传感器与检测技术_课程论文参考模板

合集下载

传感器与自动检测技术课程设计报告论文完整版(初稿)1

传感器与自动检测技术课程设计报告论文完整版(初稿)1

集成温度传感器的特性目录目录 ....................................................................................................................................... - 1 -摘要:.................................................................................................................................... - 1 -关键词:................................................................................................................................ - 1 -1 引言.................................................................................................................................... - 1 -2 温度传感器特性及检测研究实验.................................................................................... - 1 -2.1 设计目的......................................................................................................................... - 1 -2.2 设计原理......................................................................................................................... - 1 -2.2.1 AD590的内部原理: .......................................................................................... - 1 -2.2.2 AD590的工作原理 .............................................................................................. - 4 -2.3 设计所需的仪器............................................................................................................. - 5 -2.4 设计步骤......................................................................................................................... - 5 -2.5 实验数据......................................................................................................................... - 5 -2.6 绘图分析......................................................................................................................... - 6 -2.7 数据分析及结论............................................................................................................. - 6 -3 集成温度传感器的应用的探讨........................................................................................ - 7 -4 集成温度传感器两种输出型比较.................................................................................... - 7 -5 设计心得与体会................................................................................................................ - 7 -参考文献................................................................................................................................ - 9 -致谢 ....................................................................................................................................... - 9 -集成温度传感器的特性摘要:了解常用的集成温度传感器AD590的基本原理,然后,设计电路检测流过AD590的电流I与温度的T的线性关系,画出其拟合曲线,分析非线性误差。

传感器与检测技术课设参考格式

传感器与检测技术课设参考格式

福建电力职业技术学院课程设计课程名称: 传感器与检测技术课设题目:加速度测量显示电路设计专业班次:10(三)检测1班姓名:李扬津学号:2指导教师: 苏两河学期:2011-2011学年第一学期日期:2012.2.13-2012.2.20本次超声波测距器由单片机计时及控制电路、超声波发射电路,超声波检测接收电路、温度时时检测电路、报警警示电路、显示电路等部分组成,采用AT89C51单片机作为计时主控制器,用TCT40—16T作超声波的发射器,用TCT40—16R作超声波的接收器,在接收电路的处理模块采用的是专业的超声波测距处理软件TL852,显示电路采用了74LS244为处理芯片。

测距以硬件为基础,软件为核心,整体电路结构简单,成本低廉,操作方便,工作稳定,测量精度达到要求。

其设计思路也可以应用于智能安全系统。

可在工业控制中得到很好运用。

关键词:超声波,测距,AT89C51单片机,控制福建电力职业技术学院ﻩ错误!未定义书签。

课程设计ﻩ错误!未定义书签。

1.1引言 ..................................................................................................................... 错误!未定义书签。

1.2概况ﻩ错误!未定义书签。

1.3现状分析ﻩ错误!未定义书签。

第二章总体设计 .................................................................................................... 错误!未定义书签。

2.1总体设计要求.............................................................................................. 错误!未定义书签。

检测与传感器技术结课论文

检测与传感器技术结课论文

红外传感器及其应用班级:******姓名:******学号:******机电工程学院目录1.什么是红外线 (1)2.什么是红外传感器 (1)3.红外传感器的工作原理 (1)4.红外传感器的分类 (3)5.红外传感器的应用 (3)6.红外传感器的发展前景 (5)前言在科技高度发达的今天,自动控制和自动检测在人们的日常生活和工业控制所占的比例也越来越重,使人们的生活越来越舒适,工业生产的效率越来越高。

而传感器是自动控制中的重要组成部件,是信息采集系统的重要部件,通过传感器将感受或响应的被测量转换成适合输送或检测的信号(一般为电信号),再利用计算机或者电路设备对传感器输出的信号进行处理从而达到自动控制的功能,由于传感器的响应时间一般都比较短,所以可以通过计算机系统对工业生产进行实时控制。

红外传感器是传感器中常见的一类,由于红外传感器是检测红外辐射的一类传感器,而自然界中任何物体只要其稳定高于绝对零度都将对外辐射红外能量,所以红外传感器称为非常实用的一类传感器,利用红外传感器可以设计出很多实用的传感器模块,如红外测温仪,红外成像仪,红外人体探测报警器,自动门控制系统等。

在我们日常的生活中红外线传感器也是非常的常见,比如我们生活中的各种遥控器,以及电脑使用的鼠标等等,都用到了红外线传感器,所以红外线传感器在先到生活中是不可或缺的一种产品。

1.红外线简介我们都知道,光有红、橙、黄、绿、青、蓝、紫,这些都是我们用肉眼可以看得见的光,红外光是居这些可见光之外的一种光。

红外线就是这种不可见光,实质上是一种电磁波,也称红外热辐射。

太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。

红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm之间。

所有的物体都会发出红外线,都会产生红外辐射,甚至有些动物就是靠红外线来识别物体。

传感器与检测技术论文

传感器与检测技术论文

基于MCU的智能漏水检测系统设计近年来,随着自动化技术及人们生活水平的提高,智能家居的概念被越来越多的人所接受。

所谓智能家居,是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。

在智能家居系统中,智能防漏水系统是在家居安全里具有十分重要的作用。

通常由于一时疏忽,如停水时忘关水龙头、下水不通畅、管道破损等意外原因所造成家居漏水,很多情况下事态严重,不仅是自家受损失,同一栋楼里的人也会同样受害。

文中设计了一种家居智能防水系统,能自动检测选定区域的意外漏水,通过电磁阀及时切断水管,并伴随声光报警,提示出现的浸水事件,减少漏水状况的恶化,能有效地防止各种损失进一步扩大。

1、系统设计家居智能防水系统主要分为4个部分,包括检测组件、MCU控制部分、报警及按键电路、电磁阀及驱动电路。

通过MCU的并口I/O检测水传感器状态,并控制LED显示电路及蜂鸣器报警电路,同时通过驱动电路控制水电磁阀的通断,其系统框图如图1所示。

系统通过MCU一直监测水传感器状态,若发现漏水,通过发光LED显示和蜂鸣器报警,并延时一段时间,然后启动电磁阀关闭水管。

如果家中有人,在听到报警后,检查漏水情况,可手动切断水管,或者关闭报警系统(若发现是误报警的情况下)。

2、硬件设计2.1 水传感器检测电路电路采用适当的电极型水传感器,布置在需要监测的区域,可以是某一固定区域,也可以是多个区域同时监测。

主要根据电极浸水阻值变化原理,通过电压检测确定传感器的状态。

通过电压比较器,得到外部状态电平,并送往MCU单元进行检测处理。

水感传器接口电路如图2所示。

2.2 MCU控制电路MCU单元电路主要完成整个系统的监测、判断、报警控制以及人机交互控制等功能。

本方案中选用Atmel的89C52单片机作为控制MCU,其结构简单,价格低廉,通用性好,内部集成了CPU,RAM,ROM,定时器/计数器和多功能I/0,串口通信等部等基本功能部件,可灵活编程控制外部I/0接口。

传感器与检测技术3篇

传感器与检测技术3篇

传感器与检测技术1. 传感器的定义与分类传感器是一种能够将物理量转化为可电信号输出的装置,它是测量与控制技术中不可或缺的一部分。

传感器广泛应用于工业、交通、医疗、环境等各个领域。

传感器根据其测量的物理量不同,可以分为多种类型。

下面就对传感器的一些常见分类进行简单介绍。

1. 按照测量的物理量分:温度传感器、压力传感器、流量传感器、力传感器、位移传感器、速度传感器、加速度传感器、光学传感器、化学传感器等。

2. 按照测量方式分:接触式传感器、非接触式传感器。

接触式传感器是指传感器需要和测量对象有物理接触才能进行测量,比如触碰式开关、弹簧测力计等。

非接触式传感器则不需要与测量对象有物理接触,通常是利用无线电磁波、光学信号等方式进行测量。

3. 按照信号输出形式分:模拟传感器、数字传感器。

模拟传感器是指输出的是模拟信号,通常是电压、电流等。

数字传感器则输出的是数字信号,通常是二进制信号。

4. 按照工作原理分:电阻型传感器、电容型传感器、磁敏传感器、光敏传感器等。

电阻型传感器是指测量对象对电阻的改变来进行测量的传感器。

电容型传感器则是利用测量对象对电容的改变进行测量的传感器。

磁敏传感器则是利用磁场的变化进行测量的传感器。

光敏传感器则是利用光照强度的变化进行测量的传感器。

2. 传感器的应用领域传感器作为现代测量与控制技术的重要组成部分,广泛应用于各个领域。

下面简单介绍一些传感器应用领域。

1. 工业自动化:传感器在工业生产领域应用十分广泛,如温度传感器、压力传感器、流量传感器、位移传感器等。

利用它们可以对物料、能量、精度等进行严格控制,提高工业生产效率。

2. 医疗健康:传感器在健康监测、疾病诊断等领域有着广泛的应用,如心电传感器、血压传感器、血糖传感器、磁共振传感器等。

这些传感器能够监测人体各项生理指标的改变,并及时进行干预。

3. 环境监控:传感器在环境监测领域也有着广泛的应用,如温湿度传感器、气体传感器、光照传感器等。

传感器课程设计(论文)

传感器课程设计(论文)

第1章绪论1.1 传感器的定义能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

1.2 温度传感器的组成通常,温度传感器由敏感元件和转换元件组成。

但是由于温度传感器输出信号一般都很微弱,需要有信号调节与转换电路将其放大或变换为容易传输、处理、记录和显示的形式。

随着半导体器件与集成技术在传感器中的应用,传感器的信号调节与转换可以安装在传感器的壳体里或与敏感元件一起集成在同一芯片上。

因此,信号调节与转换电路以及所需电源都应作为传感器的组成部分。

常见的信号调节与转换电路有放大器、电桥、振荡器、电荷放大器等,它1.3 传感器的分类可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。

根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。

被测信号量的微小变化都将转换成电信号。

化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。

大多数传感器是以物理原理为基础运作的。

化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

1.3.1 传感器按照其用途分类压力敏和力敏传感器位置传感器液面传感器能耗传感器速度传感器加速度传感器射线辐射传感器热敏传感器24GHz雷达传感器1.3.2 传感器按照其原理分类振动传感器湿敏传感器磁敏传感器气敏传感器真空度传感器生物传感器等。

传感器与测试技术的论文

传感器与测试技术的论文

传感器与测试技术的论文传感器与测试技术是现代科技领域中的重要研究领域之一、传感器的发展与应用推动了各个领域的技术创新和产业进步,而测试技术则是确保传感器的性能和可靠性的重要手段。

本文将从传感器与测试技术的现状和发展两个方面进行论述。

首先,传感器是一种能够感知和测量环境中各种物理量的器件或设备。

随着科学技术的不断进步,传感器的种类和应用范围日益扩大。

目前常见的传感器包括温度传感器、压力传感器、光传感器、湿度传感器等。

其中,温度传感器是应用最广泛的传感器之一、它可以用于工业生产、环境监测、医疗设备等领域。

随着纳米技术的发展,新型的纳米温度传感器逐渐兴起,其具有体积小、响应速度快、精度高等特点。

另外,压力传感器也是应用广泛的一类传感器。

它通常用于汽车制造、航空航天、工业自动化等领域。

新一代的压力传感器正朝着体积小、功耗低、可靠性高的方向发展。

光传感器在现代科技中也起到重要作用。

它可以用于光学通信、光学测量、生物医学等领域。

最新的光传感技术已经实现了对不同光波长的高灵敏度检测,为光电子学领域的发展提供了新的可能性。

湿度传感器被广泛应用于农业、气象、建筑等领域。

其关键技术是如何准确测量空气中的湿度,目前一些新型的纳米湿度传感器已经取得了突破。

然而,传感器的性能和可靠性是决定其应用能力的重要因素。

测试技术是确保传感器质量的关键手段。

测试技术包括传感器的校准、稳定性测试、精度测试等。

其中,传感器的校准是提高其测量准确度的关键步骤。

稳定性测试可以评估传感器在长时间使用中的稳定性。

而精度测试则是判断传感器测量结果与真实值之间的偏差大小的关键方法。

随着科技的进步,传感器与测试技术也在不断发展。

未来的发展趋势包括集成化、智能化和多功能化。

集成化是指将多种传感器集成到一个器件中,从而提高系统的整体性能。

智能化是指传感器能够自动识别和适应环境变化,进一步提高其应用范围和灵活性。

多功能化是指传感器具有多种测量能力,可以同时对多种物理量进行测量。

毕业设计-传感器与检测技术【范本模板】

毕业设计-传感器与检测技术【范本模板】

课程设计说明书传感器与检测技术【摘要】: 传感器技术是现代信息技术的重要基础之一。

传感器的性能对自动化系统的功能起决定作用,在一般运用场合中传感器测量主要采用开环测量方式,这种方式结构简单,能满足一般精度的需求。

但在高精度测量条件下,如电子分析天平,则必需采用闭环控制引入反馈环节,提高测量精度。

本论文设计了一种用于高精度测量的反馈式力传感器。

通过对位移量的处理输出反馈控制信号,使系统达到平衡状态。

系统结构由前向通道和反馈控制两部分组成。

本文给出了反馈控制模块设计制作方案,主要完成了单片机控制系统、1602显示模块、PID控制算法设计、系统电源电路的设计,并给出了具体参数、分析过程和调试结果及相应的实物图。

整个控制系统设计简洁,集成度较高,控制效果较好,达到了设计要求.【关键词】:传感器,设计目录第1章传感器的基本知识 1.1。

传感器的定义 (3)1.2。

传感器的分类 (3)1。

3。

传感器的特性 (3)1。

4。

传感器的线性度,灵敏度,分辨力 (4)1。

5。

电阻式,电阻应变式,压阻式,热电阻传感器,传感器的迟滞特性介绍 (4)第2章对温度传感器的设计 (5)2.1 模拟输出IC传感器和数字输出IC传感器之间有什么差别? (6)2。

2 使用温度传感器时必须考虑哪些因素? (7)2.3 IC温度传感器与热敏电阻有何不同? (7)2。

4 什么是自动风扇转速控制? (8)第3章光纤光栅传感器的应用 (9)3。

1 光纤光栅传感器的优势 (9)3。

2 光纤光栅的传感应用 (10)3.3 传感器设计方案: (13)第4章对霍尔传感器的设计 (13)参考文献: (22)第1章传感器的基本知识1。

1.传感器的定义国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成"。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

传感器技术论文范文

传感器技术论文范文

传感器技术论文范文传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。

这是店铺为大家整理的传感器技术论文范文,仅供参考!传感器技术论文范文篇一传感器及其概述摘要传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。

目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。

【关键词】传感器种类新型1 前言传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。

人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。

因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。

通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。

2 传感器的分类按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。

3 常见传感器介绍3.1 电阻应变式传感器电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。

应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成。

敏感元件也叫敏感栅。

其具有体积小、动态响应快、测量精度高、使用简单等优点。

在航空、机械、建筑等各行业获得了广泛应用。

电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。

传感器与检测技术的论文(2).

传感器与检测技术的论文(2).

传感器与检测技术自动化李传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。

一、传感器的组成传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量。

二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。

(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。

(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类(1)无源型:不需外加电源。

而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。

6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。

传感器与检测技术(共5篇)

传感器与检测技术(共5篇)

传感器与检测技术(共5篇)第一篇:传感器与检测技术第一章传感器与检测技术第一节:机电一体化系统常用传感器p11.传感器的组成由敏感元件、转换元件及其转换电路三部分组成①敏感元件是直接感受被测物理量,并确定元件及其基本转换电路②转换元件是将敏感元件输出的非电量转换成电路参数及电流或电压等电信号③基本转换电路则将该电信号转换成便于传输、处理的电量p12.传感器的分类p1①按被测量对象分类②按工作机理分类③按被测物理量分类④按工作原理分类⑤按传感器能量源分类⑥按输出信号的性质分类p2三、传感器的特性及主要性能指标p41、传感器的静态特性2、传感器的动态特性3、传感器的性能指标p4①高精度、低成本②高灵敏度③工作可靠④稳定性好⑤抗干扰能力强⑥动态特性良好⑦结构简单、小巧,使用维护方便,通用性强p4第二节:传感器检测技术的地位和作用p5第三节:1.测量范围及量程p62.灵敏度p63.线性度p74.重复性p75.稳定性:稳定性即在相同条件、相当长时间内,其输入/输出特性不发生变化的能力p76.精确度p77.动态特性:传感器的动态特性反映了传感器对于随时间变化的动态量的响应特性p88.环境参数p8第四节:传感器的标定与校准p91.传感器的静态标定p92.传感器的动态标定p10第五节:传感器与检测技术的发展方向。

1.开发新型传感器p112.传感检测技术的智能化p113.复合传感器:复合传感器是同时检测几种物理量具有复合检测功能的传感器p124.研究生物感官,开发仿生传感器p12第二章第一节:参量型位移传感器p131.电阻式位移传感器p132.电阻应应变式位移传感器p153.电容式位移传感器p154.电感式位移传感器p20第二节:发电型位移传感器—压电位移传感器p25第三节:大位移传感器p261.磁栅式位移传感器p262.光栅式位移传感器p273.感应同步器p294.激光式位移传感器p31第三章力、扭矩和压力传感器p34第一节:测力传感器p341.电阻应变式测力传感器p342.压电式力传感器p41①压电效应p41②压电晶体及材料③压电式传感器的等效电路和前置放大器p423.压磁式力传感器p44①效应p44②工作原理p45③结构p45第二节:扭矩传感器p461.电阻应变式扭矩传感器p462.压磁式扭矩仪p483.电容式扭矩测量仪p494.光电式扭矩测量仪p495.钢弦式扭矩传感器p50 第三节:压力传感器p501.液柱式压力转换原理p502.活塞式压力转换原理p513.弹性式压力传感元件p514.电量式压力计p53①电容式压力传感器p53②应变式压力传感器p53③压阻式压力传感器p54④电感式压力传感器⑤涡流式压力传感器p55⑥霍尔式压力传感器p55⑦压电式压力传感器p55第四章速度、加速度传感器p57第一节:速度传感器p571.直流测速发电机p572.交流测速发电机p583.线振动速度传感器p594.变磁通式速度传感器p605.霍尔式和电涡流式转速传感器p616.陀螺式角速度传感器p627.流速风速传感器p64第二节:加速度传感器p661.压电式加速度传感器p672.应变式加速度传感器p693.磁致伸缩式振动加速度传感器p734.力平衡式伺服加速度传感器p735.单片微型平衡式伺服加速度传感器p756.惯性倾角加速度传感器p76第五章视觉、触觉传感器p77第一节:视觉传感器p771.光电式摄像机原理p77固体半导体摄像机原理p783.激光式视觉传感器原理p784.红外图像传感器原理p78第二节:人工视觉p801.人工视觉系统的硬件构成p802.物体识别p81第三节:触觉传感器p851.接触觉传感器p862.压觉传感器p873.滑动觉传感器p88第六章第一节:热电偶式传感器p901.基本原理p902.热电偶组成、分类及其特点p91第二节:电阻式温度传感器p931.金属热电阻温度传感器p932.热敏电阻温度传感器p94第三节:非接触式温度传感器p951.全辐射温度传感器p952.高度式温度传感器p963.比色温度传感器p97第四节:半导体温度传感器p98第七章气敏、温度、水份传感器p100第一节:气敏传感器p1001.气敏元件工作机理p1002.常用气敏元件的种类p101①烧结型气敏元件p101②薄膜型气敏元件p101③厚膜气敏元件p1023.气敏元件的几种应用实例p102第二节:温度传感器p1051.相对湿度与绝对湿度p1062.氯化锂湿敏元件p1063.半导体陶瓷湿敏元件p1074.热敏电阻式湿敏元件p1085.高分子膜湿敏元件p1096.金属氧化物陶瓷湿敏元件p1117.结露传感器p112第三节:水份传感器p1131.水份传感器的工作原理与结构p1132.直流电阻式水份计的结构原理p114 第八章传感检测系统的构成p116第一节:传感检测系统的组成p116第二节:电桥p1171.电桥工作原理p1172.电桥的分类与应用p1183.电桥的工作特性指标p1204.电桥调零p122第三节:调制与解调p1221.调制p1232.解调p124第四节:滤波器p1261.无源滤波器p1262.有源滤波器p1293.数字滤波p136第五节:数/模和模/数的转换p1371.数/模转换原理p1372.数/模转换器芯片介绍p1383.数/模转换器的技术指标p1394.模/数转换原理p1405.模/数转换器芯片介绍p1426.模/数转换器的技术指标p143第六节:传感器与模/数转换器的连接通道p1431.放大与滤波环节p1432.多路模拟开关环节p1453.采样保持环节p1464.模/数转换环节p148第七节:传感检测信号的细分与辨向原理p1491.四倍细分原理p1492.辨向原理p1513.细分、辨向常用电路p152第八节:传感检测系统中的抗干扰问题p1531.干扰与噪声p1532.抑制干扰的方法p1543.典型噪声干扰的抑制p156第九节:传感检测系统中的微机接口p1561.接口的基本方式p1572.A/D转换器与CPU连接需解决的技术问题p1573.数据转换接口的典型结构p1584.A/D转换器与CPU的接口示例p1595.传感检测系统的显示器及其接口p163第十节:传感器信号的温度补偿及线性化的计算机处理p1681.温度补偿的处理方法p1682.线性化处理方法p1683.线性化与温度补偿实例p170第九章信号分析及其在测试中的应用p173第一节:信号的分类p1731.确定性信号p1732.非确定性信号p1733.模拟信号与离散信号p174第二节:信号的幅值描述p1741.信号的均值u p1742.信号的方差p1753.信号的均方值p1754.信号的概率密度函数p(x)p175第三节:信号的相关描述p176第四节:信号的频域描述p1781.周期信号与离散频谱—傅里叶级数p1782.非周期信号与连续频谱—傅里叶变换p1823.傅里叶变换的基本性质p1834.非确定性信号的功率谱密度函数p184第五节:信号分析在振动测试中的应用p1881.振动的类型p1882.振动的激励方式p1893.激振器p190第十章传感器在机电一体化系统中的应用p200第一节:传感器在工业机器人中的应用p2001.零位和极限位置的检测p2002.位移量的检测p2013.速度加速度的检测p2014.外部信息传感器在电弧焊机器人中的应用p201第二节:传感器在CNC机床与加工中心的应用p2031.传感器在位置反馈系统中的应用p2032.传感器在速度反馈系统中应用p203第三节:传感器在三坐标测量机中的应用p204第四节:传感器在汽车机电一体化中应用p208第五节:传感器在家用电器中的应用p218第二篇:传感器与检测技术论文光电传感器--太阳能电池板太阳能电池板是利用光生伏特效应原理制造的。

传感器论文模板

传感器论文模板

2012-2013学年一学期计算机科学学院《传感器技术》期末考核班级:10通信工程*班学号:101150310** 姓名:李四* * * * * * *的设计摘要:光电报警器已经广泛应用到工农业生产、自动化仪表、医疗电子设备等领域。

本设计利用光电传感器,借助于模拟电路和数字逻辑电路,采用模块化的设计思想,设计了报警器。

该设计电路简单,容易实现,工作稳定,因此得到了广泛的应用。

关键词: 光敏二极管;报警1、引言报警器的应用非常广泛。

在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了报警器电路。

随着社会科学技术的迅速发展,人们对报警器的性能提出了越来越高的要求。

传统的报警器通常采用触摸式、开关报警器等。

这类报警器具有性能稳定、实用性强等特点,但是也具有应用范围窄等缺点。

而且安全性能也不是很好。

光电报警就很好的改善了这点。

如今,光电报警器已经广泛应用到工农业生产、自动化仪表、医疗电子设备等领域本实验的设计借助于模拟电路和数字逻辑电路,采用模块化的设计思想,使设计变得简单、方便、灵活性强。

电路简单容易实现,工作稳定,因此得到了广泛的应用。

2、系统组成框图及原理2.1系统组成框图本课程设计就是用发光电器件发光二极管和光敏二极管组成防盗电路。

系统组成框图如图2-1。

2.2 工作原理本课程设计就是用发光电器件发光二极管和光敏二极管组成防盗电路。

发光二极管和光敏二极管组成一类似开关作用,再通过一发光二极管和蜂鸣器发出警告。

硬件电路包括调制电路、发光电路、接收电路、放大电路和报警电路。

正常情况下,三极管不导通;小偷侵入时,光敏二极管接收不到光,不导通,三极管导通驱动报警电路,二极管发光,蜂鸣器鸣叫。

3.硬件电路设计具体设计电路图如图3-1,下面分别介绍各部分电路工作原理。

图3-1 光电报警器电路图3.1 发射电路用NE555组成的多谐振荡器作为调制电源组成如下的调制电源电路,再接上发光二极管和限流电阻,组成发射电路,原理图如图a:图3-2 发射电路原理图3.2 接收电路接收电路跟发射电路类似,用光敏二极管代替发光二极管并充当开关的作用。

传感器论文参考文献

传感器论文参考文献
智能家居中传感器技术的应用与挑战
该文献分析了智能家居中传感器技术的应用现状和挑战,探讨了未来智能家居传感器技术的发展趋势 。
医疗卫生
基于生物传感器的医疗卫生监测技术研究
该文献介绍了生物传感器在医疗卫生领域的应用,探讨了生物传感器的原理、特 点及其在医疗卫生监测中的重要作用。
医疗卫生领域中智能传感器的应用与挑战
光电式传感器
利用电阻值随被测物理 量的变化而变化的原理 ,具有结构简单、线性 度好、稳定性高等特点 。
利用电容值随被测物理 量的变化而变化的原理 ,具有灵敏度高、动态 响应好、非接触测量等 优点。
利用自感或互感系数的 变化来测量物理量,具 有测量精度高、抗干扰 能力强等特点。
利用压电材料的压电效 应,将被测物理量转换 为电信号输出,具有体 积小、重量轻、频响宽 等优点。
学位论文
01
李华. "智能传感器技术研究." 博士学位论文, 北京大学, 2021.
02
王刚. "基于MEMS传感器的微型化设计." 硕士学位论文, 清 华大学, 2020.
03
张红. "生物传感器在环境监测中的应用." 硕士学位论文, 中 国科学院研究生院, 2019.
会议论文
"智能传感器技术及应用." 在 中国仪器 仪表学会年会, 2020.
06
传感器论文写作方法与技巧
Chapter
选题策略及创新点挖掘
紧跟研究前沿
关注传感器领域的最新研究动态,从学术期刊、会议论文、专利等渠道获取最新信息, 分析当前研究热点和趋势。
挖掘创新点
在充分了解前人工作的基础上,寻找研究的空白点和不足之处,提出自己的创新点和研 究假设。

传感器与测试技术论文

传感器与测试技术论文

传感器与测试技术论文传感器与检测技术是电气信息类专业重要的主干专业课,这是店铺为大家整理的传感器与测试技术论文,仅供参考!传感器与测试技术论文篇一传感器与自动检测技术教学改革探讨摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。

针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。

关键词:传感器与自动检测技术;教学内容;教学模式;工程思维“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。

“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。

本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。

一、教学过程中发现的问题及改革必要性分析笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。

1.重理论,轻实践该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。

2.教学模式单一该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。

传感器与检测技术论文

传感器与检测技术论文

传感器与检测技术论文传感器源自“感觉”一词。

人类的“五官”可以说就是最原始的传感器。

它是一种能够感受被测量信息同时又能够将感受到的被测量信息按照一定的规律转换或电、信号或其他所需形式的信号输出,以达到便于传输、处理、显示和控制等目的的检测装置。

从各行各业到日常生活,传感器几乎是无处不在,无处不用,其主要作用就是信息的采集和获取。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。

因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。

传感器也称为变换器、换能器、变松器、发送器与探测器等,由于传感器元件的输出信号往往都非常微弱,传感器在除敏感元件两大组成部分之外,所以还必须加入转换电路以便对弱小的信号进行放大。

另外,还应有辅助电源,以供传感器和转换电路工作。

随着集成电路技术在传感器应用中的深入,传感器的各个组成部分可以集成在同一半导体芯片上,构成集成传感器。

传感器种类众多,原理各异分类方式也不尽相同。

按输入被测量进行分类,一般可分为速度传感器、温度传感器、位移传感器、压力传感器等。

这种分类方法直接反应了检测的目的;按输出量形式可分为数字传感器与模拟传感器两类;按工作机理可分为结构型和物性型;按转换原理可分为电阻式、电容式、电感式、压电式、光电式、热点式传感器等;按信息的传递方式可分为能量转换传感器与能量控制型传感器两类。

随着计算机辅助设计,辅助制造技术,集成电路技术和微机械电子系统技术等新技术以及新工艺、新材料的应用,出现了精度更高,性能更优、用途更广的现代传感器。

现代化传感器正在向智能化、集成化、多功能化方向发展。

传感器有其基本特性,可分为静态特性和动态特性。

静态特性是指静态信号作用下的输出输入关系特性,而所谓动态特性是指动态信号下的输入输出关系特性。

衡量传感器其静态特性优劣的重要性能指标线是性灵敏度、迟滞、重复性、分辨率与稳定性。

传感器论文(现代传感器的特点与用途)

传感器论文(现代传感器的特点与用途)

传感器课程论文课程名称:现代传感器的特点及用途学校:南京信息工程大学学院:电子和信息工程学院专业:电子信息工程系姓名:学号:日期:2010年12月19日现代传感器的特点及用途摘要:本学期我学习了传感器和检测技术,通过一段时间的学习,从中了解到了许多以前不知道的事情,以下是自己通过老师的讲解所获得的一点感受。

传感器技术是现代科技的前沿技术,是现代信息技术的三大支柱之一,其水平高低是衡量一个国家科技发展水平的重要标志之一。

传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。

革开放20多年来,我国的传感器技术及其产业取得了长足进步,主要表现在:一是建立了“传感技术国家重点实验室”、“微米/纳米国家重点实验室”、“国家传感技术工程中心”等研究开发基地;二是MEMS、MOEMS等研究项目列入了国家高新技术发展重点;三是在“九五”国家重点科技攻关项目中,传感器技术研究取得了51个品种86个规格的新产品;四是初步建立了敏感元件和传感器产业,2000年总产量超过13亿只,品种规格已有近6000种,并已在国民经济各部门和国防建设中得到一定使用。

关键词:感受重要标志传感器产业高技术产业发展前途目录1. 微型化(Micro) (4)1.1 由计算机辅助设计(CAD)技术和微机电系统(MEMS) (4)技术引发的传感器微型化1.2 微型传感器使用现状 (5)2. 智能化(Smart) (5)2.1 智能化传感器的特点 (5)2.2 智能化传感器的发展和使用现状 (6)3. 多功能传感器(Multifunction)3.1 多功能传感器的执行规则和结构模式 (7)3.2 多功能传感器的研制和使用现状 (8)4. 无线网络化(wireless networked) (9)4.1 传感器网络 (9)4.2 传感器网络研究热点问题和关键技术 (10)4.3 传感器网络的使用研究 (10)5. 结语 (13)1. 微型化(Micro)为了能够和信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;和此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。

传感器技术论文

传感器技术论文

传感器技术论文传感器是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转化为有用信号的器件或装置。

这是店铺为大家整理的传感器技术论文,仅供参考!传感器技术论文篇一常用传感器技术浅析传感器是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转化为有用信号的器件或装置。

传感器的静态特性主要指标有线性度、迟滞、重复性、灵敏度和准确度。

本文将从这些方面对物理传感器、光纤传感器、仿生传感器、红外传感器、电磁传感器等传感器件进行对比浅析,让读者对常用的传感器有简单的认识。

【关键词】传感器器件静态特性传感器是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。

对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。

我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。

传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。

传感器的动态特性则指的是对于输入量随着时间变化的响应特性。

动态特性通常采用传递函数等自动控制的模型来描述。

通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。

1 物理传感器通过对作用过程中的物理反馈,如对电流的变化、压力的增减、温度的高低等物理量的检测,然后把这些特定的物理量转化为我们方便处理的信号变量,就是我们所说的物理传感器。

常用的物理传感器有光电式传感器、压电传感器、压阻式传感器、热电式传感器、光导纤维传感器等。

我们以常用的光电式传感器为例,它可以把光信号转变成为电信号,也可以把其他的物理信号转变成光信号。

它的原理是利用物质的光电效应:由于光照的作用,物质上的载流子会发生变化,从而导致物质的内部的电位发生变化,改变物质整体的导电性。

物理传感器在现实生活中有着非常广泛的应用,举个简单的使用在生物医学的研究领域的示例。

汽车测试技术及传感器传感器测试技术论文

汽车测试技术及传感器传感器测试技术论文

汽车测试技术及传感器传感器测试技术论文当今,所有以微处理器为根底的测控系统都需要传感器来提供作出实时决策的数据。

这是WTT为大家整理的传感器测试技术论文,仅供参考!传感器测试技术论文篇一基于建构主义学习理论的传感器与测试技术课程研究型教学实践摘要:建构主义学习理论强调学习是主动的知识建构过程。

结合传感器与测试技术课程特点,从设计教学流程、标准教学六大要素、构建“点、线、面〞相结合的教学模式、实施多种教学方法和手段以及多元化、全过程的综合评价体系等方面,详细介绍了用建构主义学习理论指导课程研究型教学的实践活动。

关键词:建构主义学习理论研究型教学教学模式评价体系研究型教学是与创新性教育相适应、以“学生为中心〞的教学模式,是教师以课程内容和学生的学识积累为根底,引导学生创造性地运用知识和能力,自主发现问题、研究问题和解决问题,在研讨中积累知识、培养能力和锻炼思维的新型教学模式[1]。

而建构主义学习理论提出学习是一个积极主动的建构过程,强调学生对知识的主动探求、主动发现和对所学知识的主动建构[2]。

教学过程那么是充分利用情境、协作、交流会话等环境要素,调动学生的主动性、积极性和创新精神,提高教学质量和效率。

可见将建构主义学习理论运用到研究型教学实践中,会起到事半功倍的效果。

传感器与测试技术课程具有以下的特点:工程实践性强;涉及的专业知识面广、知识点多、综合性强;传感器和测试技术本身开展迅速。

结合课程特点,深入阐述建构主义学习理论指导下的传感器与测试技术课程的研究型教学实践。

1建构主义学习理论的知识观和学习观建构主义学习理论最早是由认知开展领域最有影响力的瑞士著名心理学家皮亚杰在20世纪60年代提出的,他认为儿童是在与周围环境相互作用的过程中,逐步建构起关于外部世界的认识,从而使自身的认知结构得到开展。

后来又有许多心理学家和教育学家,如维果茨基、奥苏贝尔、布鲁诺等开展了建构主义学习理论,从而形成较完整的理论,它对学生的学习方式、教师的教学方式以及师生间的关系都产生了重要的影响,并逐渐成为研究与实施素质教育的重要理论依据[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程论文课程名传感器与检测技术专业班级:姓名:学号:指导教师:二O一三年月日数字温度传感器DS18B20介绍、设计及应用摘要:传感器作为现代科技的前沿技术,被认为是现代信息技术的三大支柱之一,也是国内外公认的最具有发展前途的高技术产业和朝阳产业。

随着时代的进步和发展,传感器与检测技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍数字式集成温度传感器DS18B20的结构、原理和接口技术,以及一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

该温度计具有简单、稳定、实用、精度高等优点。

关键词:传感器,数字温度计,报警,DS18B20,STC89C52RC1引言随着人们生活水平的不断提高, 传感器与检测技术、单片机控制技术无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中基于数字温度传感器DS18B20设计的数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为人们工作、科研、生活、提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。

我们首先介绍数字式集成温度传感器DS18B20的结构、原理和接口技术,然后介绍其设计及应用。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机STC89C52RC,测温传感器使用DS18B20,报警提示模块采用蜂鸣器报警,用LCD1602液晶显示器实现温度显示,能很好的达到以上要求。

2数字温度传感器DS18B20介绍2.1简介DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO -92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

以上特点使DS18B20非常适用于远距离多点温度检测系统。

2.2 DS18B20的内部结构DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端。

图1 DS18B20的内部结构图2 DS18B20的管脚排列ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。

64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。

ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。

高速暂存器是一个9字节的存储器。

开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。

2.3 DS18B20的工作时序DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。

其工作时序包括初始化时序、写时序,如图3(a)(b)所示。

(a)初始化程序(b)写时序图3 DS18B20的工作时序图3数字温度传感器DS18B20设计及应用3.1 基本设计构想如图4,预设定的正常温度范围是25℃到30 ℃。

当温度低于25℃时,蜂鸣器报警提示,当温度回升到正常温度范围,停止报警提示;当温度高于30℃时,蜂鸣器报警提示,当温度回落到正常温度范围,停止报警提示。

图4基本设计构想(1) 硬件组成和设计原理图5 温度报警系统仿真原理图如图5为该温度报警系统仿真原理图,主要分四大模块。

温度采集模块,主控模块,显示模块和报警提示模块。

(2) 核心算法设计图6 核心算法(3) 软件程序设计调试※程序见[附录Ⅰ]※经仿真调试完全达到了设计预定的要求,之后购买相应元器件认真焊接电路板,制作出设计实物,实物如图7。

图7 实物照片再调试实物,测试记录,得到以下数据,最终所有要求达到,完成本设计。

表1 测试数据记录表4总结与体会经过本学期对传感器与检测技课程的学习,我充分运用所学知识以及前段时间参加我院电子设计大赛之后所积累的经验,理论与实践相结合,终于完成了我的数字温度报警设计,而且达到了预期的设计要求,也让老师查看了我的设计实物,在此期间让我收获了很多,我很开心,也很感谢老师。

在本次设计的过程中,我发现很多的问题,虽然以前没做过这样的设计但这次设计真的让我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论有些东西是很难理解的,更谈不上掌握。

从这次的课程设计中,我真真正正的意识到,在以后的学习中,要理论联系实际,把我们所学的理论知识用到实际当中,学习单机片机更是如此,程序只有在经常的写与读的过程中才能提高,这就是我在这次课程设计中的最大收获。

5 致谢6 参考文献[1]阎石.数字电子技术基础(第三版). 北京:高等教育出版社,1989[2]李朝青.单片机原理及接口技术(简明修订版).杭州:北京航空航天大学出版社,1998[3]李广弟.单片机基础[M].北京:北京航空航天大学出版社,1994[附录Ⅰ:C程序]#include<reg52.h>#include <intrins.h> //使用_nop_()函数#define uchar unsigned char#define uint unsigned int/*************************************************///函数申明///*************************************************/void delay(uchar k); //标准延时函数void delay1(uint s); //LCD延时函数void init(); //初始化显示void init_18b20(); //复位ds18b20void write_18b20(uchar dat); //写ds18b20数据uchar read_18b20(); //读ds18b20数据void read_word_18b20(); //读数据并转换温度,进行显示void disp_tp(); //温度显示void init_LCD(); //初始化LCD1602void write_data(uchar date); //写LCD1602显示数据void write_com(uchar com); //写LCD1602指令void sw(); //按键扫描,修改报警上下限值void sw_disp(); //显示修改报警上下限界面sbit DQ=P1^7; //ds18b20数据线引脚sbit rs=P2^0;sbit rw=P2^1;sbit en=P2^2;sbit P10=P1^0; //蜂鸣器报警引脚,P10=1时报警sbit k0=P3^0; //4个按键:k0--加上限值,k1--减上限值,k2--加下限值,k3--减下限值sbit k1=P3^1;sbit k2=P3^2;sbit k3=P3^3;uint tvalue; //温度值uchar tflag; //温度正负标志uint i,j,kk=0,key=0; //kk控制上下限值修改界面显示,key控制温度界面显示uint temph=30; //初始上限值uint templ=25; //初始下限值uchar code dis0[]={"Welcome!"};uchar code dis1[]={0x00,0x1f,0x1f,0x1f,0x1f,0x1f,0x1f,0x00}; //初始化等待界面,进程的代码uchar code dis2[]={"temperature:"};uchar code dis3[]={0x06,0x09,0x06,0x00,0x00,0x00,0x00,0x00, //温度符号代码(。

)0x00,0x00,0x06,0x09,0x08,0x08,0x09,0x06};//温度符号代码(C)uchar code dis4[]={"Change password:"};uchar code dis5[]={"H:L:"};uchar data temp_data[5]; //储存温度值的数据/*************************************************///主函数///*************************************************/void main(){init(); //初始化显示init_LCD(); //初始化LCD1602 ss: init_18b20(); //复位ds18b20read_word_18b20(); //读数据并计算转换温度,显示温度值if(((tvalue/10)%100)<templ)P10=1; //温度低于下限值,报警else if(((tvalue/10)%100)>=temph)P10=1; //温度高于或等于上限值,报警else P10=0;kk=0;sw();goto ss;}/*************************************************///开机初始化显示----欢迎等待界面///*************************************************/void init() //初始化显示{uchar n,a,b,temp;P10=0;P3=0x0f;init_LCD(); //初始化LCD1602 write_com(0x84);for(n=0;n<8;n++){write_data(dis0[n]);delay1(10);}delay1(100);write_com(0x40); //写1602,RAM地址for(a=0;a<8;a++) //写入自定义字符,用于LCD显示{write_data(dis1[a]);}temp=0xc0; //赋初始化显示,进程标志的初始地址for(b=0;b<16;b++) //显示进程标志的进度{write_com(temp); //写进程命令write_data(0); //显示进程标志delay1(80);temp++;}delay1(500);}/*************************************************/void init_LCD() //初始化LCD1602{write_com(0x01); //清屏write_com(0x38); //8位数据,双列,5*7字形write_com(0x0c); //开启显示屏,关光标,光标不闪烁write_com(0x06); //显示地址递增,即写一个数据后,显示位置右移一位write_com(0x80); //写LCD初始显示地址}/*************************************************/void write_com(uchar com) //写LCD1602指令{rs=0; //选择指令寄存器rw=0; //选择写P0=com; //把命令字送入P0delay1(5); //延时一小会儿,让1602准备接收数据en=1; //使能线电平变化,命令送入1602的8位数据口en=0;}/*************************************************/void write_data(uchar date) //写LCD显示数据{rs=1; //选择数据寄存器rw=0; //选择写P0=date; //把要显示的数据送入P0 delay1(5); //延时一小会儿,让1602准备接收数据en=1; //使能线电平变化,数据送入1602的8位数据口en=0;}/*************************************************///复位ds18b20///*************************************************/void init_18b20(){uchar text=1;while(text){while(text){DQ=1;_nop_();_nop_(); //从高拉倒低DQ=0;delay(50); //550 usDQ=1;delay(6);text=DQ; //判断DS18B20是否存在// P3=0x80; //存在,则蜂鸣器发出短暂鸣声,若不存在,则一直蜂鸣报警}delay(45);text=~DQ;// P3=0x00;}DQ=1;}/*************************************************///写18b20数据///*************************************************/void write_18b20(uchar dat){uchar t;for(t=8;t>0;t--){DQ=1;DQ=0; //从高拉倒低_nop_();_nop_();_nop_();_nop_();DQ=dat&0x01; //写数据,从低位开始delay(6);dat>>=1; //8位数据,一位一位的写入ds18b20 }DQ=1;}/*************************************************///读18b20数据///*************************************************/uchar read_18b20(){uchar t;uchar value=0;for(t=8;t>0;t--){DQ=1;value>>=1;DQ=0;_nop_();_nop_();_nop_();_nop_();DQ=1;_nop_();_nop_();_nop_();_nop_();if(DQ)value|=0x80;delay(6);}DQ=1;return(value);}/*************************************************/void read_word_18b20(){uchar x,y;write_18b20(0xcc); //发命令:Skip ROM,跳过读序列号write_18b20(0x44); //启动温度转换init_18b20();write_18b20(0xcc); //发命令:Skip ROM,跳过读序列号write_18b20(0xbe); //读取温度x=read_18b20(); //温度值低8为存入xy=read_18b20(); //温度值高8为存入ytvalue=y; //整合温度值的低8位与高8位:tvalue<<=8; //左移8位,即将温度值的高8位数据移入16位整形变量tvalue 的高位,tvalue|=x; //再与温度值的低8位相或,即将低8位数据存入tvalue低位中,完成数据整合if(tvalue<0xfff)tflag=0;else{tflag=1;tvalue=(~tvalue)+1;}tvalue*=0.625;//扩大10倍,换算出温度值,显示一位小数。

相关文档
最新文档