九年级上期中测试题21、22、23、24、25五章的内容--数学

合集下载

九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷-初中数学试卷

九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷-初中数学试卷

九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载九年级(上)数学期中阶段性测试命题人:毛夏美审核人:邵小瑶一选择题(每题3分,共12题)1、下列函数中,图象经过点的反比例函数解析式是()A.B.C.D.2如图,已知是⊙O的圆周角,,则圆心角是()A. B. C. D.3如图,在⊙ABC中,DE⊙BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则DE⊙BC 的值为()A.B.C.D.4二次函数与x轴的交点个数是()A.0B.1C.2D.35如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中为,长为8cm,长为12cm,则阴影部分的面积为()A.B C.D.6如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是().(A)②④(B)①④(C)②③(D)①③7反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的解析式可能分别是().(A)y=,y=kx2-x(B)y=,y=kx2+x(C)y=-,y=kx2+x(D)y=-,y=-kx2-x8抛物线y=3(x-2)2+1先向上平移2个单位,再向左平移2个单位所得的解析式为()A.y=3x2+3B. y=3x2-1C. y=3(x-4)2+3D. y=3(x-4)2-19在相同时刻阳光下的物高与影长成比例,如果高为1.5m的测杆的影长为2.5m,那么影长为30m的旗杆的高是()(A)、20m(B)、16m(C)、18m(D)、15m10一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是()(A)9(B)18(C)27(D)3911如图,⊙APD=90°,AP=PB=BC=CD,则下列结论成立的是()A .ΔPAB⊙ΔPCAB.ΔPAB⊙ΔPDAC .ΔABC⊙ΔDBA D.ΔABC⊙ΔDCA12如图,AB是半圆O的直径,⊙BAC=200 , D是弧AC上的点,则⊙D是()A.1200B.1100C.1000D.900二填空题13、如果点P是线段AB的黄金分割点,且AP>PB,则下列说法正确的是______(仅填序号)。

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。

浙江省绍兴市柯桥区2022-2023学年九年级上学期期中数学试题

浙江省绍兴市柯桥区2022-2023学年九年级上学期期中数学试题

2022学年第一学期九年级期中教学质量调测试卷(2022.11)数学试卷Ⅰ(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分)1.若37a b =,则a bb +的值为( ) A .107 B .710C .37D .472.已知⊙O 的半径OA 长为1,OB =)A .B .C .D .3.如图,已知直线a b c ∥∥,分别交直线m ,n 于A ,C ,E ,B ,D ,F ,则下列各式不正确的是( )A .AC BDCE DF =B .AC BDAE BF =C .CE BD AE BF=D .CE DF AE AC BF BD=++ 4.对于二次函数223y x x =-+的图象,下列说法正确的是( ) A .开口向下B .对称轴是直线x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点5.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( )A .AB BCAD DE=B .AB ACAD AE=C .∠C =∠ED .∠B =∠ADE6.如图,AB 是⊙O 的直径,∠D =32°,则∠AOC 等于( )A .158°B .116°C .64°D .58°7.如图,在平面直角坐标系中,C 为△AOB 的OA 边上一点,:1:2AC OC =,过C 作CD OB ∥交AB 于点D ,C 、D 两点纵坐标分别为1,3,则B 点的纵坐标为( )A .4B .5C .6D .78.已知函数2y x mx =+的对称轴为x =3,则关于x 的方程27x mx +=的根为( ) A .0,6B .1,7C .1,-7D .-1,79.如图,△ABC 中,AB =AC ,∠BAC =92°,△CDE 中,DC =DE ,∠CDE =88°,连结BE ,点F 为BE 中点,连结AF ,DF ,则∠AFD 为( )A .88°B .90°C .92°D .100°10.将抛物线22y x =+依次进行以下三种变换:①沿y 轴向下平移3个单位,②横坐标变为原来的两倍,纵坐标不变.③横坐标不变,纵坐标变为原来的两倍.则变换后的抛物线表达式为( ) A .2114y x =- B .2122y x =- C .221y x =-D .242y x =-试卷Ⅱ(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.写出一个对称轴为y 轴,且过点(0,1)的二次函数的表达式______.12.点P 是线段AB 的黄金分割点,若AB =10且PA PB >,则PB 长最接近的整数是______.13.如图,边长为2的等边△ABC ,将边BC 不改变长度,变为弧BC ,得到以A 为圆心,AB 为半径的扇形ABC ,由三角形变成扇形,下列量的变化情况是:∠A 的度数______,图形的面积______.(空格处填“变大”,“变小”或“不变”)14.有二把不同刻度的直尺a 、b ,同一把直尺上的刻度之间距离相等,小敏把这二把直尺如图紧贴,并将两把直尺上的刻度0互相对准,发现a 尺的刻度36对准着b 尺上的刻度48,平行移动a 尺(平移过程中两把直尺维持紧贴),使得a 尺的刻度0对准b 尺的刻度4,则此时a 尺的刻度21对准b 尺的上刻度是______.15.二次函数()()232y x h t x t =-++≤≤+的图象上任意二点连线不与x 轴平行,则t 的取值范围为______.16.正方形ABCD 中,E ,F 分别是AD ,DC 上的点,连结EF 交对角线BD 于点G ,若BE 恰好平分AEF ∠,413DG GB =,则DEAE的值为______.三、解答题(本题有8小题,第17~20题各8分,第21题10分,第22~23题各12分,第24题14分,共80分)17.(本题8分)已知线段a ,b ,c 满足326a b c==且a +b +c =22. (1)求线段a ,b ,c 的长;(2)若线段x 是线段a ,b 的比例中项,求线段x 的长.18.(本题8分)如图,在4×4的正方形方格中,△ABC 的顶点A 、B 、C 在单位正方形的顶点上.D 在边AB 格点上.(1)请找出△ABC 的外心O ;(2)请用无刻度直尺在边AC 上找出所有使得△ADE 与△ABC 相似的点E .19.(本题8分)已知正六边形ABCDEF 的中心为O ,半径OA =9.(1)求正六边形的边长;(2)以A 为圆心,AF 为半径画弧BF ,求BF 的长度.20.(本题8分)如图,已知抛物线的顶点坐标为M (2,-5),与y 轴交于点A (0,3).(1)求抛物线的解析式.(2)当14x <<时,直接写出函数y 的取值范围.21.(本题10分)如图,已知∠B =∠E =90°,AB =6,BF =3,CF =5,DE =15,DF =25.(1)求CE 的长;(2)求证:△ABC ∽△DEF .22.(本题12分)在平面直角坐标系中,O 为坐标原点,已知点B (0,4),点A 在x 轴负半轴上,且∠BAO =30°.将△AOB 绕着O 顺时针旋转,得△COD ,点A 、B 旋转后的对应点分别为C ,D ,记旋转角为α.(1)如图1,CD 恰好经过点B 时, ①求此时旋转角α的度数; ②求出此时点C 的坐标;(2)如图2,若090α︒<<︒,设直线AC 和直线DB 交于点P ,猜测AC 与DB 的位置关系,并说明理由. 23.(本题12分)某公司分别在A ,B 两城生产同种产品,共80件,A 城生产产品的总成本y (万元)与产品数量x (件)之间具有二次函数关系,部分数据如表,B 城生产产品的每件成本为50万元.(1)A 城生产产品的总成本y (万元)与产品数量x 的函数关系式;(2)记A 、B 两城生产这批产品的总成本的和为w (万元),求w 与A 城产品数量x (件)之间的函数关系式;(3)当A 、B 两城生产这批产品的总成本的和最少时,求A 、B 两城各生产多少件.24.(本题14分)如图,圆O 是△ABC 的外接圆,直径CD ⊥AB 于点E ,H 是CD 延长线上一点,P 为DH 的中点,连结AH ,过点E 作直线垂直AH 于点F ,交BC 于点G ,连结PG .(1)求证△ABC 是等腰三角形;(2)探究∠CGE ,∠CAB ,∠H 的数量关系,并说明理由; (3)若AB =2PE ,PH =6,PG =17,求OE 的长.九年级期中学业评价调测试卷数学参考答案一、选择题(每小题4分,共40分) 1-10:ADCCA BCDBB二、填空题(每小题5分,共30分) 11.21y x =+(答案不唯一) 12.4 13.变小 变大14.3215.5t ≤-或3t ≥-16.12或4 三、解答题(本题有8小题,共80分) 17.(本题8分)解:(1)设326a b ck ===,则a =3k ,b =2k ,c =6k , ∵a +b +c =22,∴3k +2k +6k =22,解得k =2, ∴a =3×2=6,b =2×2=4,c =6×2=12;(2)∵线段x 是线段a 、b 的比例中项,∴26424x ab ==⨯=,∴x =x =-(舍去),∴线段x = 18.(本题8分)(1) (2)19.解:(本题8分)(1)∵六边形ABCDEF 是正六边形, ∴正六边形的边长=半径OA =9; (2)∵六边形ABCDEF 是正六边形, ∴∠BCF =120°, ∴弧BF 的长为12096180y ππ⨯==.20.(本题8分)解:(1)由顶点坐标M (2,-5)可设二次函数表达式为()225y a x =--, 将(0,3)的坐标代入得()23025a =--,解得a =2. ∴抛物线对应二次函数的表达式为()2225y x =--;(2)当14x <<时,x =4时,函数有最大值为y =3(取不到), x =2时,函数有最小值y =-5,∴当14x <<时,函数y 的取值范围是53y -≤<. 21.(本题10分)(1)解:∵DE =15,DF =25,∠E =90°,∴20EF ==,∴CE =EF -CF =15(2)证明:∵BF =3,CF =5,∴BC =BF +CF =8, ∵62155AB DE ==,82205BC EF ==,∴AB BCDE EF=, ∵∠B =∠E =90°,∴△ABC ∽△DEF .22.(本题12分)解:(1)①由旋转可知OB =OD , ∵∠BAO =30°,∴∠ABO =60°=∠D , ∴△BOD 是等边三角形,∴∠BOD =60°,∴旋转角60α=︒; ②过点C 作CE ⊥x 轴交于点E ,∵∠AOB =90°,B (0,4),∴CO AO ==∵60α=︒,∴∠AOC =60°,∴OE =CE =6,∴()C -;(2)∵AOC α∠=,AO =CO ,∴1902OAC α∠=︒-, ∴1190306022BAP αα∠=︒--︒=︒-∵BOD α∠=,OB =OD ,∴1902OBD α∠=︒-, ∴11180********ABP αα⎛⎫∠=︒-︒-︒-=︒+ ⎪⎝⎭, ∴1160309022PBA PAB αα∠+∠=︒-+︒+=︒, ∴∠APB =90°,∴AC ⊥BD .23.(本题12分)解:(1)由题意设2y ax bx c =++得01001020040020600c a b a b =+=+=⎧⎪⎨⎪⎩,解得:110a b ==⎧⎨⎩,∴210y x x =+;(2)根据题意得:()22105080404000w x x x x x =++-=-+,∴w 与A 城产品数量x (件)之间的函数关系式为2404000w x x =-+;(3)∵()22404000203600w x x x =-+=-+, ∵10>,∴当x =20时,w 取得最小值,最小值为3600万元,此时80-20=60, 答:A 城生产20件,B 城生产60件. 24.(本题4分)证明(1)∵直径CD ⊥AB ,∴AC BC = ∴AB =BC ,∴△ABC 为等腰三角形 (2)∠CGE =∠CAB +∠H ∵CD ⊥AB ,∴∠BEH =90° ∴∠GEB +∠FEH =90°∵FG ⊥AH ,∴∠H +∠FEH =90°,∴∠H =∠GEB ∴∠CGE =∠CBA +∠GEB =∠CAB +∠H(3)取AH 中点M ,过M 作MN ⊥AB 于点N ,连结MB ,ME ,MP ,AD∴∠H =∠MEP =∠BEG ,∵AB =2EP ,∴EB =EP∴M ,P 为中点,∴MP AD ∥,∴∠MPE =∠ADC =∠ABC , ∴△PEM ≌△BEG ,∴EM =EG ,∴△PEG ≌△MEB ,∴MB =PG =17, 设AE =2x ,则BN =3x ,MN =x +3,得()()2223317x x ++= 得x =5,∴DE =4连结OB ,得()()2221034OE x OE ++=+,∴212OE =.。

2024-2025学年人教版九年级上册数学期中测试卷

2024-2025学年人教版九年级上册数学期中测试卷

2024-2025学年人教版九年级上册数学期中测试卷一、单选题1.抛物线28y x =-的顶点坐标是( )A .()8,0-B .()0,8-C .()0,8D .()8,0 2.一元二次方程2 120x x --=的解是( )A .1234x x ==,B .1234x x =-=,C .1234x x ==-,D .1234x x =-=-,3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.当函数()21y a x bx c =+++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 5.关于x 的一元二次方程2220kx x -+= 有两个相等的实数根,则k 的值是( ) A .4k = B .12k = C .2k =- D .14k =6.已知a 是一元二次方程2240x x --=的一个根,则代数式222024a a -+的值为( )A .2024+B .2024-C .2024D .2028 7.函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .8.已知二次函数()()222211y k x k x =-+++与x 轴有交点,则k 的取值范围在数轴上表示正确的是( )A .B .C .D .9.已知二次函数()245y x a x a =+-+-(a 为常数)的图象经过()m n -,和()m n ,两点,则二次函数与y 轴的交点坐标为( )A .()0,1B .()0,1-C .()0,5-D .()0,410.如图,一块含30︒角的直角三角板ABC 绕点B 顺时针旋转到A BC ''△的位置,使得A 、B 、C '三点在同一条直线上,则三角板ABC 旋转的角度是( )A .30︒B .60︒C .90︒D .120︒11.2024年春节刚过,国内新能源汽车车企纷纷开展降价促销活动.某款新能源汽车今年3月份的售价为25万元,5月份的售价为18万元,设该款汽车这两月售价的月均下降率是x ,则下列方程正确的是( )A .()225118x -=B .()218125x -= C .()218125x -= D .()2251218x -= 12.如图1是太原晋阳湖公园一座抛物线型拱桥,按如图2所示建立坐标系,在正常水位时水面宽30AB =米,当水位上升5米时,则水面宽20CD =米,则函数表达式为( )A .2115y x =-B .2125y x =-C .2115y x =D .2125y x =二、填空题13.在平面直角坐标系中,点(45)P -,关于原点对称点P '的坐标是. 14.若a ,b 为方程2320x x -+=的两个实数根,则232a a ab -+的值为.15.抛物线231010y x x =--与x 轴的其中一个交点坐标是(,0)m ,则2264m m -+的值为. 16.如图,抛物线21462y x x =-+与y 轴交于点A ,与x 轴交于点B ,线段CD 在抛物线的对称轴上移动(点C 在点D 下方),且3CD =.当AD BC +的值最小时,点C 的坐标为.三、解答题17.解方程:(1)230x x -=.(2)()23x x +=.18.已知二次函数2246y x x =-++,设其图象与x 轴的交点分别是A 、B (点A 在点B 的左边),与y 轴的交点是C ,求:(1)A 、B 、C 三点的坐标;(2)设抛物线的顶点为D ,求BCD △的面积.19.如图,平面直角坐标系中,ABC V 的位置如图所示:(1)请在图中作出ABC V 绕原点 O 逆时针旋转90︒得到的111A B C △;(2)作出111A B C △关于原点对称的222A B C △,并写出2B 的坐标.20.如图,二次函数21y x bx c =-++的图象交x 轴于点()3,0A -和点()1,0B ,交y 轴于点C ,且点C 、D 是二次函数图象上关于对称轴对称的一对点,一次函数2y mx n =+的图象经过点B 、D .(1)求二次函数的解析式;(2)根据图象直接写出不等式2x bx c mx n -++<+的解集为________.21.将下列方程化成一元二次方程的一般形式,并写出二次项系数、一次项系数和常数项.(1)2312x x -=;(2)()2243x x x x -=-;(3)关于x 的方程()220mx nx mx nx q p m n -++=-+≠.22.如图,抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点,且(1,0)A -.(1)求抛物线的解析式;(2)判断ABC V 的形状,并证明你的结论;(3)点P 是x 轴上的一个动点,当PC PD +的值最小时,求点P 的坐标.23.如图,已知抛物线21y x bx c =++与直线22y x =+的一个交点A 在y 轴上、另一交点为点B ,直线2y x =+与x 轴交于点C ,抛物线的对称轴为直线1x =,交x 轴于点D .(1)求抛物线的解析式;(2)直接写出12y y >时x 的取值范围;(3)点P 是抛物线上A B 、之间的一点,连接CP DP 、,当C D P △面积最小时,求点P 的坐标. 24.一款服装每件进价为80元,销售价为120元时,每天可售出20件,为了扩大销售量,增加利润,经市场调查发现,如果每件服装降价1元,那么平均每天可多售出2件.(1)设每件服装降价x 元,则每天销售量增加______件,每件商品盈利______元(用含x 的代数式表示);(2)在让利于顾客的情况下,每件服装降价多少元时,商家平均每天能盈利1200元?(3)商家能达到平均每天盈利1800元吗?请说明你的理由.25.某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额1y (万元)与销售量x (吨)的函数解析式为15y x =;成本2y (万元)与销售量x (吨)的函数图象是如图所示的抛物线的一部分,其中17,24⎛⎫⎪⎝⎭是其顶点.(1)求出成本2y关于销售量x的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额-成本)。

浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)

浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)

浙浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列函数中,是二次函数的是()A.y=5x B.y=x2C.y=2x+1D.2y=x【答案】B 【解析】A. y=5x是反比例函数,故此选项错误;B. y=x2是二次函数,故此选项正确;C. y=2x+1是一次函数,故此选项错误;D. 2y=x是正比例函数,故此选项错误.故答案为:B.2.台球盒中有7个红球与1个黑球,从中随机摸出一个台球,则下列描述符合的是() A.一定摸到黑球B.不可能摸到黑球C.很可能摸到黑球D.不大可能摸到黑球【答案】D【解析】∵台球盒中有7个红球与1个黑球,∴从中随机摸出一个台球,摸出黑球的可能性很小,即不大可能摸到黑球.故答案为:D.3.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,−3).则△ABC的外心坐标应是()A.(0,0)B.(1,0)C.(2,−1)D.(−2,−1)【答案】D【解析】∵B点坐标为(2,1),C点坐标为(2,-3),∴直线BC∥x轴,∴直线BC的垂直平分线为直线y=-1,∵外心是三角形三条边的垂直平分线的交点,∴△ABC外心的纵坐标为-1,设△ABC的外心为P(a,-1),∴PA2=a2+(−1−3)2=a2+16=PB2=(a−2)2+(−1−1)2=a2−4a+8,∴a2+16=a2−4a+8,解得a=−2,∴△ABC外心的坐标为(-2,-1),故答案为:D.4.在不透明的袋子中装有黑、白两种球共50个,这些球除颜色外都相同,随机从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则袋子中黑球的个数约为()A.20个B.30个C.40个D.50个【答案】A【解析】设袋子中有n个黑球,根据题意得n50=0.4,解得:n=20,故答案为:A.5.如图,⊙O中的半径为1,△ABC内接于⊙O.若∠A=50°,∠B=70°,则AB的长是()A.32B.√3C.√2D.32√3【答案】B【解析】如图,连接OA、OB,过点O作OD⊥AB,∵∠A=50°,∠B=70°,∴∠C=180°−50°−70°=60°,∴∠AOB=2∠C=120°,∵OA=OB,∴△AOB是等腰三角形,∴∠AOD=12∠AOB=60°,AD=BD=12AB,∴∠DAO=30°,∴OD=12,AD=√OA2−OD2=√12−(12)2=√32,∴AB=2AD=√3.故答案为:B.6.已知二次函数y=x2−4x−1,当1<x≤5时,对应的函数值y不可能是()A.−5B.−4C.4D.5【答案】D【解析】将抛物线解析式化为顶点式:y=x2−4x−1=(x−2)2−5,∴抛物线开口向上,且顶点坐标为(2,-5),∵1<x≤5,∴y的最小值为-5,当x=1时,y=-4;当x=5时,y=4,∴y的取值为−5≤y≤4,故y不可能的值为5.故答案为:D.7.用48米木料制作成一个如图所示的“目”形长方形大窗框(横档EF,GH也用木料).其中AB∥EF∥GH∥CD,要使窗框ABCD的面积最大,则AB的长为()A .6米B .8米C .12米D .4√3米【答案】A【解析】设AB 的长为x 米,则AD 的长为48−4x2米,由矩形面积公式得:S 矩形ABCD =AD•AB =x×48−4x2=﹣2x 2+24x =﹣2(x ﹣6)2+72,∵48﹣4x >0, ∴x <12, ∴0<x <12, ∵﹣2<0,∴当x =6时,矩形的面积有最大值. 故答案为:A. 8.已知△ ABC 和△ ADE 都是等腰直角三角形,∠ACB =∠ADE =90° , AC =2√2 , AD =1 , F 是 BE 的中点.若将△ ADE 绕点 A 旋转一周,则线段 AF 长度的取值范围是( )A .4−√22≤AF ≤4+√22B .2≤AF ≤3C .4−√22≤AF ≤3D .2−√22≤AF ≤2+√22【答案】A【解析】根据旋转的特性,画出E 点旋转一圈的轨迹,如图:结合图形可知:①当E 落在E′位置时,AF 最大,∵△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90∘,AC=2 √2 ,AD=1, ∴AB= √AB 2+BC 2 =4, AE=AE '= √AD 2+DE 2 = √2 , BE '=AB−AE′=4− √2 , ∵F 是BE′的中点,∴BF= 12 BE′= 4−√22 , AF=AB−BF=4− 4−√22 = 4+√22;②当E 落在E″位置时,AF 最小,∵BE″=AB+AE″=4+ √2 ,且F 是BE″的中点,∴BF= 12BE″=4+√22,AF=AB−BF=4− 4+√22= 4−√22.综合①②可知:4−√22⩽AF⩽4+√22故答案为:A.9.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()A.1B.2C.3D.4【答案】C【解析】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x= b2a=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>0,所以④正确.故答案为:C10.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连结CE, BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+√2【答案】C【解析】当BE为三角形BCE的斜边的时候 C E 2 + B E 2有最大值∴EC⊥x轴,∵AO⊥x轴∴AO=EC=1则BE2=BC2+CE2=5C E 2 + B E 2=1+5=6故答案选C。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
【详解】由图像可得,当x<-1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,
∴不等式mx+n>ax2+bx+c的解集是:x<-1或x>4.
故答案为:x<-1或x>4.
【点睛】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键.
16.24或25##25或24
【解析】
A.2B.3C.-2D.-1
7.a是方程 的一个根,则代数式 的值是()
A. B. C. D.
8.已知抛物线 的对称轴是直线 ,则实数 的值是()
A.2B. C.4D.
9.把二次函数 的图象先向右平移3个单位,再向上平移1个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()
A. B.
C D.
(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;
(2)当矩形场地面积为160平方米时,求AD的长.
22.某商品交易会上,某商场销售一批纪念品,进价时每件为38元,按照每件78元销售,平均每天可售出20件,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每个纪念品降价2元,则平均每天多销售4件.
∴方程ax2+bx+c﹣m=0没有实数根时,
∴抛物线 -m顶点在x轴下方

故④正确,
⑤∵对称轴x=﹣1=﹣ ,
∴b=2a,
∵a+b+c<0,
∴3a+c<0,
故⑤正确,
所以正确的选项有②③④⑤,
故选:C.
【点睛】本题考查二次函数图象与系数的关系,一元二次方程根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

24-25九年级数学期中模拟卷(深圳专用,北师大版九上第1~5章)(考试版A4)

24-25九年级数学期中模拟卷(深圳专用,北师大版九上第1~5章)(考试版A4)

2024-2025学年九年级数学上学期期中模拟卷(深圳专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大九上第一章特殊平行四边形+第二章一元二次方程+第三章概率+第四章图形的相似+第五章投影与视图。

5.难度系数:0.68。

第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.笔、墨、纸、砚是中国传统的文房四宝,是中国书法的必备用具,如图是寓意“规矩方圆”的一方砚台,它的俯视图是( )A .B .C .D .2.下列方程中,关于x 的一元二次方程是( )A .2(1)2(1)x x +=+B .21120x x +-=C .20ax bx c ++=D .2221x x x +=-3.根据下列表格中的对应值,可以判断关于x 的一元二次方程20ax bx c ++=的一个解x 的范围是( )x 00.51 1.522ax bx c ++15-8.75-2- 5.2513A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x <<4.如图,已知直线a b c ∥∥,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 和B 、D 、F ,4AC =,6CE =,3BD =,DF =( )A .7B .7.5C .8D .4.55.如图,在平面直角坐标系xOy 中,以点O 为位似中心,把△AOB 放大到原来的2倍,得到A OB ¢¢△,若点B 的对应点B ¢的坐标是(4,﹣2),则点B 的坐标是( )A .(2,1)B .(2,﹣1)C .(﹣2,1)D .(﹣2,﹣1)6.顺次连接矩形ABCD 各边中点所得四边形必定是( )A .平行四边形B .菱形C .正方形D .矩形7.如图,用长为20m 的篱笆,一面利用墙(墙的最大可用长度为11m ),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m 的两扇小门,若花圃的面积刚好为240m ,则此时花圃AB 段的长为( )m .A .4或103B .103C .4D .108.如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下结论:①ABF DBE Ð=Ð;②ABF DBE V V ∽;③AF BD ^;④22BG BH BD =×,你认为其中正确的有( )A .1个B .2个C .3个D .4个第二部分(非选择题 共76分)二、填空题(本大题共5小题,每小题3分,满分15分)9.已知23a cb d ==,若b+d≠0,则ac bd ++= .10.若1x ,2x 是方程2620230x x --=的两个实数根,则代数式211242x x x -+的值等于 .11.如图,菱形ABCD 的边长为2.5cm ,60ABC Ð=°,E ,F 分别是BC BD ,上的动点,且CE DF =,则AE AF +的最小值为 .12.在平面直角坐标系xOy 中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第n 个正方形的面积为 .13.如图,正方形ABCD 和正方形BEFG 的边长分别为1和3,点C 在边BG 上,线段DF 、EG 交于点M ,连接DE 、BM ,则BM = .三、解答题(本大题共7小题,满分61分.解答应写出文字说明,证明过程或演算步骤)14.(8分)解方程:(1)2230x x --=(用配方法求解)(2)()()121x x x =--15.(7分)如图,在网格图中(小正方形的边长为1),⊿ABC 的三个顶点都在格点上.(1)把⊿ABC 沿着x 轴向右平移6个单位得到111A B C △,请你画出111A B C △;(2)请你以坐标系的原点O 点为位似中心在第一象限内画出⊿ABC 的位似图形222A B C △,使得⊿ABC 与222A B C △的位似比为1:2;(3)请你直接写出222A B C △三个顶点的坐标.16.(7分)小汤对九年级学生参与“力学”“热学”“光学”“电学”四个类别的物理实验情况进行了抽样调查,每位同学只能选其中一个类别,根据调查结果绘制了如图所示的不完整的频数分布表和扇形统计图(图1),请根据图表提供的信息,解答下列问题:(1)m=________,热学对应的圆心角=_________.(2)如图2,当小汤随机闭合A、B、C、D这4个开关中任意2个时,请用树状图或列表法求出灯泡亮的概率.17.(8分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2020年春节长假期间,共接待游客达20万人次,预计在2022年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2020至2022年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2022年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?18.(8分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE AC ∥,且12DE AC =,连接AE 、CE .(1)求证:四边形OCED 为矩形.(2)若菱形ABCD 中,6DB =,8AC =,求EF 的长.19.(11分)【初步尝试】(1)如图①,在三角形纸片ABC 中,90ACB Ð=°,将ABC V 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ;【思考说理】(2)如图②,在三角形纸片ABC 中,6AC BC ==,10AB =,将ABC V 折叠,使点B 与点C 重合,折痕为MN ,求AM BM的值.【拓展延伸】(3)如图③,在三角形纸片ABC 中,9AB =,6BC =,2ACB A Ð=Ð,将ABC V 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ¢处,折痕为CM .①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB ¢上的一个动点,将APM △沿PM 折叠得到A PM ¢V ,点A 的对应点为点A ¢,A M ¢与CP 交于点F ,求PF MF 的取值范围.20.(12分)某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边△ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ.求证:BP = CQ;(2)变式探究:如图2,在等腰△ABC中,AB=BC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP =PQ,ÐAPQ =ÐABC,连接CQ.判断∠ABC和∠ACQ的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为6,CQ=ADBC的边长.。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
13.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为_______.
14.如图,已知 、 是⊙O的直径, , ,则 的度数为______度.
15.如图,抛物线 与直线 的两个交点坐标分别为 , ,则关于 的方程 的解为______.
16.如图,AB是半圆O的直径,点C在半圆上,AB=5,AC=4,D是 上的一个动点,连接AD.过点C作CE⊥AD于E,连接BE,则BE的最小值是_____.
【点睛】本题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
7. B
【解析】
【分析】首先求出点(-1,0)关于对称轴x=1的对称点,进而结合图象可得当y<0时x的取值范围.
【详解】解:根据图象可知,抛物线的对称轴为x=1,抛物线与x轴的一个交点为(-1,0),
则(-1,0)关于x=1对称的点为(3,0),
.是轴对称图形,不是中心对称图形,故此选项不合图形,不是中心对称图形,故此选项不合题意.故选:C.
【点睛】本题考查中心对称图形和轴对称图形的知识,解题的关键是掌握好中心对称图形与轴对称图形的概念.
2. C
【解析】
【分析】根据旋转的性质求出 和 的度数,计算出 的度数.
【详解】如图所示, 是等腰直角三角形, 是它的外接圆, 是它的内切圆,连接AE、BE,
∵等腰直角三角形的外接圆半径的长为2,
∴AB=4,
∴在 中, ,
∵ 是内切圆,
∴EF=EG=ED,


∵ ,
∴ ,
即 ,
∴ .故选:B.
【点睛】本题考查了三角形的外接圆和内切圆,等腰直角三角形的性质,勾股定理等知识,熟练掌握圆基本的性质定理是解题的关键.

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
【详解】解:A、是轴对称图形,不是中心对称图形,故A选项错误;
B、既是轴对称图形,又是中心对称图形,故B选项错误;
C、是中心对称图形,不是轴对称图形,故C选项正确;
D、是轴对称图形,不是中心对称图形,故D选项错误;故选C.
【点睛】本题主要考查了中心对称与轴对称图形的概念,解题的关键在于能够熟练掌握中心对称图形与轴对称图形的相关知识.
14.从一块直径是 的圆中剪出一个圆心角为90°的扇形,将减下来的扇形围成一个圆锥,圆锥底面圆的半径是___________.
15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为_______.
A. B.
C. D.
8.如图, 是 的内接三角形, , 是直径, ,则 的长为( )
A.4B. C. D.
9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点D(x2,y2)是抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②若y2>y1,则x2>4;③若0≤x2≤4,则0≤y2≤5a;④若方程a(x+1)(x﹣3)=﹣1有两个实数根x1和x2,且x1<x2,则﹣1<x1<x2<3.其中正确结论的个数是( )
【详解】如图,连接 ,
分别与 相切于 两点,
,



.故选B.
【点睛】本题考查了圆的切线的性质,圆周角定理,求得 是解题的关键.
7. B
【解析】
【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.

【期中卷】人教版2021-2022学年九年级数学上学期期中测试卷(三)含答案与解析

【期中卷】人教版2021-2022学年九年级数学上学期期中测试卷(三)含答案与解析

人教版2021–2022学年上学期期中测试卷(三)九年级数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:九年级上册第二十一章~第二十四章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求)1.下列交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知⊙O的半径长为5,若点P在⊙O内,那么下列结论正确的是()A.OP>5 B.OP=5 C.0<OP<5 D.0≤OP<53.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.04.如果关于x的方程x2+mx+1=0的两个根的差为1,那么m等于()A.±2 B.± C.± D.±5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30° B.60°C.90° D.120°6.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A .12B .C .D .8.如图,在平面直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点,若AB=3,则点M 到直线l 的距离为( )A .B .C .2D .9.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根D. 无法确定10.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A. B. C. D.第Ⅱ卷二、填空题(本题共5小题,每小题3分,共15分)11.一元二次方程x2﹣2x=0的两根分别为.12.若点M(3,a﹣2),N(b,a)关于原点对称,则ab=.13.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC=12,BC=13,则⊙O 的半径是.14.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是.15.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.(9分)如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标:(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.(9分)已知二次函数y=﹣x2+3x﹣(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.(9分)如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF 重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.20.(9分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=NE=3.(1)求证:BC是⊙O的切线;(2)若AE=4,求⊙O的直径AB的长度.21.(10分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?22.(10分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF ∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.23.(11分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.九年级数学·全解全析一、选择题(本题共10小题,每小题3分,共30分)1 2 3 4 5 6 7 8 9 10A DBCD B C B A C1.【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选A.2.【解析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:由⊙O的半径长为5,若点P在⊙O内,得0≤OP<5,故选:D.3.【解析】根据形如y=ax2+bx+c (a≠0)是二次函数,可得答案.【解答】解:由y=(m﹣2)x|m|+2是y关于x的二次函数,得|m|=2且m+2≠0.解得m=2.故选:B.4.【解析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,其中两根的和可以用m表示,而(x1﹣x2)2=(x1+x2)2﹣4x1•x2=1,代入即可得到关于m的方程,进而求解.【解答】解:由根与系数的关系可知:x1+x2=﹣m,x1•x2=1,又知x1﹣x2=1,则(x1﹣x2)2=1,即(x1+x2)2﹣4x1•x2=1,则(﹣m)2﹣4=1,解得:m=±.故本题选C.5.【解析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.6.【解析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.7.【解析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选C.8.【解析】设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,又x2+bx+c=0时,△=0,列式求解即可.【解答】解:抛物线y=x2+bx+c与x轴只有一个交点,∴△=b2﹣4ac=0,∴b2﹣4c=0,设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,可得:b2﹣4(c﹣m)=9,解得:m=.故答案选B.9.【解析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.=+的图象不经过第二象限,【详解】解:一次函数y kx bk∴>,0b≤,240∴∆=->,k b∴方程有两个不相等的实数根.故选A.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.10.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.二、填空题(本题共5小题,每小题3分,共15分。

人教版九年级数学上册期中试卷(含答案)

人教版九年级数学上册期中试卷(含答案)

人教版九年级数学上册期中试卷九年级数学满分:120分时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版九年级上21~24章。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

1.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点B按顺时针方向旋转90°,得到△A′BC′,将△A′BC′向下平移2个单位,得△A″B′C″,那么点C的对应点C″的坐标是()。

A.(3, 2) B.(3, 3) C.(4, 3) D.(4, 2)2.已知关于x的一元二次方程(k-1)x2+2kx+1=0根的情况是()。

A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.下面是小明同学用配方法解方程2x2-12x-1=0的过程:解:2x2-12x-1=0 (1)x2-6x=1 (2)x2-6x+9=1+9 (3)(x-3)2=10,x-3=±10 (4)∴x1=3+10,x2=3-10最开始出现错误的是()。

A.第1步B.第2步C.第3步D.第4步4.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为10厘米,AB=16厘米。

若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分5.已知抛物线y=ax2+bx+m(a≠0)是由抛物线y=x2-2x+m向左平移2个单位得到,若点A(-2, y1),B(-1, y2),C(1, y3)都在抛物线y=ax2+bx+m(a≠0)上,则y1, y2, y3之间的大小关系是()。

人教版九年级上期中测试数学试题及答案

人教版九年级上期中测试数学试题及答案

上学期期中测试九年级数学试题一、填空题(每题3分,共30分) 1=____ ____. 2=x 的取值范围是 . 32==,且ab <0,则a b -=___ ____.4.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是 .5.如图,△ABC 、△ACD 、△ADE 是三个全等的等边三角形,那么△ABC 绕着顶点A 沿着逆时针方向至少旋转度,才能与△ADE 完全重合.6.一个正边形绕它的中心至少要旋转 度,才能和原来五边形重合.7.已知方程x 2-7x +12=0的两根恰好是Rt△ABC 的两条边的长,则Rt△ABC •的第三边长为________.8.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.小明设四周垂下的边宽为x cm ,则应列方程为 . 9.如图,矩形ABCD 的边长1,AB AD ==ABCD 以B 为中心,按顺时针方向旋转到''''A B C D 的位置(点'A 落在对角线BD 上),则△'BDD 的形状为 . 10.某超市从我国西部某城市运进两种糖果,甲种a 千克,每千克x元,乙种b 千克,每千克y 元,如果把这两种糖果混合后销售,保本价是_________元/千克. 二、选择题(每题3分,共18分)11.若=-2)2(a 2-a ,则a 的取值范围是( )A .a =2B .a >2C .a ≥2D .a ≤2 12.在下面4个图案中,中心对称图形为( )ABC DE(第5题) ABCDD'C'(第9题)13.下列二次根式中,最简二次根式是( ) A .12 B .32+x C .23D .b a 2 14.如图,下列图形经过旋转后,与图(1)相同的是( )(第14题)图(1) A . B . C . D . 15.如果代数式4y 2-2y+5的值为7,那么代数式221y y -+的值等于( )A .2B .3C .-2D .-316.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a 为( )A .1B .-2C .1或-2D .2 三、解答题(共72分)17.(8分)计算(1);(2)2(1.18.(8分)解方程(1)2220x x --=; (2)22(38)(23)0x x +--=.19.(4分)先化简,再求值(6(4-,其中3,272x y ==.20.(4分)已知方程2(1)100x m x m +-+-=的一个根是3,求m 的值及方程的另一个根.21.(4分)如图,若将△ABC 的绕点C 顺时针旋转90°后得到△DEC ,则A 点的对应点D 的坐标是 ,B 点的对应点E 的坐标是 ,请画出旋转后的△DEC .(不要求写画法)22.(4分)如果关于x 的一元二次方程2(1)210m x x ---=有两个不相等的实数根,当m在它的取值范围内取最大整数时,求1014m m-的值.23.(6分)已知x 1,x 2是一元二次方程2x 2-2x +m +1=0的两个实数根. (1)求实数m 的取值范围;(2)如果x 1,x 2满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.24.(6分)如图,正方形ABCD 的对角线相交于点O ,点O 是正方形'''A B C O 的一个顶点.如果两个正方形的边长都等于2,那么正方形'''A B C O 绕O 点无论怎样转动,两个正方形重叠的部分的面积是一个定值,请你写出这定值,并证明你的结论.25.(6分)观察下列分母有理化的计算:, (454)51,34341,23231,12121-=+-=--=+-=+在计算结果中找出规律,用含字母n (n 表示大于0的自然数)表示; 再利用这一规律计算下列式子的值:1)++ 1)的值.ODBFEAA‘B’C‘26.(7分)有100•米长的篱笆材料,•想围成一个矩形露天仓库,•要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,•现请你设计矩形仓库的长和宽,使它符合要求.27.(7分)南通百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.元旦将至,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?28.(8分)等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积.(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.参考答案一、填空题1.2 2.x ≥5 3.7- 4.轴对称 5.120 6.72 7.5或8.(1602)(1002)1601002x x ++=⨯⨯ 9.等边三角形 10.ax bya b++ 二、选择题11.D 12.B 13.B 14.D 15.A 16.C 三、解答题17.(1)30-;(2)6-.(1)1211x x =+=-(2)121,11x x =-=-19.2.1,m =另一根为3- 21.(3,0),(2,2)D E 22.3 23.(1)m ≤12-;(2) 2-或1 24.14 25.2013 26. 27.减少库存,降价20元 28.(1)等边三角形;(2(3)4.。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);
(2)该扶贫单位想要建一个100m2的矩形养鸡场,这一想法能实现吗?请说明理由.
23.(10分)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中 ,
【详解】由y=(x﹣1)2﹣2,可知, ,则抛物线的开口向上,
A选项不正确,
对称轴为 ,
B选项不正确,
顶点坐标为 ,
C选项不正确,
令 ,则
与 轴的交点为:
D选项正确,符合题意;
故选D.
【点睛】本题考查了二次函数顶点式 的性质,掌握 的图象与性质是解题的关键.
5. C
【解析】
【分析】先根据三角形内角和求出∠A,根据平行线性质与旋转的性质及题意易得∠ACE的度数即可.
(1)求∠AOB的度数;
(2)求弦BC的长.
21.(8分)如图1,在圆O中,AB=AC,∠ACB=75°,点E在劣弧AC上运动,连接EC、BE,交AC于点F.
(1)求∠E的度数;
(2)当点E运动到使BE⊥AC时,如图2,连接AO并延长,交BE于点G,交BC于点D,交圆O于点M,求证:D为GM中点.
22.(8分)某扶贫单位为了提高贫困户 经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示),
【详解】解:过点 作 C⊥x轴于C,
∵点A 坐标为 ,∠ABO=90°,
∴ ,


∴ ,
由旋转的性质可得 ,
∴∠ OC=60°,
∴OC= Ocos60°=1, C= Osin60°= ,

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023-2024学年度第一学期期中练习卷九年级数学(本试卷共6页.全卷满分120分.时间为120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在括号内) 1.下列方程中,是一元二次方程的是( ) A . 2x -y =5B .x +1x=0C .5x 2=1D .y 2-x +3=02.一元二次方程x 2-4x =-4的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.已知1是关于x 的一元二次方程x 2+x +k 2-3k -6=0的一个实数根,则实数k 的值是( ) A .4或-1 B .-4或1C .-1D .4 4.甲、乙两名运动员在6次射击测试中的成绩如下表(单位:环):甲的成绩 6 7 8 8 9 9 乙的成绩596 ?910如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为?)可以是( ) A .6环 B .7环 C .8环 D .9环5.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是( ) A .70° B .120° C .140°D .160°6.如图,△ABC 内接于⊙O ,∠BAC =45°,AD ⊥BC ,垂足为D ,BD =6,DC =4. 则AB 的长( )A .6 2B .10C .12D .6 5 二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置.......上) 7.数据2、4、3、-4、1的极差是 .8.已知x 1,x 2是方程x 2-3x +2=0的实数根,则x 1+x 2- x 1x 2= .(第6题)(第5题)C9.已知⊙O 的半径为6cm ,点P 在⊙O 内,则线段OP 的长 6cm (填“<”、“=”或“>”).10.某公司决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目 创新能力综合知识语言表达测试成绩/分708090将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 分.11.如图,AB 是半圆的直径,P 是AB 延长线上一点,PC 切半圆于点C ,若∠CAB=31°,则∠P = °.12.在⊙O 中,弦AB 的长为4,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,OD ∶CD =3∶2,则⊙O 半径长 .13.一个圆锥的底面半径为3,母线长为4,其侧面积是 .14.某企业2020年盈利3000万元,2022年盈利3662万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程 .15.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE = °.16.如图,在等腰直角三角形ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长 .P(第11题)D EABC(第15题) FG H(第16题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)x 2+2x -3=0; (2)(x -2)2=3x -6. 18.(8分)关于x 的一元二次方程x 2-4x -k -6=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1 =3x 2,求k 的值.19.(6分)如图,在⊙O 中,AB 是非直径的弦,CD 是直径,且CD 平分AB ,并交AB 于点M ,求证:CD ⊥AB ,AC ⌒=BC ⌒,AD ⌒=BD ⌒.(第20题)20.(9分)甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是 分、 分; (2)利用方差判断这两名同学该项测试成绩的稳定性; (3)结合数据,请再写出一条与(1)(2)不同角度的结论.21.(6分)要建一个面积为150 m 2的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35 m .若墙足够长,则养鸡场的长与宽各为多少?(第19题)甲 乙(第21题)墙22.(8分)用直尺和圆规完成下列作图:(不写作法,保留作图的痕迹)(1)如图①,经过A 、B 、C 三点作⊙P ;(2)如图②,已知M 是直线l 外一点.作⊙O ,使⊙O 过M 点,且与直线l 相切.23.(8分)如图,在△ABC 中,AB =AC ,过点A ,C 的⊙O 与BC ,AB 分别交于点D ,E ,连接DE . (1)求证DB =DE ;(2)延长ED ,AC 相交于点P ,若∠P =33°,则∠A 的度数为▲________°.B(第23题)AED CO(第22题) BAClM①②24.(7分)某商店将进价为30元的商品按售价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得12000元的利润,且尽量减少库存,应涨价为多少元?25.(8分)如图,D为⊙O上一点,点C是直径BA延长线上的一点,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线BE交CD的延长线于点E.若BC=12,AC=4,求BE的长.C(第25题)26.(10分)如果关于x的一元二次方程ax2+bx+c=0满足a+b+c=0,那么称这样的方程为“美好方程”.例如,方程x2-4x+3=0,1-4+3=0,则这个方程就是“美好方程”.(1)下列方程是“美好方程”的是▲ ;①x2+2x-3=0 ②x2-3x=0 ③x2+1=0 ④x(x-1)=2(x-1)(2)求证:“美好方程”ax2+bx+c=0总有两个实数根;(3)若美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根,求证:a+c=2 b.27.(10分)(1)证明定理:圆内接四边形的对角互补.已知:如图①,四边形ABCD 内接于⊙O . 求证:∠A +∠C =∠B +∠D =180°.(2)逆命题证明:若四边形的一组对角∠A +∠C =180°,则这个四边形的4个顶点共圆(图②) 可以用反证法证明如下:在图②中,经过点A ,B ,D 画⊙O .假设点C 落在⊙O 外,BC 交⊙O 于点E ,连接DE , ∵四边形ABED 内接于⊙O∴可得 =180°, ∵∠A +∠C =180°,∴∠BED = ,与∠BED >∠C 得出矛盾; 同理点C 也不会落在⊙O 内, ∴A ,B ,C ,D 共圆.(3)结论运用:如图∠BAC =120°,线段AB =83,点D ,E 分别在射线AC 和线段AB 上运动,以DE 为边在∠BAC 内部作等边△DEF ,则BF 的最小值为 .②DCBAO①FCAEBD③2023~2024学年度第一学期期中练习卷 九年级数学数学试卷参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(每小题2分,共20分) 7.8 8. 1 9. <10.77 11.28° 12.5213.12π14.3000(1+x )2=366215.67.5°16.π三、解答题(本大题共11小题,共88分)17.(8分)(1)解:x 2+2x -3=0x 2+2x +1=3+1 ···················································································· 1分 (x +1)2=4 ····························································································· 2分 x +1=±2 ····························································································· 3分 ∴x 1=1, x 2=-3 ················································································ 4分 (2)解:(x -2)2-3(x -2)=0 ············································································ 5分(x -2) (x -2-3)=0 ··············································································· 6分 ∴x 1=2, x 2=5. ·················································································· 8分18.(8分)(1)∵x 2-4x -k -6=0有两个不相等的实数根 ∴(-4)2-4(-k -6) >0…………… …………… 2分 ∴k >-10………………………………………………4分(2)∵x 1,x 2是方程两个实数根∴x 1+x 2=4,x 1x 2=-k -6…………………………………………5分 ∵x 1 =3x 2∴4x 2=4∴x 2=1…………………………………………6分 ∴x 1 =3…………………………………7分 ∴x 1x 2=3=-k -6∴k =-9………………………………………8分题号 1 2 3 4 5 6 答案CAABCD19.(6分)证明:连接OA ,OB , ∵OA =OB,CD 平分AB∴∠AMO =∠BMO =90°,…………………2分 ∴CD ⊥AB ,…………………………3分 ∵CD 是直径,∴AC ⌒=BC ⌒,AD ⌒=BD ⌒. (6)20.(9分)(1)80,80 ··················································································· 2分 (2)方差分别是:s 2甲=(80-80)2+(90-80) 2+(80-80)2+(70-80)2+(80-80)25=40分2 ···································· 4分 s 2乙=(60-80)2+(70-80) 2+ (90-80)2+(80-80)2+(100-80)25=200分2 ································ 6分 由s 2甲<s 2乙可知,甲同学的成绩更加稳定. ·························································· 7分 (3)甲同学的成绩在70,80,90间上下波动,而乙的成绩从60分到100分,呈现上升趋势,越来越好,进步明显. ·················································································· 9分21.(6分)解 :设养鸡场的宽为x m ,则长为(35-2x )m ,由题意得: x (35-2x )=150…………………………………2分整理得:2x 2-35x +150=0…………………………………3分 解得:x 1=10,x 2=152.…………………………………4分当x 1=10时,35-2 x 1=15;当x 2=152时,35-2 x 2=20.……………………5分答: 养鸡场长为15 m ,宽为10 m 或长为20 m ,宽为152………………………6分 22.(本题8(1)(4分)(2)(lD(第20题)23.(本题8分)(1)∵AB=AC,∴∠B=∠C,又∵四边形AEDC为⊙O的内接四边形,∴∠AED+∠C=180°,∵∠BED+∠AED=180°,∴∠BED=∠C∴∠BED=∠B∴DB=DE.··························································································6分(2)38° ·······························································································8分24.(7分)解:设涨价x元,根据题意得:(50-30+x)(500-10x)=12000.…………………………3分解得:x1=10,x2=20. …………………………5分∵要尽量减少库存,∴x2=20(舍). …………………………6分答:涨价10元.…………………………7分25.(8分)证明:(1)连接OD.∴∠ADO=∠OAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠ABD+∠BAD=90°,∵∠CDA=∠CBD,∴∠CDO=∠CDA+∠ADO=90°,即CD⊥OD. ················································································ 3分分(43.∵BE2+BC2=EC∴x 2+122=(x+42.∴x=43.即BE的长为43.·········································································· 8分26.(10分)(1)①④…………………………………2分(2)证明:∵ax2+bx+c=0是“美好方程”∴a+b+c=0………………3分∴b=-a-c………………4分判别式b 2-4 ac=(-a-c)2-4 ac=c2-2 a c+a2=(c-a)2≥0………………5分∴“美好方程”ax2+bx+c=0总有两个实数根.………………6分(3)证明:方法一:∵美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根∴(c-a)2-4(b-c) (a-b) =0…………………………………7分∴c2-2 a c+a2-4 ab+4 b2+4 a c-4 b c=0∴c2+2 a c+a2-4 ab-4 b c+4 b2=0…………………………………8分∴(c+a)2-4(a+c) b+4 b2=0∴(c+a-2 b)2=0…………………………………9分∴c+a-2 b=0,即a+c=2 b.…………………………………10分方法二:将x=1代入美好方程(b-c)x2+(c-a)x+(a-b)=0左右两边,左边=右边从而得出x=1是方程的解。

24-25上海市九年级数学上学期期中模拟卷(沪教版九上第24~25章:相似三角形、锐角的三角比)考试

24-25上海市九年级数学上学期期中模拟卷(沪教版九上第24~25章:相似三角形、锐角的三角比)考试

2024-2025学年九年级数学上学期期中模拟卷(沪教版)(考试时间:100分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版九上第24~25章(相似三角形、锐角的三角比)。

5.难度系数:0.6。

第一部分(选择题 共24分)一、选择题(本大题共6小题,每小题4分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列两个图形一定相似的是( )A .两个等腰三角形B .两个等边三角形C .两个矩形D .两个梯形2.下列各组中的四条线段成比例的是( )A .2cm ,3cm ,4cm ,5cmB .2cm ,3cm ,4cm ,6cmC .1cm ,2cm ,3cm ,2cmD .3cm ,2cm ,6cm ,3cm3.若AB uuu r 是非零向量,则下列等式正确的是( )A .||||AB BA =uuu r uuu r B .||||0AB BA +=uuu r uuu rC .0AB BA +=uuu r uuu rD .AB BA=uuu r uuu r 4.已知D 、E 分别在ABC D 的BA 、CA 的延长线上,下列给出的条件中能判定//ED BC 的是( )A .AE AB AD AC =B .AB AC BD CE =C .DE AD BC AB =D .DE BD BC CE =5.许多大型商场购物中心为了引导人流前往目标楼层,会考虑使用“飞梯”(可以跨楼层抵达的超高超长的自动扶梯).上海大悦城的“飞梯”从3层直达7层,“飞梯”的截面如图,AB 的长为50米,AB 与AC 的夹角为24°,则高BC 是( )A .50sin 24°米B .50cos 24°米C .50sin 24°米D .50cos 24°米6.如图,在Rt ABC D 中,90ACB Ð=°,6AC =,8BC =,点M 是AB 上的一点,点N 是CB 上的一点,43BM CN =,当CAN Ð与CMB D 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或6第二部分(非选择题 共126分)二、填空题(本大题共12小题,每小题4分,满分48分)7.若370a b -=,则a b = .8.已知线段b 是线段a ,c 的比例中项,4a cm =,6b cm =,那么c = cm .9.已知ABC DEF D D ∽,如果它们对应高的比:3AM DN =,那么ABC D 和DEF D 的面积比是 .10.如图,为了测量铁塔AB 的高度,在离铁塔底部(点)60B 米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB = 米.11.如图,ABC D 在边长为1个单位的方格纸中,ABC D 的顶点在小正方形顶点位置,那么ABC Ð的正切值为 .12.已知2AP =,则点H 是AP 的黄金分割点()AH HP <,AH = .13.如图,在平行四边形ABCD 中,E 是BC 上一点,:2:3BE EC =,AE 交BD 于F ,则:BF FD 等于 .14.如图,小丽在大楼窗口A 处测得校园内旗杆底部C 的俯角为a 度,窗口离地面高度AB h =(米),那么旗杆底部与大楼的距离BC = 米(用a 和h 的式子表示).15.图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB = .16.如图,在ABC D 中,5AB =,4BC =,BD 平分ABC Ð交AC 于点D ,//DE BC 交AB 于点E ,连结CE交BD 于点F ,设AB a =uuu r r ,AD b =uuu r r ,用a r 、b r 的线性组合表示向量BF =uuu r .17.在△ABC 中有一点P ,满足PAB CBP ACP Ð=Ð=Ð,则点P 被称为△ABC 的“布卡洛点”,在△ABC 中,AB AC =,90BAC Ð=°,点P 是△ABC 的一个“布卡洛点”,则cot ACP Ð= .18.如图,在Rt ABC D 中,90BAC Ð=°,将ABC D 绕点C 旋转得到△A B C ¢¢,点A 的对应点A ¢恰好与ABCD 的重心重合,A B ¢¢与BC 相交于点E ,那么:BE CE 的值为 .三、解答题(本大题共7小题,满分78分.解答应写出文字说明,证明过程或演算步骤)19.(本题满分10分)计算:222sin 60cos 30cot 45tan 60°+-°°-°.20.(本题满分10分第(1)、(2)小题满分各5分)已知:25a b =.(1)求代数式423a b a b +-的值;(2)当23335a b +-=时,求a 、b 的值.21.(本题满分10分,第(1)、(2)小题满分各5分)如图,已知直线1l 、2l 、3l 分别截直线4l 于点A 、B 、C ,截直线5l 于点D 、E 、F ,且123////l l l .(1)如果3AB =,6BC =,4DE =,求EF 的长;(2)如果:2:3DE EF =,25AC =,求AB 的长.22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)在平行四边形ABCD 中,点E 是AD 的中点,BE 、AC 相交于点F .(1)设AB a =uuu r r ,AD b =uuu r r ,试用a r 、b r 表示EF uuu r ;(2)先化简,再求作:3(2)(2)2a b a b +-+r r (直接作在图中).23.(本题满分12分)如图①是某款智能磁吸键盘,如图②是平板吸附在该款设备上的照片,图③是图②的示意图.已知8BC cm =,20CD cm =,63BCD Ð=°.当AE 与BC 形成的ABC Ð为116°时,求DE的长.(参考数据:sin 630.90°»,cos630.45°»,cot 630.50°»;sin 530.80°»,cos530.60°»,cot 530.75)°»24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,在ABC D 中,点D 、E 分别在边AB 、AC 上,//DE BC ,BDC DEC Ð=Ð.求证:(1)ADE ACD D D ∽;(2)22CD AE BC AC=.25.(本题满分14分,第(1)小题满分4分,第(2)题满分5分,第(3)小题满分5分)已知ABC D 中,2ABC C Ð=Ð,BG 平分ABC Ð,8AB =,163AG =.点D 、E 分别是边BC 、AC 上的点(点D 不与点B 、C 重合),且ADE ABC Ð=Ð,AD 、BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE D 是以AD 为腰的等腰三角形,求BD 长.。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

数学试题 第1页(共10页) 数学试题 第2页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2022--2023学年度第一学期期中测试卷 九年级 数学(满分:120分 时间:100分钟)题号 一 二 三 总分 分数一、选择题 (共12题,每题3分,共36分) 1.如图所示图形不是中心对称图形的是( )A .B .C .D .2.下列一元二次方程中没有实数根的是 ( ) A .2240xx +-= B .2440xx -+=C .2250xx --= D .2340xx ++=3.将一元二次方程:2850x x --=化成2()x a b +=的形式正确的是( )A .2(4)21x += B .2(4)11x -= C .2()421x -= D .2(8)69x -=4.一元二次方程20x x -=的根是()A .1x=,21x= B .11x =,21x =- C .1x=,21x=-D .121x x ==5.将二次函数y=x 2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( ) A .()2y x 13=-+B .()2y x 13=++C .()2y x 13=-- D .()2y x 13=+-6.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( ) A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -= D .22000(1)2420x +=7.已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或48.已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m <2B .m≤2C .m <2且m≠1D .m≤2且m≠19.在同一直角坐标系中,一次函数y =ax +c 和二次函数2y ax c =+的图象大致为( )A .B .C .D .10.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5yx=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123yy y << B .312yy y << C .132yy y << D .231yy y <<11.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是( )数学试题第3页(共10页)数学试题第4页(共10页)……○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○………………A.34°B.36°C.38°D.40°12.如图,抛物线2y ax bx c=++的对称轴为直线1x=,与x轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是()A.0abc>B.20a b-=C.方程20ax bx c++=的两个根为3和1-D.当1x<时,y随x的增大而减小二、填空题(共6题,每题3分,共18分)13.当x_________时,3x-在实数范围内有意义.14.已知点A(a,3)与点B(4,b)关于原点对称,则a-b的值是_________.15.抛物线23(2)1y x=++的顶点坐标是__________.16.在直角坐标平面中,将抛物线22(1)y x=+先向上平移1个单位,再向右平移2个单位,那么平移后的抛物线表达式是____________. 17.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是_______cm.18.已知x2-4x-2=0,求3x2-12x+202的值_____________.三、解答题(共6题,共46分)19.(6分)先化简,再求值22113263x x xxx x++-⎛⎫÷-⎪--⎝⎭其中5x=20.(6分)解方程.(1)2210x x+-=;(2)22530x x-+=.21.(8分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE,(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.数学试题 第5页(共10页) 数学试题 第6页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(8分)如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出A 1的坐标; (2)请画出△ABC 关于原点对称的△A 2B 2C 2,并写出A 2的坐标; (3)请画出△ABC 以点B 为旋转中心,沿逆时针旋转90°后△A 3B 3C 3.23.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商品每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?(3)当这种商品售价定为多少元时,该商品所获的利润最大?最大利润是多少?24.(10分)如图,对称轴为直线x =﹣1的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标;(2)已知a =1,C 为抛物线与y 轴的交点:①若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标; ②在抛物线的对称轴上找出一点Q ,使BQ +CQ 的值最小,并求出点Q 的坐标.参考答案及评分标准一、选择题 (共12题,每题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCAADADBCCB数学试题 第7页(共10页) 数学试题 第8页(共10页)……○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○………………二、填空题 (共6题,每题3分,共18分) 13.3x ≥ 14.-1 15.(2,1)- 16.22(1)1y x =-+ 17.5 18.208三、解答题(共6题,共46分) 19.(6分) 解:22113263x x x x x x ++-⎛⎫÷- ⎪--⎝⎭ ()()()213132333x x x x x x x +-⎡⎤-=÷-⎢⎥---⎣⎦()()221313233x x x x x x +--+=÷-- ()()2213231x x x x +-=⋅-- ()()()()2132311x x x x x +-=⋅-+- ()121x x +=-当x =5时,原式=()516325184+===-. 2O.(6分) 解:(1)2210x x +-=,221x x ∴+=,则22111xx ++=+,即2(1)2x +=,12x ∴+=±,112x ∴=-+,212x =--;(2)22530x x -+=,(1)(23)0x x ∴--=,则10x -=或230x -=, 解得11x=,2 1.5x =.21.(8分)解:(1)∵△ABC 是等边三角形, ∴∠BAC =60°,AB =AC .∵线段AD 绕点A 顺时针旋转60°,得到线段AE , ∴∠DAE =60°,AE =AD . ∴∠BAD +∠EAB =∠BAD +∠DAC . ∴∠EAB =∠DAC . 在△EAB 和△DAC 中,AB ACEAB DAC AE AD ⎧⎪∠∠⎨⎪⎩===, ∴△EAB ≌△DAC . ∴∠AEB =∠ADC .(2)如图,∵∠DAE =60°,AE =AD , ∴△EAD 为等边三角形. ∴∠AED =60°,又∵∠AEB =∠ADC =105°. ∴∠BED =45°. 22.(8分)数学试题 第9页(共10页) 数学试题 第10页(共10页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________解(1)如图所示△A 1B 1C 1为所求作的图形,A 1(2,-4); (2)如图所示△A 2B 2C 2为所求作的图形,A 2(-2,-4); (3)如图所示△A 3B 3C 3为所求作的图形.23.(8分)解】(1)由题意得60×(360-280)=4800(元). 即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x 元,由题意得(360-x -280)(5x +60)=7200, 解得x 1=8,x 2=60.要更有利于减少库存,则x =60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元. (3)设总利润为W 元,则W =(360-x -280)(5x +60)=-5( x -34)2+10580, 360-34=326, 则当降价34元,即售价326元时,总利润最大为10580元. 24.(10分)解(1)∵抛物线的对称轴为直线x =﹣1,点A 的坐标为(﹣3,0), ∴点B 的坐标为(﹣1×2﹣(﹣3),0),即(1,0).(2)∵a =1,点A 的坐标为(﹣3,0),点B 的坐标为(1,0), ∴抛物线的解析式为y =(x +3)(x ﹣1)=x 2+2x ﹣3, 又∵点C 为抛物线与y 轴的交点, ∴点C 的坐标为(0,﹣3). ①设点P 的坐标为(x ,x 2+2x ﹣3), ∵S △POC =4S △BOC , ∴12|x |•OC =4×12OB •OC ,即|x |=4, ∴x =±4,∴点P 的坐标为(﹣4,5)或(4,21).②连接AC ,交抛物线对称轴于点Q ,此时BQ +CQ 的值最小,如图所示.设直线AC 的解析式为y =mx +n (m ≠0),将A (﹣3,0)、B (0,﹣3)代入y =mx +n ,得:303m n n -+=⎧⎨=-⎩,解得:13m n =-⎧⎨=-⎩, ∴直线AC 的解析式为y =﹣x ﹣3. 当x =﹣1时,y =﹣1×(﹣1)﹣3=﹣2, ∴点Q 的坐标为(﹣1,﹣2).。

24-25九年级数学期中模拟卷(考试版A4)【测试范围:苏科版九年级上册第1章-第4章】(扬州专用)

24-25九年级数学期中模拟卷(考试版A4)【测试范围:苏科版九年级上册第1章-第4章】(扬州专用)

2024-2025学年九年级数学上学期期中模拟卷(扬州专用)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:苏科版九年级上册第1章-第4章。

5.难度系数:0.8。

第Ⅰ卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在平面内O e 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与O e 的位置关系为( )A .圆内B .圆外C .圆上D .无法确定2.若3x =-是一元二次方程20x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .2,6-B .―2,6C .4,12-D .4-,123.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是( )A .众数是6吨B .平均数是5吨C .中位数5.5吨D .方差是1.24.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围是( )A .1k > B .0k ¹ C .1k < D .1k <且0k ¹5.若m n ,是方程2320240x x --=的两个实数根,则代数式22m m n -+的值等于( )A .2029B .2028C .2027D .20266.如图,一枚飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是( )A .12B .38C .14D .137.如图,四边形ABCD 内接于O e ,若140AOC Ð=°,则ABC Ð=( )A .110°B .120°C .130°D .140°8.“已知MON Ð,点A ,B 是ON 边上不重合的两个定点,点C 是OM 边上的一个动点,当ABC V 的外接圆与边OM 相切于点C 时,ACB Ð的值最大.”这是由德国数学家米勒提出的最大角问题,我们称之为米勒定理.已知矩形ABCD ,4=AD ,点E 是射线AD 上一点,点F 是射线AB 上的一动点.当12AE =时,则DFE Ð的值最大为( )A .30°B .45°C .60°D .90°第Ⅱ卷二、填空题:本题共10小题,每小题3分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上学期期中数学测试题
(检测时间:120分钟满分:120分)
第Ⅰ卷(选择题,共30分)
一、选择题(3分×10=30分)
1.下列方程,是一元二次方程的是()
①3x2+x=20,②2x2-3xy+4=0,③x2-1
x
=4,④x2=0,⑤x2-
3
x
+3=0
A.①②B.①②④⑤C.①③④D.①④⑤
2=x的取值范围是()
A.x<3B.x≤3C.0≤x<3D.x≥0
3,则x的取值范围是()
A.x≥7B.x≤7C.x>7D.x<7
4.当x)A.29B.16C.13D.3
5.(08桂林市)在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。

市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()
12 3311
A、 B、 C、 D、
69
6.如果代数式x2+4x+4的值是16,则x的值一定是()
A.-2B.2C.2,-6D.30,-34
7.若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()
A.1B.-1C.2D.-2
8.从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为80cm2,•则原来正方形的面积为()
A.100cm2B.121cm2C.144cm2D.169cm2
9.下图中是中心对称图形的是()
A B.C.D.
10.两圆的圆心都在x轴上,且两圆相交于A,B两点,点A的坐标是(3,2),那么点B的坐标
为()
A 、(–3,2)
B 、(3,–2)
C 、(–3,–2)
D 、(3,0).
第Ⅱ卷(非选择题部分,共90分) 二、填空题(3分×10=30分)
11=2,且ab<0,则a-b=_______.
12.
13.“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小
从锯锯之,深1寸,锯道长1尺,问径几何?” 用数学语言可表述为:“如图2,CD 为⊙O 的直径,弦AB ⊥CD 于E , CE=1寸,AB =10寸,则直径CD 的长为___.
14a 和b 之间,且<b ,
那么a 、b 的值分别是______.
15.x 2-10x+________=(x-________)2

16.若关于x 的一元二次方程(m+3)x 2+5x+m 2+2m-3=0有一个根为0,则m=______,•另一根为________.
17.国旗上的五角星是旋转对称图形,它的旋转中心是 ,它的旋转角度是 (填最小度数).
18.已知方程x 2
-7x+12=0的两根恰好是Rt △ABC 的两条边的长,则Rt △ABC •的第三边长为________. 19.下列图形既是轴对称图形又是中心对称图形的有____个 (1)射线;(2)角;(3)线段;(4)直线;(5)正三角形;(6)圆.
20.某超市从我国西部某城市运进两种糖果,甲种a 千克,每千克x 元,乙种b 千克,每千克y 元,如果把这两种糖果混合后销售,保本价是_________元/千克. 三、解答题(共60分)
21.计算(每小题4分,共8分)
(1)
12
-
34
;(2)+
14
22.解方程(8分)(x 2+x )2+(x 2+x )=6。

23.(9分)已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值. (1)方程有两个相等的实数根;(2)方程有两个相反的实数根;
(3)方程的一个根为0. 24.(8分)北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎 迎、妮妮”。

现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子。

(1)小玲从盒子中任取一张,取到印有:“欢欢“图案的卡片的机会是多少?(2)小玲从盒子中任取一张卡片,记下名字后放回,再从盒子中任取第二张卡片,记下名字。

用列表或画树状图列出小玲取到的卡片的所有可能情况,并求出小玲两次都取到印有“欢欢”图案的卡片的机会。

25.(6分)某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会? 26.(9分)如图,AB 是⊙O 的直径,CB 、CE 分别切⊙O 于点B 、D, CE 与BA 的延长线交于点E,连结OC 、OD .
⑴求证:△OBC ≌△ODC;
⑵已知DE=a,AE=b,BC=c,请你思考后, 选用以上适当的数,设计出计算⊙O 半径r 的一种方案: ①你选用的已知数是 ; ②写出求解过程.(结果用字母表示)
27.(12分)“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况. (1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出_______趋势;
(2)根据图中所给数据,求我国从1998年到2002年教育经费的年平均数;
(3)如果我国的教育经费从2002年的5480亿元,增加到2004
年7891亿元,那么这两年的教育经费平均年增长率为多少?(结果精确到0.01

试卷(一)参考答案:
1.D ;提示:一元二次方程的是①④⑤ 2.C ;提示:由题意得x ≥0,3-x <0,解得0≤x<3 3.B ;提示:7-x ≥0
4.D ;提
示:
+是一个常数,则有16-x
≥0,x-13≥0,
+
5.D 6.C ;提示:由x 2
+4x+4=16,解得x=2,x=-6 7.B ;提示:由c (c ≠0)为关于x 的一元二次方程x 2
+bx+c=0的根,得c 2
+bc+c=0,因为c ≠0,∴c+b+1=0, ∴b+c=-1 8.A ;提示:设正方形的边长为x ,则x 2-2x=80,解之即可 9.B ;提示:根据中心对称图形的特征 10.B ;由对称性知(3,-2).
11.-7;提示:a=±3,b=4,ab<0,∴a=-3,a-b=-3-4=-7
12.;

13.26
寸;提示:根据垂径定理 14.a=3,b=4 15.25,5 16.1,-
54
17.五角星的中心点,72°
18.5 19.线段和圆 20.
ax by a b
++
21.(1)
114
14

(2)43
+
112
22.设x 2
+x=y ,则y 2
+y=6,y 1=-•3,y 2=2,则x 2
+x=-3无解,x 2
+x=2,x 1=-2,x 2=1. 23.△=16m 2-8(m+1)(3m-2)=-8m 2-8m+16, (1)方程有两个相等的实数根,
∴△=0,即-8m 2-8m+16=0,求得m 1=-2,m 2=1; (2)因为方程有两个相等的实数根, 所以两根之和为0且△≥0,则-42(1)
m m +=0,求得m=0;
(3)∵方程有一根为0,∴3m-2=0得m=23

24.1)三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片,即有三种等可能的结果,小玲从盒子中任取一张,取到印有:“欢欢“图案的卡片的机会是3
1。

(2)画树状图如下:
故小玲两次都取到印有“欢欢”图案的卡片的机会是
91。

25.9个
26.⑴利用切线的性质联想到三角形全等的条件就容易证明. 证明:∵CD 、CB 是⊙O 的切线,∴∠ODC=∠OBC=90°, OD=OB,OC= OC,
∴△OBC ≌△ODC(HL);
⑵注意分类,由于有切线,联想到勾股定理、切割线定理可求⊙O 半径r 选择a 、b 、c,或其中2个均可;
①若选择a 、b:由切割线定理:a 2
=b(b+2r) ,得r=22
2a b b
-.
②若选择a 、b 、c:
在Rt △EBC 中,由勾股定理:(b+2r)2+c 2=(a+c)2,得2
.
③若选择a 、c:需综合运用以上的多种方法,得2a c
+④若选择b 、c,则有关系式2r 3+br 2-bc 2=0.
27.(1)由图可见,1998~2002年的五年内,我国教育经费投入呈现出逐年增加的趋势;(2)我国从1998
年到2002年教育经费的平均数为:
29493349384946385480
5
++++=4053(亿元);
(3)设从2002年到2004年这两年的教育经费平均年增长率为x ,
则由题意,得5480(1+x 2
)=7891,解之得x ≈20%.。

相关文档
最新文档