究“恒力做功与物体动能变化”的关系.小车的质量为M ,钩码的质量为m ,且不满足m <M.打点计时器的电源是频率为f 的交流电.(1)实验中,把长木板右端垫高,在不挂钩码且________的情况下,轻推一下小车,若小车拖着纸带做匀速运动,表明已经消除了摩擦力和其他阻力的影响.(填选项前的字母)A .计时器不打点B .计时器打点(2)图2是正确操作后得到的一条纸带.纸带上各点是打出的计时点,其中O 点为打出的第一个点.小车发生的位移从纸带上计时点间的距离可以直接测出,利用下列测量值和题中已知条件能简单、准确完成实验的一项是________________________________________________________________________.(填选项前的字母)A .OA 、AD 和EG 的长度B .BD 、CF 和EG 的长度C .OE 、DE 和EF 的长度D .AC 、EG 和BF 的长度(3)若测得图2中OF =x 1,EG =x 2,则实验需要验证的关系式为________.(用已知和测得物理量的符号表示)【参考答案】(1)B (2)C (3)mgx 1=12(M +m)⎝ ⎛⎭⎪⎫fx 222 解析:(1)打点计时器工作时,纸带受到摩擦力作用,平衡摩擦力时,需要通过打点计时器判断是否匀速,B 选项正确.(2)简单、准确地完成实验,需要选取的两点尽可能远,且方便测量,故测量OE 段的长度,计算合力做功,测量DE 和EF 的长度,计算E 点的瞬时速度,C 选项正确.(3)EG =x 2,根据匀变速直线运动的规律可知,中间时刻F 点的瞬时速度v F =EG 2T =fx 22. 系统增加的动能ΔE K =12(M +m)v 2F ,系统减少的重力势能ΔE P =mgx 1.实验验证系统机械能守恒的表达式为mgx 1=12(M +m)⎝ ⎛⎭⎪⎫fx 222. 4、如图,是游乐场的一项娱乐设备.一环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下,落到一定位置时,制动系统启动.到地面时刚好停下.已知座舱开始下落的高度为H =75 m ,当落到离地面h =30 m 的位置时开始制动,座舱均匀减速.在一次娱乐中,某同学把质量m =6 kg 的书包放在自己的腿上.(g 取10 m/s 2),不计座舱与柱子间的摩擦力及空气阻力.(1)当座舱落到离地面h 1=60 m 和h 2=20 m 的位置时,求书包对该同学腿部的压力各是多大;(2)若环形座舱的质量M =4×103 kg ,求制动过程中机器输出的平均功率.【参考答案】(1)零 150 N (2)1.5×106W解析:(1)分析题意可知,座舱在离地面h =30 m 的位置时开始制动,说明座舱离地面60 m 时,座舱做自由落体运动,处于完全失重状态,书包对该同学腿部的压力为零.座舱落到离地面20 m 高时,做匀减速直线运动,根据牛顿第二定律可知,F 2-mg =ma.座舱下落45 m 时开始制动,此时速度为v.v 2=2g(H -h).座舱到地面时刚好停下,v 2=2ah.联立解得,F =150 N.根据牛顿第三定律可知,该同学腿部受到的压力为150 N.(2)制动过程中,座舱所受的制动力为F 0,经历的时间为t ,根据运动学公式可知,t =v a. 根据牛顿第二定律,对座舱有,F 0-Mg =Ma.座舱克服制动力做功W =F 0h.机器输出的平均功率P =W t .联立解得,P =1.5×106W.5、如图所示,矩形区域abcdef 分为两个矩形区域,左侧区域充满匀强电场,方向竖直向上,右侧区域充满匀强磁场,方向垂直纸面向外,be 为其分界线,af =L ,ab =0.75L ,bc =L.一质量为m 、电荷量为e 的电子(重力不计)从a 点沿ab 方向以初速度v 0射入电场,从be 边的中点g 进入磁场.(已知sin37°=0.6,cos37°=0.8)(1)求匀强电场的电场强度E 的大小;(2)若要求电子从cd 边射出,求所加匀强磁场磁感应强度的最大值B m ;(3)调节磁感应强度的大小.求cd 边上有电子射出部分的长度.【参考答案】(1)16mv 209eL (2)3mv 0eL解析:(1)电子在电场中做类平抛运动,根据运动的合成与分解法则可知, 竖直方向上,L 2=12×eE mt 2. 水平方向上,0.75L =v 0t.联立解得,E =16mv 209eL. (2)电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,evB =m v 2r. 运动轨迹刚好与cd 边相切时,半径最小,此时磁感应强度最大,轨迹如图所示:速度方向与水平方向夹角的正切值tanθ=0.5L 0.75L ×2=43,则速度与be 边的夹角为37°. 电子进入磁场时的速度为v =v 0sin37°=53v 0.根据几何关系可知,r 1+r 1cos37°=L.解得最大磁感应强度B m =3mv 0eL.稳中培优计算、实验练习(四)1、骏驰汽车赛车场有一段赛道可简化为这样:平直的赛道中间有一段拱形路面,其最高点P 与水平路面的高度差为1.25 m ,拱形路面前后赛道位于同一水平面上.以54 km/h 的初速进入直道的赛车,以90 kW 的恒定功率运动10 s 到达P 点,并恰好从P 点水平飞出后落到水平赛道上,其飞出的水平距离为10 m .将赛车视为质点,不考虑赛车受到的空气阻力.已知赛车的质量为1.6×103 kg ,取g =10 m/s 2,求:(1)赛车到达P 点时速度的大小.(2)拱形路面顶点P 的曲率半径.(3)从进入直道到P 点的过程中汽车克服阻力做的功.【参考答案】(1)20 m/s (2)40 m (3)7.4×105 J解析:(1)赛车到达P 点后做平抛运动.水平方向上,x =v p t.竖直方向上,h =12gt 2. 联立解得,v p =20 m/s.(2)赛车运动到拱形路面顶点P 时,重力提供向心力.mg =m v P R. 解得曲率半径R =40 m.(3)从进入直道到P 点的过程中,汽车牵引力做功,重力做功,克服阻力做功.根据动能定理可知,Pt -mgh -W f =12mv 2P -0. 解得,W f =7.4×105 J.2、如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场.A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1.平行金属板右侧有一挡板M ,中间有小孔O′,OO′是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2.CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,O′C=a ,现有大量质量均为m ,含有各种不同电荷量、不同速度的带电粒子(不计重力),自O 点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B 2中,求:(1)进入匀强磁场B 2的带电粒子的速度;(2)能击中绝缘板CD 的粒子中,所带电荷量的最大值;(3)绝缘板CD 上被带电粒子击中区域的长度.【参考答案】(1)EB 1(2)2+1mEB 1B 2a(3)2a解析:(1)平行金属板间存在相互垂直的匀强电场和匀强磁场,沿直线OO′运动的带电粒子,处于受力平衡状态,qvB 1=qE.解得,v =EB 1.(2)带电粒子进入匀强磁场B 2后做匀速圆周运动,洛伦兹力提供向心力. qvB 2=m v2r.电荷量最大的带电粒子,运动的轨迹半径最小,带正电,轨迹向下偏转,与CD 板相切,如图所示:根据几何关系可知,r 1+2r 1=a. 依题意解得,r 1=a 1+2,q =2+1mEB 1B 2a.(3)带负电的粒子在磁场B 2中向上偏转,击中绝缘板CD 的临界情况是轨迹与CD 相切. 根据几何关系可知,r 2+a =2r 2. 解得,r 2=a2-1.CD 板上被带电粒子击中区域的长度为x =r 2-r 1=2a.3、(实验)一个喷漆桶能够向外喷射不同速度的油漆雾滴,某同学决定测量雾滴的喷射速度,他采用如图1所示的装置,一个直径为d =40 cm 的纸带环,安放在一个可以按照不同转速转动的固定转台上,纸带环上刻有一条狭缝A ,在狭缝A 的正对面画一条标志线,如图1所示.在转台开始转动达到稳定转速时,向侧面同样开有狭缝B 的固定纸盒中喷射油漆雾滴,当狭缝A 转至与狭缝B 正对平行时,雾滴便通过狭缝A 匀速运动打在纸带的内侧面留下痕迹(若此过程转台转过不到一圈).将纸带从转台上取下来,展开平放,并与毫米刻度尺对齐,如图2所示.(1)设喷射到纸带上的油漆雾滴痕迹到标志线的距离为s ,则从图2可知,其中速度最大的雾滴到标志线的距离s =________cm.(2)如果转台转动的周期为T ,则这些雾滴喷射速度的计算表达式为v 0=________________________________________________________________________(用字母表示).(3)如果以纵坐标表示雾滴的速度v 0,横坐标表示雾滴距标志线距离的倒数1s ,画出v 0-1s图线,如图3所示,则可知转台转动的周期为T =________s. 【参考答案】(1)2.10 (2)πd2Ts(3)1.6解析:(1)雾滴运动一直径的长度,速度越大,运行的时间越短,转台转过的弧度越小,打在纸带上的点距离标志线的距离越小.速度最大的雾滴到标志线的距离s =2.10 cm.(2)如果转台转动的周期为T ,则雾滴运动的时间为t =s v =sTπd ,喷枪喷出雾滴的速度v 0=d t =πd 2Ts.(3)由上式变形为,v 0=πd 2Ts =πd 2T ·1s ,v 0-1s 图象中斜率k =πd 2T =0.7π7,解得,T =1.6 s.4、两小木块A 、B ,通过轻质弹簧连接,小木块B 处在固定于地面的光滑斜面底端的挡板上,小木块A 压缩弹簧处于平衡状态.现对木块A 施加一平行于斜面向上的恒力F 作用,小木块A 从静止开始沿斜面向上运动,如图所示.已知m A =m B =2 kg ,F =30 N ,斜面倾角θ=37°,弹簧劲度系数k =4 N/cm.设斜面足够长,整个过程弹簧处于弹性限度内,重力加速度取g=10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)从小木块A开始运动到小木块B刚开始运动的过程中,恒力F对小木块A做的功;(2)当小木块B的加速度a B=1 m/s2时,小木块A的加速度的大小.【参考答案】(1)1.8 J (2)2 m/s2解析:(1)初态时,小木块A压缩弹簧,根据平衡条件可知,kx1=m A gsinθ.末态时,小木块B拉伸弹簧,kx2=m B gsinθ.弹簧的形变量x=x1+x2.恒力F对小木块A做功W=F·x.联立解得,W=1.8 J.(2)当小木块B的加速度a B=1 m/s2时,弹簧的拉力大小为F1,小木块A的加速度的大小a A,根据牛顿第二定律可知,F-F1-m A gsinθ=m A a A.F1-m B gsinθ=m B a B.联立解得,a A=2 m/s2.5、磁流体发电是一种新型发电方式,图甲和图乙是其工作原理示意图.图甲中的A、B 是电阻可忽略的导体电极,两个电极间的间距为d,这两个电极与负载电阻相连.假设等离子体(高温下电离的气体,含有大量的正负带电粒子)垂直于磁场进入两极板间的速度均为v0.整个发电装置处于匀强磁场中,磁感应强度大小为B,方向如图乙所示.(1)开关断开时,请推导该磁流体发电机的电动势E的大小;(2)开关闭合后,如果电阻R的两端被短接,此时回路电流为I,求磁流体发电机的等效内阻r.【参考答案】(1)Bdv 0 (2)Bdv 0I解析:(1)等离子体垂直于磁场射入两板之间,正、负离子受到洛伦兹力作用,正离子偏向A 极板,负离子偏向B 极板,两板之间形成从A 到B 的匀强电场.当粒子受的电场力与洛伦兹力相等时,q Ed =qv 0B ,粒子不再偏转,两极板间形成稳定的电势差即发电机的电动势,E =Bdv 0.(2)如果电阻R 的两端被短接,此时回路电流为I. 根据闭合电路欧姆定律,磁流体发电机的等效内阻 r =E I =Bdv 0I .稳中培优非选择练习(一)1、如图,两条长直相交汇成直角的摩托车水平赛道,宽均为6 m ,圆弧PQ 、MN 与赛道外边缘的两条直线相切,圆弧PQ 经过赛道内边缘两条直线的交点O 2,雨后路面比较湿滑,摩托车与赛道间的动摩擦因数为0.6,设最大静摩擦力等于滑动摩擦力,赛车手(可视为质点)在直道上做直线运动,弯道上做匀速圆周运动,重力加速度g =10 m/s 2,2=1.4,7=2.6.(1)若以最短时间从P 点运动到Q 点,应选A 路线还是B 路线?(不用说明理由) (2)沿着A 路线通过弯道MN 的最大速率不能超过多少?(3)以30 m/s 的速度在直线赛道上沿箭头方向匀速行驶,若要沿B 路线安全行驶,则进入P 点前至少多远开始刹车?【参考答案】(1)B 路线合理 (2)6 m/s (3)64.5 m解析:(1)赛车手沿A 、B 路线运动时,线速度大小相等,故路径短的用时较短,选B 路线合理.(2)赛车手以速度v 1沿着A 路线通过弯道MN 时,最大静摩擦力提供向心力. μmg=m v 21r 1,解得,v 1=6 m/s.(3)赛车手以速度v 2沿着B 路线通过弯道时,最大静摩擦力提供向心力,μmg=m v 22r 2.根据几何关系可知,2(r 2-6)=r 2.赛车手以初速度v 0=30 m/s ,加速度μg,做匀减速直线运动到P 点,位移为x. 根据运动学公式可知,v 20-v 22=2ax. 联立解得,x =64.5 m.2、如图所示,水平面AB 光滑,粗糙半圆轨道BC 竖直放置.圆弧半径为R ,AB 长度为4R.在AB 上方、直径BC 左侧存在水平向右、场强大小为E 的匀强电场.一带电量为+q 、质量为m 的小球自A 点由静止释放,经过B 点后,沿半圆轨道运动到C 点.在C 点,小球对轨道的压力大小为mg ,已知E =mgq,水平面和半圆轨道均绝缘.求:(1)小球运动到B 点时的速度大小; (2)小球运动到C 点时的速度大小;(3)小球从B 点运动到C 点过程中克服阻力做的功. 【参考答案】(1)8gR (2)2gR (3)mgR 解析:(1)小球运动到B 点的过程中,电场力做功. 根据动能定理,qE·4R=12mv 2B -0.其中E =mgq.联立解得,vB =8gR.(2)小球运动到C 点时,根据牛顿第二定律, 2mg =m vC 2R .解得,vC =2gR.(3)小球从B 运动到C 点的过程,根据动能定理, -W f -2mgR =12mvC 2-12mvB 2解得,W f =mgR.3、如图所示,让摆球从图中的C 位置由静止开始摆下,摆到最低点D 处,摆线刚好拉断,小球在粗糙的水平面上由D 点向右做匀减速运动滑向A 点,到达A 孔进入半径R =0.3 m 的竖直放置的光滑圆弧轨道,当摆球进入圆轨道立即关闭A 孔,已知摆线长为L =2.5 m ,θ=60°,小球质量为m =1 kg ,小球可视为质点,D 点与小孔A 的水平距离s =2 m ,g 取10 m/s 2,试求:(1)摆线能承受的最大拉力为多大?(2)要使摆球能进入圆轨道并能通过圆轨道的最高点,求粗糙水平面摩擦因数μ的范围.【参考答案】 (1)20 N (2)μ≤0.25解析:(1)摆球由C 到D 运动过程做圆周运动,摆球的机械能守恒, mgL(1-cosθ)=12mv 2D .摆球在D 点时,由牛顿第二定律可得, F m -mg =m v 2DL联立两式解得,F m =2mg =20 N.(2)小球刚好能通过圆轨道的最高点时,在最高点由牛顿第二定律可得, mg =m v 2R.小球从D 到圆轨道的最高点过程中,由动能定理得, -μmgs-2mgR =12mv 2-12mv 2D .解得,μ=0.25.即要使摆球能进入圆轨道并能通过圆轨道的最高点,μ≤0.25.4、如图所示,空间内有场强大小为E 的匀强电场,竖直平行直线为匀强电场的电场线(方向未知),现有一电荷量为q ,质量为m 的带负电的粒子,从O 点以某一初速度垂直电场方向进入电场,A 、B 为运动轨迹上的两点,不计粒子的重力及空气的阻力.(1)若OA 连线与电场线夹角为60°,OA =L ,求带电粒子从O 点到A 点的运动时间及进电场的初速度;(2)若粒子过B 点时速度方向与水平方向夹角为60°,求带电粒子从O 点到B 点过程中电场力所做的功.【参考答案】(1)mLqEv 0= 3qEL m (2)9qEL8解析:(1)带电粒子做曲线运动,受力指向轨迹的内侧,电场力方向向上,带电粒子带负电,电场强度方向竖直向下.水平方向的位移Lsin60°=v 0t. 竖直方向的位移Lcos60°=12·qE m t 2.联立解得,t =mLqE,v 0= 3qELm. (2)根据运动的合成与分解知识可知,粒子到达B 点的速度v =v 0cos60°=2v 0.带电粒子从O 点到B 点过程中,根据动能定理可知, W =12mv 2-12mv 20. 联立解得电场力做功W =32mv 20=9qEL8.5、为了测量某种材料制成的电阻丝的电阻R x ,提供的器材有: A .电流表G ,内阻Rg =120 Ω,满偏电流Ig =6 mA B .电压表V ,量程为6 V C .螺旋测微器,毫米刻度尺 D .电阻箱R 0(0~99.99 Ω) E .滑动变阻器R(最大阻值为5 Ω)F .电池组E(电动势为6 V ,内阻约为0.05 Ω)G .一个开关S 和导线若干(1)用多用电表粗测电阻丝阻值,用“×10”挡时发现指针偏转角度过大,应该换用________挡(选填“×1”或“×100”),进行一系列正确操作后,指针静止时位置如图甲所示;(2)电流表G 与电阻箱并联改装成量程为0.6 A 的电流表,则电阻箱的阻值应调为R 0=________Ω;(结果保留3位有效数字)(3)为了用改装好的电流表测量电阻丝R x 的阻值,请根据提供的器材和实验需要,将图乙中电路图补画完整.(要求在较大范围内测量多组数据)(4)电路闭合后,调节滑动变阻器的滑片到合适位置,电压表V 的示数为U ,电流表G 的示数为I.请用已知量和测量的字母符号,写出计算电阻的表达式R x =________.【参考答案】(1)“×1” (2)1.21 Ω (3)见解析 (4)UR 0R 0+R gI解析:(1)用多用电表粗测电阻丝阻值,用“×10”挡时发现指针偏转角度过大,说明被测电阻阻值较小,说明选择的倍率较大,应选择“×1”倍率.(2)将电流表G 与电阻箱并联改装成量程为0.6 A 的电压表,根据电表改装原理可知,电阻箱的阻值应调为R 0=I g R gI -I g≈1.21 Ω.(3)待测电阻阻值为15 Ω,电压表内阻很大,远大于被测电阻的阻值,电流表应采用外接法,滑动变阻器最大阻值为5 Ω,为测多组实验数据,采用分压接法,电路图如图所示:(4)根据欧姆定律, R x =U R I R =U R 0+R g R 0I =UR 0R 0+R gI.稳中培优非选择练习(三)1、为了方便研究物体与地球间的万有引力问题,通常将地球视为质量分布均匀的球体.已知地球质量M =6.0×1024kg ,地球半径R =6 400 km ,其自转周期T =24 h ,引力常量G =6.67×10-11N·m 2/kg 2.在赤道处地面有一质量为m 的物体A ,用W 0表示物体A 在赤道处地面上所受的重力,F 0表示其在赤道处地面上所受的万有引力.请求出F 0-W 0F 0的值(结果保留1位有效数字),并以此为依据说明在处理万有引力和重力的关系时,为什么经常可以忽略地球自转的影响.【参考答案】见解析解析:物体A 在赤道处地面上所受的万有引力 F 0=G Mm R2.物体A 在赤道处,随地球自转,根据牛顿第二定律可知,F 0-W 0=m 4π2T 2R.解得物体A 此时所受重力W 0=G Mm R 2-m 4π2T2R.联立解得,F 0-W 0F 0=m 4π2T 2R G Mm R2,代入数据解得,F 0-W 0F 0=3×10-3.由于地球自转对地球赤道面上静止的物体所受重力与所受地球引力大小差别的影响很小,所以通常情况下可以忽略地球自转造成的地球引力与重力大小的区别.2、如图所示,空间中存在一个矩形区域MNPQ ,PQ 的长度为MQ 长度的两倍,有一个带正电的带电粒子从M 点以某一初速度沿MN 射入,若矩形区域MNPQ 中加上竖直方向且场强大小为E 的匀强电场,则带电粒子将从P 点射出,若在矩形区域MNPQ 中加上垂直于纸面且磁感应强度大小为B 的匀强磁场,则带电粒子仍从P 点射出,不计带电粒子的重力,求:带电粒子的初速度的大小.【参考答案】4E5B解析:带电粒子在电场中做类平抛运动,设MQ 长度为L ,根据运动的合成与分解法则可知,竖直方向上,L =12×qE m t 2.水平方向上,2L =v 0t.带电粒子在磁场中做匀速圆周运动,画出轨迹如图所示:洛伦兹力提供向心力,qvB =m v 20r ,根据几何关系可知,(r -L)2+(2L)2=r 2.联立上述各式可知,v =4E5B.3、【实验】某同学用如图1所示的装置做“探究弹力与弹簧伸长的关系”的实验. (1)实验中,他在弹簧两端各系一细绳套,利用一个绳套将弹簧悬挂在铁架台上,另一端的绳套用来挂钩码.先测出不挂钩码时弹簧的长度,再将钩码逐个挂在弹簧的下端,每次都测出相应的弹簧总长度L ,再算出弹簧伸长量x ,并将数据填在下面的表格中.实验过程中,弹簧始终在弹性限度内.1 2 3 4 5 6 钩码的重力G/N 0 0.5 1.0 1.5 2.0 2.5 弹簧弹力F/N 0 0.5 1.0 1.5 2.0 2.5 弹簧总长度L/cm 13.00 15.05 17.10 19.00 21.00 23.00 弹簧伸长量x/cm2.054.106.008.0010.00数据点,请把第4次测量的数据对应点用“+”描绘出来,并作出F -x 图象.(2)①根据上述的实验过程,对实验数据进行分析可知,下列说法正确的是________(选填选项前的字母).A.弹簧弹力大小与弹簧的总长度成正比B.弹簧弹力大小与弹簧伸长的长度成正比C.该弹簧的劲度系数约为25 N/mD.该弹簧的劲度系数约为2500 N/m②在匀变速直线运动的速度v随时间t变化关系图象中,图线与坐标轴围成的面积的物理意义表示位移.请类比思考,(1)问的F-x图象中图线与坐标轴围成的面积的物理意义.【参考答案】(1)见解析(2)①BC ②弹力做的功解析:(1)描点连线,如图所示:(2)①分析图象结合表格数据可知,弹簧弹力大小与弹簧伸长量成正比,A选项错误,B 选项正确;根据胡克定律可知,图象中斜率代表弹簧的劲度系数,劲度系数为25 N/m,C选项正确,D选项错误.②力与位移的乘积为功,利用微元法,在很短时间里弹力是恒定不变的,则F-x图象中图线与坐标轴围成的面积的物理意义是弹力做的功.4、某赤道平面内的卫星自西向东飞行绕地球做圆周运动,该卫星离地高度为h(h的高度小于地球同步卫星的高度),赤道上某人通过观测,前后两次出现在人的正上方最小时间间隔为t,已知地球的自转周期为T0,地球的质量为M,引力常量为G,求:地球的半径.【参考答案】3GMt2T24π2t+T02-h解析:卫星绕地球做匀速圆周运动,万有引力提供向心力,GMmR+h2=m⎝⎛⎭⎪⎫2πT2(R+h).分析题意可知,t时间内,卫星多转一圈运动到观察者的正上方.t T -tT0=1.联立解得,R=3GMt2T24π2t+T02-h.5、一同学用电子秤、水壶、细线、墙钉和贴在墙上的白纸等物品,在家中做验证力的平行四边形定则的实验.(1)如图甲,在电子秤的下端悬挂一装满水的水壶,记下水壶静止时电子秤的示数F;(2)如图乙,将三根细线L1、L2、L3的一端打结,另一端分别拴在电子秤的挂钩、墙钉A 和水壶杯带上.水平拉开细线L1,在白纸上记下结点O的位置、________和电子秤的示数F1;(3)如图丙,将另一颗墙钉B钉在与O同一水平位置上,并将L1拴在其上.手握电子秤沿着(2)中L2的方向拉开细线L,使三根细线的方向与(2)中________重合,记录电子秤的示数F2;(4)在白纸上按一定标度作出电子秤拉力F、F1、F2的图示,根据平行四边形定则作出F1、F2的合力F′的图示,若________,则力的平行四边形定则得到验证.【参考答案】(2)三细线的方向(3)结点的位置(4)F′大小与F相等、方向相同解析:(2)研究合力与分力的关系需要记录分力的大小和方向,即在白纸上记下结点O 的位置的同时也要记录三细线的方向以及电子秤的示数F1.(3)应使结点O的位置和三根细线的方向与②中重合,记录电子秤的示数F2.(4)根据平行四边形定则作出合力,若F′大小与F相等、方向相同,则力的平行四边形定则得到验证.。

高考物理人教版一轮单元高考模拟特训(四)+Word版含解析

高考物理人教版一轮单元高考模拟特训(四)+Word版含解析

]2017年10月7日,钱塘江大潮如期而至,冲浪顶尖高手驾着竞技摩托艇在江面运动,在某段时间内其两个分运=1.5t2+4t,xOy如图所示,可视为质点的木块A、B叠放在一起,放在水平转台OO′匀速转动,木块5 kg,B的质量为10 kg.如图所示,一轻杆一端固定质量为mR的圆周运动.以下说法正确的是.假设将来人类登上了火星,考察完毕后,乘坐一艘宇宙飞船经历了如图所示的变轨过程,).飞船在轨道Ⅰ上运动时的机械能小于在轨道Ⅱ上运动时的机4 m/s C .6 m/s 球从框架底边中点处入框时,初速度最小,此时水平位移2h g =2×1.810 s =0.6 s在弯道上行驶的最大速度.段做匀减速运动的最小加速度. 弯道,由牛顿第二定律得,(2)4 m/s一个可以看成质点的小球用没有弹性的细=5 m,小球质量为球使细线水平,由静止释放小球,已知小球运动到最低点=10 m/s2.O时细线的拉力点,小球恰能通过最高点D,完成以下要求(g=10 m/s情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。

其实你若真爱一个人,内心酸涩,反而会说不出话来12.生命中有一些人与我们擦肩了,却来不及遇见;遇见了,却来不及相识;相识了,却来不及熟悉,却还要是再见13.对自己好点,因为一辈子不长;对身边的人好点,因为下辈子不一定能遇见14.世上总有一颗心在期待、呼唤着另一颗心15.离开之后,我想你不要忘记一件事:不要忘记想念我。

2020高考物理一轮总复习第四章第2讲平抛运动讲义(含解析)新人教版

2020高考物理一轮总复习第四章第2讲平抛运动讲义(含解析)新人教版

第2讲 平抛运动[基础知识·填一填][知识点1] 平抛运动1.定义:将物体以一定的初速度沿 水平方向 抛出,物体只在 重力 作用下(不考虑空气阻力)的运动.2.性质加速度为重力加速度g 的 匀变速曲线 运动,运动轨迹是抛物线. 3.基本规律以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做 匀速直线 运动,速度v x = v 0 ,位移x = v 0t . (2)竖直方向:做 自由落体 运动,速度v y = gt ,位移y = 12gt 2.(3)合速度:v =v 2x +v 2y ,方向与水平方向的夹角为θ,则tan θ=v y v x = gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x = gt2v 0. 4.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的 中点 ,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移方向与水平方向夹角为θ,则tan α= 2tan_θ .判断正误,正确的划“√”,错误的划“×”.(1)以一定的初速度水平抛出的物体的运动是平抛运动.(×) (2)平抛运动的速度方向时刻变化,加速度方向也可能时刻变化.(×) (3)做平抛运动的物体,在任意相等的时间内速度的变化相同.(√) (4)做平抛运动的物体初速度越大,在空中运动时间越长.(×)(5)从同一高度水平抛出的物体,不计空气阻力,初速度越大,落地速度越大.(√)[知识点2] 斜抛运动1.定义:将物体以初速度v0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线.,[教材挖掘·做一做]1.(人教版必修2 P9例1改编)如图,滑板运动员以速度v0从离地高度为h的平台末端水平飞出,落在水平地面上.忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是( )A.v0越大,运动员在空中运动时间越长B.v0越大,运动员落地瞬间速度越大C.运动员落地速度与高度h无关D.运动员落地位置与v0无关答案:B2.(人教版必修 2 P10“做一做”改编)(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图所示的装置进行实验.小锤打击弹性金属片,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法正确的有( )A.两球的质量应相等B.两球应同时落地C.应改变装置的高度,多次实验D.实验也能说明A球在水平方向上做匀速直线运动答案:BC3.(人教版必修2 P12第1题改编)静止的城市绿化洒水车,由横截面积为S的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力,重力加速度为g,以下说法正确的是( ) A.水流射出喷嘴的速度大小为gt tan θB .空中水柱的水量为Sgt 22tan θC .水流落地时位移大小为gt 22cos θD .水流落地时的速度大小为2gt cos θ解析:B [水流落地点与喷嘴连线与水平地面间的夹角为θ,则有tan θ=12gt 2v 0t,解得v 0=gt2tan θ,t =2v 0tan θg ,故A 错误;空中水柱的水量Q =Sv 0t =Sgt22tan θ,故B 正确;水流落地时,竖直方向位移h =12gt 2,根据几何关系得,水流落地时位移大小s =h sin θ=gt 22sin θ,故C 错误;水流落地时,竖直方向速度v y =gt ,则水流落地时的速度v =v 20+v 2y=gt2tan θ·1+4tan 2θ,故D 错误.]考点一 平抛运动的基本规律[考点解读]1.飞行时间:由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x=2ghv 0,所以落地速度只与初速度v 0和下落高度h 有关.4.速度改变量:物体在任意相等时间内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示.[典例赏析][典例1] (2017·全国卷Ⅰ)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网;其原因是( )A .速度较小的球下降相同距离所用的时间较多B .速度较小的球在下降相同距离时在竖直方向上的速度较大C .速度较大的球通过同一水平距离所用的时间较少D .速度较大的球在相同时间间隔内下降的距离较大[解析] C [由题意知,速度大的先过球网,即同样的时间,速度大的水平位移大,或者同样的水平距离,速度大的用时少,故C 正确;A 、B 、D 错误.]“化曲为直”思想在抛体运动中的应用1.根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.2.运用运动合成的方法求出平抛运动的速度、位移等.[题组巩固]1.在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中( )A .速度和加速度的方向都在不断改变B .速度与加速度方向之间的夹角一直减小C .在相等的时间间隔内,速率的改变量相等D .在相等的时间间隔内,动能的改变量相等解析:B [由于不计空气阻力,小球只受重力作用,故加速度为g ,小球做平抛运动,速度的方向不断变化,在任意一段时间内速度的变化量Δv =g Δt ,如图,选项A 错误;设某时刻速度与竖直方向的夹角为θ,则tan θ=v 0v y =v 0gt,随着时间t 的变大,tan θ变小,选项B 正确;由图可以看出,在相等的时间间隔内,速度的改变量Δv 相等,但速率的改变量v 3-v 2≠v 2-v 1≠v 1-v 0,故选项C 错误;在竖直方向上位移h =12gt 2,可知小球在相同的时间内下落的高度不同,根据动能定理,动能的改变量等于重力做的功,所以选项D 错误.]2.(多选)如图为自动喷水装置的示意图.喷头高度为H ,喷水速度为v ,若要增大喷洒距离L ,下列方法中可行的有( )A .减小喷水的速度vB .增大喷水的速度vC .减小喷头的高度HD .增大喷头的高度H解析:BD [根据H =12gt 2得t =2Hg,则喷洒的距离L =vt =v2Hg,则增大喷水的速度,增大喷头的高度可以增大喷洒距离,故B 、D 正确,A 、C 错误.]3.(2019·北京东城区模拟)“东方-2018”是中俄战略级联合军演,于2018年9月11日开练.如图所示,在联合军事演习中,离地面H 高处的飞机以水平对地速度v 1发射一颗炸弹轰炸地面目标P ,反应灵敏的地面拦截系统同时以初速度v 2竖直向上发射一颗炮弹拦截(炮弹运动过程视为竖直上抛),设此时拦截系统与飞机的水平距离为x ,若拦截成功,不计空气阻力,则v 1、v 2的关系应满足( )A .v 1=H x v 2B .v 1=v 2x HC .v 1=x Hv 2D .v 1=v 2解析:C [炮弹拦截成功,即炮弹与炸弹同时运动到同一位置.设此位置距地面的高度为h ,则x =v 1t ,h =v 2t -12gt 2,H -h =12gt 2,由以上各式联立解得v 1=xHv 2,故C 正确.]考点二 多体平抛运动问题[考点解读]1.两条平抛运动轨迹的交点是两物体的必经之处,两物体要在此处相遇,必须同时到达此处.即轨迹相交是物体相遇的必要条件.2.若两物体同时从同一高度抛出,则两物体始终处在同一高度.3.若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同. 4.若两物体从同一高度先后抛出,则两物体高度差随时间均匀增大.[典例赏析][典例2] (2017·江苏卷)如图所示,A 、B 两小球从相同高度同时水平抛出,经过时间t 在空中相遇.若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为( )A .t B.22t C.t2D.t4[解析] C [设第一次抛出时A 球速度为v 1,B 球速度为v 2,则A 、B 间水平距离x =(v 1+v 2)t .第二次两球速度为第一次的2倍,但水平距离不变,则x =2(v 1+v 2)T ,联立得T =t /2,所以C 正确.A 、B 、D 错误.][母题探究][探究1] 两物体从不同高度抛出落在同一位置的平抛如图所示,A 、B 两个小球从同一竖直线上的不同位置水平抛出,结果它们同时落在地面上的同一点C ,已知A 离地面的高度是B 离地面高度的2倍,则A 、B 两个球的初速度之比为v A ∶v B 为( )A .1∶2B .2∶1 C.2∶1D.2∶2解析:D [由于A 、B 两球离地面的高度之比为2∶1,由t =2hg可知,它们落地所用的时间之比为2∶1,由于它们的水平位移x 相同,由v =x t可知,初速度之比为1∶2=2∶2,D 项正确.][探究2] 物体从同一高度下落到不同高度的平抛如图所示,在同一平台上的O 点水平抛出的三个物体,分别落到a 、b 、c 三点,则三个物体运动的初速度v a 、v b 、v c 的关系和三个物体运动的时间t a 、t b 、t c 的关系是( )A .v a >v b >v c ,t a >t b >t cB .v a <v b <v c ,t a =t b =t cC .v a <v b <v c ,t a >t b >t cD .v a >v b >v c ,t a <t b <t c解析:C [三个平抛运动竖直方向都为自由落体运动,由h =12gt 2可知,a 的运动时间最长,c 的运动时间最短;由水平方向为匀速直线运动可知c 的初速度最大,a 的初速度最小,C 正确.][探究3] 多体从不同高度落在不同位置的平抛(多选)如图,x 轴在水平地面内,y 轴沿竖直方向.图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( )A .a 的飞行时间比b 的长B .b 和c 的飞行时间相同C .a 的水平速度比b 的小D .b 的初速度比c 的大解析:BD [三个小球a 、b 和c 水平抛出以后都做平抛运动,根据平抛运动规律可得:x =v 0t ,y =12gt 2,所以t =2yg,由y b =y c >y a ,得t b =t c >t a ,选项A 错,B 对;又根据v 0=xg2y,因为y b >y a ,x b <x a ,y b =y c ,x b >x c ,故v a >v b ,v b >v c ,选项C 错误,D 对.] 考点三 平抛运动的临界问题[考点解读]1.确定在临界状态下所对应的临界条件,一般平抛运动过哪个点,限定了平抛运动的位移;平抛运动切入某个轨道,限定了速度方向.2.利用分解位移或分解速度的方法解决问题.3.确定研究过程,一般从平抛运动的抛出点开始计算问题比较简单.[典例赏析][典例3] 一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12 g6h <v <L 1g 6hB.L 14 g h <v < (4L 21+L 22)g6h C.L 12g 6h <v <12(4L 21+L 22)g6hD.L 14g h <v <12 (4L 21+L 22)g6h[审题指导] (1)审关键词:①发射机安装于台面左侧边缘的中点.②能以不同速率向右侧不同方向水平发射乒乓球.(2)思路分析:①乒乓球落在右侧台面的台角处时,速度取最大值.②乒乓球沿正前方且恰好擦网而过时,速度取最小值.[解析] D [乒乓球做平抛运动,落到右侧台面上时经历的时间t 1满足3h =12gt 21.当v取最大值时其水平位移最大,落点应在右侧台面的台角处,有v max t 1=L 21+⎝ ⎛⎭⎪⎫L 222,解得v max =12(4L 21+L 22)g6h;当v 取最小值时其水平位移最小,发射方向沿正前方且恰好擦网而过,此时有3h -h =12gt 22,L 12=v min t 2,解得v min =L 14gh,故D 正确.] 处理平抛运动中的临界问题要抓住两点1.找出临界状态对应的临界条件.2.要用分解速度或分解位移的思想分析平抛运动的临界问题.[母题探究][探究1] 如图所示,排球场总长为18 m ,设球网高度为2 m ,运动员站在离网3 m 的线上(图中虚线所示)正对网前跳起将球水平击出.(不计空气阻力,取g =10 m/s 2)(1)设击球点在3 m 线正上方高度为2.5 m 处,试问击球的速度在什么范围内才能使球既不触网也不越界?(2)若击球点在3 m 线正上方的高度小于某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度.解析:(1)如图甲所示,设球刚好擦网而过,则击球点到擦网点的水平位移x 1=3 m ,竖直位移y 1=h 2-h 1=(2.5-2) m =0.5 m ,根据位移关系x =vt ,y =12gt 2,可得v =x g2y,代入数据可得v1=310 m/s,即所求击球速度的下限.设球刚好打在边界线上,则击球点到落地点的水平位移x2=12 m,竖直位移y2=h2=2.5 m,代入上面的速度公式v=x g2y,可求得v2=12 2 m/s,即所求击球速度的上限.欲使球既不触网也不越界,则击球速度v应满足310 m/s<v<12 2 m/s.(2)设击球点高度为h3时,球恰好既触网又压线,如图乙所示设此时排球的初速度为v,击球点到触网点的水平位移x3=3 m,竖直位移y3=h3-h1=(h3-2) m,代入速度公式v=x g2y可得v=35h3-2;同理对压线点有x4=12 m,y4=h3,代入速度公式v=x g2y可得v=125h3两式联立解得h3≈2.13 m,即当击球高度小于2.13 m时,无论球被水平击出的速度多大,球不是触网,就是越界.答案:(1)310 m/s<v<12 2 m/s (2)2.13 m[探究2] 对称法分析临界问题抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)(1)若球在球台边缘O点正上方高度为h1处以速度v1水平发出,落在球台上的P1点(如图实线所示),求P1点距O点的距离x1.(2)若球从O点正上方以速度v2水平发出,恰好在最高点时越过球网落在球台上的P2点(如图虚线所示),求v 2的大小.(3)若球从O 点正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P 3点,求发球点距O 点的高度h 3.解析:(1)如图甲所示,根据平抛规律得:h 1=12gt 21,x 1=v 1t 1,联立解得:x 1=v 12h 1g(2)根据平抛规律得:h 2=12gt 22,x 2=v 2t 2且h 2=h,2x 2=L ,联立解得v 2=L2g 2h. (3)如图乙所示,得h 3=12gt 23,x 3=v 3t 3且3x 3=2L设球从恰好越过球网到达到最高点时所用的时间为t ,水平距离为s ,有h 3-h =12gt 2 s =v 3t由几何关系得:x 3+s =L ,解得:h 3=43h .答案:(1)v 12h 1g (2)L2g 2h (3)43h物理模型(四) 常见平抛运动的模型[模型阐述]1.模型一:半圆内的平抛运动(如图甲)由半径和几何关系制约时间t :h =12gt 2R + R 2-h 2=v 0t联立两方程可求t .甲2.模型二:斜面上的平抛运动 (1)顺着斜面平抛(如图乙) 方法:分解位移x =v 0t y =12gt 2tan θ=y x可求得t =2v 0tan θg乙(2)对着斜面平抛(如图丙) 方法:分解速度v x =v 0 v y =gttan θ=v 0v y =v 0gt可求得t =v 0g tan θ丙3.模型三:对着竖直墙壁的平抛运动(如图丁)水平初速度v 0不同时,虽然落点不同,但水平位移相同.t =d v 0丁 [典例赏析][典例] (2018·全国卷Ⅲ)在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平拋出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( )A .2倍B .4倍C .6倍D .8倍[审题指导] (1)平抛运动是曲线运动,轨迹为抛物线,可以分解为竖直方向上的自由落体运动(满足h =12gt 2和v y =gt )和水平方向上的匀速直线运动(满足x =v 0t ).(2)根据动能定理或速度分解,找出小球落到斜面上的速度v 与抛出时的速度v 0的关系.(3)根据速度关系,得出甲、乙两个小球落到斜面上时的速度之比. [解析] A [小球做平抛运动,其运动轨迹如图所示.设斜面的倾角为θ.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,x =v 0t ,h =12gt 2,由图中几何关系,可得tan θ=h x ,解得:t =2v 0tan θg; 从抛出到落到斜面上,由动能定理可得:mgh =12mv ′2-12mv 20,可得:v ′=v 20+2gh =1+4tan 2θ·v 0,则v 甲′v 乙′=v 0甲v 0乙=v v 2=21,选项A 正确.]1.解决与斜面关联的平抛运动问题时,首先明确是已知速度方向还是已知位移方向与斜面的夹角,再确定与水平方向的夹角,最后对速度或位移进行分解.2.与圆形装置关联的平抛运动的求解方法与此类似.[题组巩固]1.(多选)如图,从半径为R =1 m 的半圆AB 上的A 点水平抛出一个可视为质点的小球,经t =0.4 s 小球落到半圆上,已知当地的重力加速度g =10 m/s 2,则小球的初速度v 0可能为( )A .1 m/sB .2 m/sC .3 m/sD .4 m/s解析:AD [由于小球经0.4 s 落到半圆上,下落的高度h =12gt 2=0.8 m ,位置可能有两处,如图所示:第一种可能:小球落在半圆左侧v 0t =R -R 2-h 2=0.4 m ,v 0=1 m/s第二种可能:小球落在半圆右侧v 0t =R +R 2-h 2=1.6 m ,v 0=4 m/s ,选项A 、D 正确.]2.(多选)如图所示,小球a 从倾角为θ=60°的固定粗糙斜面顶端以速度v 1沿斜面恰好匀速下滑,同时将另一小球b 在斜面底端正上方与a 球等高处以速度v 2水平抛出,两球恰在斜面中点P 相遇,则下列说法正确的是( )A .v 1∶v 2=2∶1B .v 1∶v 2=1∶1C .若小球b 以2v 2水平抛出,则两小球仍能相遇D .若小球b 以2v 2水平抛出,则b 球落在斜面上时,a 球在b 球的右下方解析:AD [两球在P 点相遇,知两球的水平位移相等,有v 1t sin 30°=v 2t ,解得v 1∶v 2=2∶1,A 对,B 错;若小球b 以2v 2水平抛出,如图所示,若没有斜面,将落在B 点与P 点等高,可知将落在斜面上的A 点,由于a 、b 两球在水平方向上做匀速直线运动,可知a 球落在A 点的时间小于b 球落在A 点的时间,所以b 球落在斜面上时,a 球在b 球的右下方,C 错,D 对.]3.如图所示,某同学为了找出平抛运动的物体初速度之间的关系,用一个小球在O 点对准前方的一块竖直放置的挡板水平抛出,O 与A 在同一高度,小球的水平初速度分别是v 1、v 2、v 3,打在挡板上的位置分别是B 、C 、D ,且AB ∶BC ∶CD =1∶3∶5,则v 1、v 2、v 3之间的正确关系是( )A .v 1∶v 2∶v 3=3∶2∶1B .v 1∶v 2∶v 3=5∶3∶1C .v 1∶v 2∶v 3=6∶3∶2D .v 1∶v 2∶v 3=9∶4∶1解析:C [平抛运动的小球在竖直方向上做自由落体运动,由AB ∶BC ∶CD =1∶3∶5可知,以速度v 1、v 2、v 3水平抛出的小球,从抛出到打到挡板上的时间分别为t 、2t 、3t .由v 1=x t ,v 2=x 2t ,v 3=x 3t 可得:v 1∶v 2∶v 3=x t ∶x 2t ∶x3t =6∶3∶2,C 正确.]。

2020版高中物理全程训练复习模拟(四)

2020版高中物理全程训练复习模拟(四)

模拟(四)标准仿真预测卷第Ⅰ卷(选择题共48分)一、选择题:本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,第14~18题只有一个选项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.14.如图所示为氢原子能级图,氢原子中的电子从n=4能级跃迁到n=1能级可产生a光;从n=3能级跃迁到n=1能级可产生b 光,a光和b光的波长分别为λa和λb,a、b两光照射逸出功为4.5 eV 的金属钨表面均可产生光电效应,遏止电压分别为U a和U b,则() A.λa>λbB.U a<U bC.a光的光子能量为12.55 eVD.b光照射金属钨产生的光电子的最大初动能E k b=7.59 eV答案:D解析:本题考查光电效应方程和玻尔原子理论,意在考查考生的理解能力.氢原子中的电子从n=4能级跃迁到n=1能级产生a光,a光的光子能量hνa=E a=E4-E1=12.75 eV,氢原子中的电子从n=3能级跃迁到n=1能级产生b光,b光的光子能量hνb=E b=E3-E1=12.09 eV,a光的光子能量高,则a光的频率大,波长小,即λa<λb,A、C项错误;由光电效应方程E k=hν-W0和E k=eU c可知,频率越大,对应遏止电压U c越大,即U a>U b,B项错误;E k b=hνb-W0=7.59 eV,D项正确.度大小为B 的匀强磁场(图中未画出),AC 为该圆的直径,O 为圆心.一带电粒子以初速度v 0从A 点垂直磁场水平射入圆形区域,离开磁场时,其速度方向恰好竖直向下.已知该粒子从A 点入射时与直径AC 的夹角θ=45°,不计粒子重力,则有( )A .该粒子一定从O 点正下方离开磁场区域B .该粒子在磁场中做圆周运动的半径为RC .该粒子的比荷为2v 02BRD .该粒子在磁场中的运动时间为πR 2v 0答案:C解析:粒子在磁场中运动的轨迹如图所示.由几何关系可知,粒子一定从C 点射出磁场区域,A 错误.设粒子在磁场中做圆周运动的半径为r ,则由几何关系可知2r 2=(2R )2,解得r =2R ,B 错误.由q v 0B =m v 20r ,可得q m =2v 02BR ,故C 正确.粒子在磁场中做圆周运动的周期为T =2πm qB =22πR v 0,所以粒子在磁场中运动的时间为t =T 4=2πR2v 0,D 错误.18.某研究性学习小组在学习自感现象之后设计了一个实验:用4节干电池串联后组成电池组,已知该电池组的电动势E =6 V ,内阻r=1.0 Ω,让电阻约为R=1.0×103Ω的学生用两只手分别去接触电池组的正、负极,学生无电击感觉.然后将电池组与电阻为R0=5.0 Ω的自感系数较大的自感线圈串联,如图所示,然后让这位学生用两只手分别接触自感线圈两端,断开电键K瞬间,该学生突然有被电击的感觉.下列关于上述现象的解释正确的是()A.学生用两只手分别去接触电池组的正、负极,无电击感觉说明没有电流通过学生B.断开电键K瞬间,该学生有被电击的感觉说明通过学生的电流大约为6 AC.断开电键K瞬间,该学生有被电击的感觉是因为学生两手间所加电压接近1.0×103 VD.断开电键K瞬间,因为自感线圈电流变化极快,有无穷大的自感电动势产生答案:C解析:学生用两只手分别去接触电池组的正、负极,根据闭合电路欧姆定律有I1=E≈6.0×10-3A,电流很小,所以A错误;当电R+r键K闭合,电路稳定后,通过自感线圈的电流约为I2=E=1.0 A,r+R0断开电键K瞬间,通过自感线圈的电流不能突变,通过学生的电流大约为1.0 A,自感电动势的大小E0=I2(R+R0)≈1.0×103 V,学生两手间所加电压接近1.0×103 V,所以C正确,B、D错误.19.研究光电效应的实验装置如图甲所示,阴极K和阳极A封闭在真空管中,光通过小窗照射到阴极K上,在光的作用下,电子从阴极K逸出,把单刀双掷开关S分别接到1、2位置,移动滑动变阻器的滑片得到如图乙、丙所示的电流随电压的变化关系图线,下列判断中正确的是()A.图丙是开关S接2位置时的图线B.图乙是开关S接2位置时的图线C.图乙中的I m由光的强度决定D .入射光的波长越长,图丙中的电压U 2越大答案:AC解析:从题图丙可看出电流随电压的增大而减小,所以电路中接的是反向电压,开关S 应接2位置,同理题图乙是开关S 接1位置时的图线,故A 对,B 错误;题图乙中的I m 表示饱和电流的大小,由光的强度决定,故C 正确;U 2表示反向截止电压,由公式eU 2=12m v 2c=h c λ-W 0知,λ越大,U 2越小,故D 错误.20.如图所示,地面上有一半径为R 的半圆形凹槽,半径OA 水平,半径OB 竖直,半径OC 与水平方向的夹角θ=37°.现将小球(可视为质点)从A 处以初速度v 1水平抛出后恰好落到B 点;若将该小球从A 处以初速度v 2水平抛出后恰好落到C 点,sin37°=0.6,cos37°=0.8,则下列说法正确的是( )A .v 1v 2=159 B .小球刚到达C 点时重力的功率与刚到达B 点时重力的功率之比为3:2C .小球刚到达C 点时的速度与刚到达B 点时的速度大小之比为39:5D .小球从抛出开始运动到C 点与运动到B 点的平均速度大小之比为3:2答案:AC解析:小球做平抛运动,落到B 点的情况下,有R =v 1t 1,R =12gt 21,解得t 1=2R g ,v 1=Rg 2;落到C 点的情况下,有R +R cos θ=v 2t 2,R sin θ=12gt 22,解得t 2=6R 5g ,v 2=9gR 30;可得v 1v 2=159,A 正确;小球刚到达C 点时重力的功率与刚到达B 点时重力的功率之比为mg ·gt 2mg ·gt 1=155,B 错误;小球刚到达C 点时的速度与刚到达B 点时的速度大小之比为v 22+(gt 2)2v 21+(gt 1)2=3925,C 正确;小球从抛出开始运动到B 点的平均速度大小v 1=2R t 1=gR ,小球从抛出开始运动到C 点的平均速度大小v 2=(v 2t 2)2+⎝ ⎛⎭⎪⎫12gt 222t 2=3gR ,得v 2v 1=3,D 错误.21.如图所示,阻值为R 的电阻串联在光滑的固定在水平面上的等边三角形水平导轨OPQ 上,导轨在O 点断开.磁感应强度大小为B 、方向竖直向下、宽度为d 的条形磁场区域边界a 、b 均与PQ 平行,质量为m 的导体棒中点接在劲度系数为k 的弹簧的一端,弹簧的另一端固定,导体棒始终与PQ 平行,且与导轨保持良好接触,弹簧处于原长时,导体棒停于M 处.现将导体棒拉至N 处后自由释放,若M 至O 点的距离、M 到磁场边界b 的距离以及N 到磁场边界a 的距离均为d ,导轨和导体棒的阻值均忽略不计,已知弹簧的弹性势能公式为E p =12kx 2,x 为弹簧的形变量.则( )A .当电阻R 中有电流时,电流方向为P →QB .导体棒第一次穿越条形磁场区域过程中,通过电阻R 的电荷量为533R Bd 2C .导体棒最终静止在M 处D .电阻R 中产生的焦耳热不会超过4kd 2答案:BD解析:当导体棒向右通过磁场区域时,由右手定则可判断通过电阻R 的电流方向为P →Q ,当导体棒向左通过磁场区域时,同理可判断通过电阻R 的电流方向为Q →P ,A 错误;在导体棒第一次通过磁场区域过程中,通过电阻R 的电荷量q =I Δt =E R Δt =ΔΦR =B ΔS R ,式中ΔS 由几何关系可求得ΔS =12·3d ·3d tan60°·2-12·2d ·2d tan60°·2=533d 2,故q =533R Bd 2,B 正确;通过对导体棒受力分析知,最终导体棒会在无磁场区域内往复运动,且在磁场区域的右边界b 处速度为0,故电阻R 中最多能产生的焦耳热Q =12k (3d )2-12kd 2=4kd 2,C 错误,D 正确.第Ⅱ卷 (非选择题 共62分)二、非选择题:包括必考题和选考题两部分.第22~25题为必考题,每个试题考生都必须作答.第33~34题为选考题,考生根据要求作答.(一)必考题(4小题,共47分)22.(6分)某同学做“探究合外力做功与动能改变的关系”实验,装置如图甲所示,将光电门固定在水平轨道上的B 点,用重物通过细线拉小车,保持小车(含遮光条)质量M 不变,改变所挂重物质量多次进行实验,使小车每次都从同一位置A 由静止开始运动.(重力加速度大小g 取10 m/s 2)(1)用游标卡尺测出遮光条的宽度d 如图乙所示,则d =________cm ;(2)实验中认为小车所受拉力与重物重力大小相等,测出多组重物质量m 和相应小车经过光电门时的速度v ,作出v 2-m 图象如图丙所示,由图象可知小车受到的摩擦力大小为________N ;(3)在满足条件________的情况下,v 2-m 图象是线性变化的,说明合外力做的功等于动能的改变,此时图象的斜率k 的表达式为k =________(用题给物理量的字母表示).答案:(1)1.050(1分) (2)1(2分) (3)m ≪M (1分) 2gL M (2分)解析:本题考查“探究合外力做功与动能改变的关系”实验,意在考查考生对实验原理的理解能力.(1)游标卡尺的读数为d =1 cm +10×0.05 mm =1.050 cm ;(2)根据本实验原理和动能定理有mgL -fL =12M v 2,变形得v 2=2gL M m -2fL M,v 2-m 图象为一条倾斜的直线,由题图丙可知v 2=0时,m =0.1 kg ,由2gL M m -2fL M =0,解得f =mg =1 N ;(3)根据模型的实际受力分析,由动能定理有mgL -fL =12(m +M )v 2,则v 2与m 的函数关系为v 2=2gL m M +m -2fL M +m,故v 2与m 不是线性关系,所以只要满足m ≪M ,函数关系就变为v 2=2gL M m -2fL M ,v 2-m 图象是线性变化的,说明合外力做的功等于动能的改变,图线的斜率k =2gL M .23.(9分)某课外实验小组欲利用如图所示的实验装置,将一灵敏电流表改装为温度计.提供的实验器材有:灵敏电流表(量程为1.0 mA ,内阻为300 Ω),学生电源(输出电压为U =2.0 V ,内阻不计),滑动变阻器R 1(最大阻值为1 000 Ω),滑动变阻器R 2(最大阻值为3 000 Ω),单刀双掷开关,用防水绝缘材料包裹的热敏电阻R T ,导线若干.已知热敏电阻的阻值与摄氏温度t 的关系为R T =2.5t -15(Ω),实验步骤如下:a .按照电路图连接好实验器材;b .为不烧坏灵敏电流表,将滑动变阻器的滑片P 调整到a 端;然后将单刀双掷开关掷于c 端,调节滑动变阻器,使灵敏电流表指针指在________(选填“中央刻线”或“满刻线”)位置,并在以后的操作中使滑片P ________(选填“位置不变”、“置于a 端”或“置于b 端”);c .在容器中倒入适量热水,将单刀双掷开关掷于d 端,随着热水温度的下降,记录若干个灵敏电流表的示数;d .根据热敏电阻随温度变化的特性,计算出各个电流对应的温度,重新制作灵敏电流表的刻度盘,改装成温度计.(1)为使改装的温度计的量程足够大,将实验步骤b 补充完整.向上冲上长木板左端,与此同时,也给长木板乙v 0=4 m/s 的速度沿传送带向下运动.甲和乙之间的动摩擦因数μ1=32,乙和传送带间的动摩擦因数μ2=33,重力加速度大小g =10 m/s 2.(1)求甲与传送带顶端M 点的最小距离;(2)求从t =0时刻到甲和乙开始稳定运动(共速)的过程中,系统克服摩擦产生的热量.答案:(1)1.36 m (2)43.2 J解析:(1)根据题意,甲向上运动,当速度为零时与顶端M 点最近,对甲,设其向上运动的加速度大小为a 1,则有m 2g sin θ+μ1m 2g cos θ=m 2a 1(2分)解得a 1=12.5 m/s 2甲的位移大小x 1=v 202a 1(1分) 甲与顶端M 点间的最小距离Δx =L -x 1=1.36 m(1分)(2)对甲和乙整体分析,它们所受的合外力为(m 1+m 2)g sin θ-μ2(m 1+m 2)g cos θ=0,(1分)所以甲和乙组成的整体在传送带上滑动的过程中动量守恒,对甲和乙,从开始运动到稳定运动(共速)过程,有m 1v 0-m 2v 0=(m 1+m 2)v 共(2分)解得v 共=2 m/s ,方向沿传送带向下该过程中,甲的位移大小x 2=v 20-v 2共2a 1=0.48 m(1分) 对乙,设其运动的加速度大小为a 2,则有μ1m 2g cos θ+μ2(m 1+m 2)g cos θ-m 1g sin θ=m 1a 2(2分)解得a 2=256 m/s 2该过程中,乙的位移大小x 3=v 20-v 2共2a 2=1.44 m(1分) 甲和乙的相对位移Δx 2=x 2+x 3=1.92 m<2 m ,即物块未从长木板上滑落(1分)该过程系统克服摩擦产生的热量Q =μ1m 2g cos θ·Δx 2+μ2(m 1+m 2)g cos θ·x 3=43.2 J(2分)25.(18分)如图所示,P 1Q 1P 2Q 2和M 1N 1M 2N 2为水平放置的两足够长的光滑平行导轨,整个装置处在竖直向上、磁感应强度大小B =0.4 T 的匀强磁场中,P 1Q 1与M 1N 1间的距离为L 1=1.0 m ,P 2Q 2与M 2N 2间的距离为L 2=0.5 m ,两导轨电阻可忽略不计.质量均为m =0.2 kg 的两金属棒ab 、cd 放在导轨上,运动过程中始终与导轨垂直且接触良好,并与导轨形成闭合回路.已知两金属棒位于两导轨间部分的电阻均为R =1.0 Ω;金属棒与导轨间的动摩擦因数μ=0.2,且与导轨间的最大静摩擦力等于滑动摩擦力.取重力加速度大小g =10 m/s 2.(1)在t =0时刻,用垂直于金属棒的水平外力F 向右拉金属棒cd ,使其从静止开始沿导轨以a =5.0 m/s 2的加速度做匀加速直线运动,金属棒cd 运动多长时间金属棒ab 开始运动?(2)若用一个适当的水平外力F 0(未知)向右拉金属棒cd ,使其速度达到v 2=20 m/s 后沿导轨匀速运动,此时金属棒ab 也恰好以恒定速度沿导轨运动,求金属棒ab 沿导轨运动的速度大小和金属棒cd 匀速运动时水平外力F 0的功率;(3)当金属棒ab 运动到导轨Q 1N 1位置时刚好碰到障碍物而停止运动,并将作用在金属棒cd 上的水平外力改为F 1=0.4 N ,此时金属棒cd 的速度变为v 0=30 m/s ,经过一段时间金属棒cd 停止运动,求金属棒ab 停止运动后金属棒cd 运动的距离.答案:(1)2 s (2)12 W (3)225 m解析:本题考查法拉第电磁感应定律、牛顿第二定律及动量的综合问题,意在考查考生的分析综合能力.(1)设金属棒cd 运动t 时间金属棒ab 开始运动,根据运动学公式可知,此时金属棒cd 的速度v =at (1分)金属棒cd 产生的电动势E 2=BL 2v (1分)A .只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏伽德罗常数B .悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C .在使两个分子间的距离由很远(r >10-9 m)减小到很难再靠近的过程中,分子间作用力先减小后增大;分子势能不断增大D .温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大E .一定质量的理想气体经等温压缩后,其压强一定增大(2)(10分)如图所示,内径粗细均匀的U 形管竖直放置在温度为7 ℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l 1=14 cm 的理想气体,右侧管上端封闭,管上部有长l 2=24 cm 的理想气体,左右两管内水银面高度差h =6 cm.若把该装置移至温度恒为27 ℃的房间中(依然竖直放置),大气压强恒为p 0=76 cmHg.不计活塞与管壁间的摩擦.分别求活塞再次平衡时左、右两侧管中气体的长度.答案:(1)ADE(5分) (2)15 cm 25 cm解析:(2)设管的横截面积为S ,活塞再次平衡时左侧管中气体的长度为l ′,左侧管中被封闭气体做等压变化,则有V 1T =V ′1T ′(3分)其中V 1=14S ,T =280 K ,T ′=300 K ,V ′2=l ′1S解得l ′1=15 cm(2分)设平衡时右侧管气体长度增加x ,则由理想气体状态方程可知 (p 0-h )l 2S T =(p 0-h +2x )(l 2+x )S T ′(2分) 其中p 0=76 cmHg ,h =6 cmHg解得x =1 cm(2分)所以活塞平衡时右侧管中气体的长度为25 cm(1分)34.(15分)[选修3—4](1)(5分)以下关于狭义相对论的理解正确的是______.(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分)A.狭义相对论认为光速是自然界速度的极限B.光速不变原理是狭义相对论的两个基本假设之一C.火车以接近光速的速度通过站台时,车上乘客观察到站在站台上的旅客变矮D.狭义相对论认为空间和时间都是独立存在的,与物质的运动状态无关E.“双生子佯谬”的事实是,坐飞船的哥哥比在地球上的弟弟老得慢(2)(10分)如图所示,一个半径为R的圆柱形透明材料垂直于纸面放置,在它的右侧放置一竖直光屏MN,且圆心O到光屏的距离OP=3R,现有一束光沿着与OP平行的方向从A点以θ=60°角射入,刚好能射在光屏上的P点.求:①这种材料对该光的折射率n;②这束光从A点到达P点的时间.答案:(1)ABE(5分)(2)①62②(3+1)Rc解析:(1)狭义相对论认为光速是自然界速度的极限,故A正确;根据相对论的内容可知,光速不变原理是狭义相对论的两个基本假设之一,故B正确;根据尺缩效应,沿物体运动的方向上的长度将变短,火车以接近光速的速度通过站台时,车上乘客观察到站在站台上的旅客变瘦,而不是变矮,故C错误;狭义相对论认为空间和时间与物质的运动状态有关,故D错误;根据狭义相对论可知E正确.(2)①光路如图所示,由折射定律可得。

2020年 全国普通高等学校招生统一考试 物理模拟卷四(解析版)

2020年  全国普通高等学校招生统一考试  物理模拟卷四(解析版)

2020年全国普通高等学校招生统一考试物理模拟卷四(解析版)(满分:100分,时间:90分钟)一、选择题(本题共16小题,共38分,第1~10小题为单选题,每小题2分,第11~16小题为多选题,每小题3分)1.下列说法正确的是( )A.图甲中,有些火星的轨迹不是直线,说明炽热微粒不是沿砂轮的切线方向飞出的B.图乙中,两个影子在x、y轴上的运动就是物体的两个分运动C.图丙中,小锤用较大的力去打击弹性金属片,A、B两球可以不同时落地D.图丁中,做变速圆周运动的物体所受合外力F在半径方向的分力大于所需要的向心力B[题图甲中炽热微粒是沿砂轮的切线方向飞出的,但是由于重力及其他微粒的碰撞而改变了方向,选项A错误;题图乙中沿y轴的平行光照射时,在x轴上的影子就是x轴方向的分运动,同理沿x轴的平行光照射时,在y轴上的影子就是y轴方向的分运动,选项B正确;无论小锤用多大的力去打击弹性金属片,只会使得小球A的水平速度发生变化,而两小球落地的时间是由两球离地面的高度决定的,所以A、B两球总是同时落地,选项C错误;做变速圆周运动的物体所受合外力F在半径方向的分力等于所需要的向心力,选项D错误。

] 2.如图所示为某弹簧振子在0~5 s内的振动图象,由图可知,下列说法中正确的是( )A .振动周期为5 s ,振幅为8 cmB .第2 s 末振子的速度为零,加速度为负向的最大值C .从第1 s 末到第2 s 末振子的位移增加,振子在做加速度减小的减速运动D .第3 s 末振子的速度为正向的最大值D [由题图图象可知振动周期为4 s ,振幅为8 cm ,选项A 错误;第2 s 末振子在最大位移处,速度为零,位移为负,加速度为正向的最大值,选项B 错误;从第1 s 末到第2 s 末振子的位移增大,振子在做加速度增大的减速运动,选项C 错误;第3 s 末振子在平衡位置,向正方向运动,速度为正向的最大值,选项D 正确。

]3.有一种灌浆机可以将某种涂料以速度v 持续喷在墙壁上,假设涂料打在墙壁上后便完全附着在墙壁上,涂料的密度为ρ,若涂料产生的压强为p ,不计涂料重力的作用,则墙壁上涂料厚度增加的速度u 为( )A .ρp vB .p ρvC .ρpvD .pv ρB [涂料持续飞向墙壁并不断附着在墙壁上的过程,速度从v 变为0,其动量的变化源于墙壁对它的冲量,以极短时间Δt 内喷到墙壁上面积为ΔS 、质量为Δm 的涂料(微元)为研究对象,设墙壁对它的作用力为F ,涂料增加的厚度为h 。

2020高考物理一轮选训练导(4)(含解析)新人教版

2020高考物理一轮选训练导(4)(含解析)新人教版

【2019最新】精选高考物理一轮选训练导(4)(含解析)新人教版李仕才一、选择题1、一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为x,动能变为原来的4倍。

该质点的加速度为( )A. B. C. D.【答案】C【解析】动能变为原来的4倍,则物体的速度变为原来的2倍,即v=2v0,由x=(v0+v)t和a=得a=,故C对。

【链接】(2017·江苏省××市高三下学期期初考试)一滑块以一定的初速度从一固定斜面的底端向上冲,到斜面上某一点后返回底端,斜面粗糙.滑块运动过程中加速度与时间关系图象如图所示.下列四幅图象分别表示滑块运动过程中位移x、速度v、动能Ek 和重力势能Ep(以斜面底端为参考平面)随时间变化的关系图象,其中正确的是( )解析:选D.根据a­t图象知上滑和下滑过程中的加速度大小,从而得出速度随时间的变化规律;利用速度公式和动能定理得出动能、势能与时间的规律,再分析选项即可.物块向上做匀减速直线运动,向下做匀加速直线运动,两者速度方向相反,据位移公式可知,位移与时间成二次函数关系;据运动学公式可知,下滑所有的时间要大于上升所用的时间,先减速后加速,加速度始终向下,所以x­t图象应是开口向下的抛物线,故A、B错误;根据Ek=mv2知动能先减小后增大,与时间为二次函数,故C错误;Ep=mgh =mgxsin θ=mgsin θ,a为负,故为开口向下的抛物线,故D正确.2、如图所示,长为L的长木板水平放置,在木板的A端放置一个质量为m的小物块,现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块【解析】在运动过程中,小物块受重力、木板施加的支持力和摩擦力,整个过程重力做功为零,由动能定理得W木=mv2-0,A正确;在物块被缓慢抬升过程中摩擦力不做功,由动能定理得W′木-mgLsinα=0-0,则有W′木=mgLsinα,B错误;由功能关系,机械能的增量为木板对小物块做的功,大小为mv2,C错误;滑动摩擦力对小物块做的功Wf=W木-W′木=mv2-mgLsinα,D正确.121 2 1 23、(2018陕西省西安中学月考)如图所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。

2020届高中物理高考一轮复习模拟卷(四)人教版

2020届高中物理高考一轮复习模拟卷(四)人教版

2020届高考一轮复习物理模拟卷(四)一、选择题:(本题共10小题;每小题4分,共40分。

在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。

全部选对的得4分,选不全的得2分,有选错或不答的得0分。

将答案涂在答题卡上)1.下面列举的事例中正确的是( )A.伽利略认为力不是维持物体运动的原因;B.牛顿成功的测出了万有引力常量;C.亚里士多德认为物体下落的快慢与物体的轻重无关;D.胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比。

2.下列说法中正确的是A.一群氢原子处于n=3的激发态向较低能级跃迁,最多可放出二种频率的光子B.由于每种原子都有自己的特征谱线,故可以根据原子光谱来鉴别物质C.实际上,原子中的电子没有确定的轨道,但在空间各处出现的概率具有一定的规律D. 粒子散射实验揭示了原子的可能能量状态是不连续的3.如图甲所示是t =1.0 s 时向x轴负方向传播的平面简谐波的图象,已知波速v = 1.0m/ s .则x =1 .0m 处的质点的振动图象是图乙中的4.如图甲是α、β、γ三种射线穿透能力的示意图,图乙是工业上利用射线的穿透性来检查金属内部的伤痕的示意图,请问图乙中的检查是利用了哪种射乙甲线? A. α射线 B. β射线 C. γ射线 D. 三种射线都可以5.如图所示,从点光源S 发出的一细束白光以一定的角度入射到三棱镜的表面,经过三棱镜的折射后发生色散现象,在光屏的ab 间形成一条彩色光带.下面的说法中正确的是( )A. a 侧是红色光,b 侧是紫色光B. 在真空中a 侧光的波长小于b 侧光的波长 C .三棱镜对a 侧光的折射率大于对b 侧光的折射率 D. 在三棱镜中a 侧光的传播速率大于b 侧光的传播速率)6、如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a (0,L )。

一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度方向与x 轴正方向的夹角为60°。

2020届高考物理一轮复习专题一运动的描述(4)路程和位移的区别练习(含解析)新人教版

2020届高考物理一轮复习专题一运动的描述(4)路程和位移的区别练习(含解析)新人教版

路程与位移的区别1、下列关于位移和路程的说法中,正确的是( )A.位移大小和路程不一定相等,所以位移才不等于路程B.位移的大小等于路程,方向由起点指向终点C.位移描述物体相对位置的变化,路程描述路径的长短D.位移描述直线运动,路程描述曲线运动2、下列生活中涉及位移和路程的知识,说法正确的是( )A.运动会上参加400米比赛的同一组的8位同学,他们通过的路程和位移都是相同的B.乘坐出租车时按位移的大小收费C.在操场上跑步时,位移的大小一定不为0D.从家到学校有很多条路可以选择,选择不同的路径,路程不同,但位移是相同的3、小球从5m 高处落下,被地板反弹回后在2m 高处被接住,则小球通过的路程与位移的大小分别是( )A.5m;2mB.7m;3mC.3m;3mD.7m;2m4、如图所示,质点A 沿半径为R 的圆周运动一周,回到出发点.在此过程中,路程和位移的大小分别是( )A.2πR,2πRB.0,2πRC.2πR,0D.0,05、甲、乙、丙三个物体同时同地出发,6s 末同时到达同一目的地,它们运动的“位移-时间”图象如图所示,则关于三者的路程s 和位移大小x 关系正确的是( )A . S S S >=甲乙丙B .S S S >>甲乙丙C . x x x >>甲乙丙D . x x x =>甲乙丙6、皮球从3m高处落下,被地板弹回,在距地面1m高处被接住,则皮球通过的路程和位移的大小分别为( )A.4m、4mB.3m、1mC.3m、2mD.4m、2m7、一个质点在半径为R的圆形轨道上运动了116圈,则它的( )A.位移、路程的大小都是RB.位移、路程的大小都是123RπC.位移大小为R,路程大小为123RπD.以上均不对8、如图所示,一边长为10cm的实心立方体木块,一只昆虫从A点爬到G点.下列说法正确的是( )A.该昆虫的路程有若干种可能性,其中最短路程为(10cm+B.该昆虫的位移大小为C.该昆虫的路程有若干种可能性,其中最短路程为D.该昆虫的位移大小为9、如图所示:物体沿两个半径为R的圆弧由A到C,则它的位移和路程分别为( )A.52R π,A 指向C B. 52R π,A 指向C ;52R π,A 指向C ;52R π,C 指向A ;52R π 10、如图所示,坐高铁从杭州到南京,原需经上海再到南京,其路程为1s ,位移为1x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档