光谱分析 1概述
激光拉曼光谱-1详解
2021/4/1
28
Raman and Infrared Spectra of H-C≡C-H
Asymmetric C-H Stretch
Symmetric C-H Stretch C≡C Stretch
2021/4/1
29
2941,2927cm-1 ASCH2 2854cm-1 SCH2 1444,1267 cm-1 CH2
Stocks lines
anti-Stockes lines
2021/4/1
12
3.拉曼光谱的经典解释 拉曼光谱与分子极化率的关系
分子在静电场E中,极化感应偶极距p
p= αE α为极化率
诱导偶极矩与外电场的强度之比为分子极化率 分子中两原子距离最大时,α也最大 拉曼散射强度与极化率成正比例关系
32
Infrared and Raman Spectrum of CCl4
Infrared spectrum
776 cm-1
314 cm-1
Raman spectrum
463 cm-1 219 cm-1
2021/4/1
33
红外光谱:基团; 拉曼光谱:分子骨架测定;
2021/4/1
34
2.无机化学中的应用
延德尔散射 弹性散射
瑞利散射
I与λ无关 I正比于1/λ4
2021/4/1
8
2.基本理论
2021/4/1
λ
λ
拉 曼
增减散 大小射
变
λ
样
透过光λ不变
品
池
瑞 利
散
射
λ
不 变
9
最低激发 E1 电子能级 E0
激发虚态
光谱分析知识点
光谱分析知识点光谱分析是一种用于研究物质结构和性质的重要方法。
它通过测量物质与电磁辐射的相互作用,可以获得关于物质的信息。
以下是光谱分析的主要知识点:1. 光谱的定义:光谱是电磁辐射在不同波长范围内的分布情况。
根据不同的波长,光谱可以分为可见光谱、紫外光谱、红外光谱等。
光谱的定义:光谱是电磁辐射在不同波长范围内的分布情况。
根据不同的波长,光谱可以分为可见光谱、紫外光谱、红外光谱等。
2. 吸收光谱:吸收光谱是测量物质对不同波长的光的吸收程度。
通过分析吸收光谱,可以确定物质的结构和化学成分。
吸收光谱:吸收光谱是测量物质对不同波长的光的吸收程度。
通过分析吸收光谱,可以确定物质的结构和化学成分。
3. 发射光谱:发射光谱是物质在受激情况下发射出的光的分布情况。
发射光谱可以用于确定物质的元素组成和能级结构。
发射光谱:发射光谱是物质在受激情况下发射出的光的分布情况。
发射光谱可以用于确定物质的元素组成和能级结构。
4. 傅立叶变换红外光谱:傅立叶变换红外光谱(FT-IR)是一种常用的光谱分析技术。
它利用红外光谱的吸收特点,可以快速获取物质的结构和功能信息。
傅立叶变换红外光谱:傅立叶变换红外光谱(FT-IR)是一种常用的光谱分析技术。
它利用红外光谱的吸收特点,可以快速获取物质的结构和功能信息。
5. 拉曼光谱:拉曼光谱是一种通过测量物质对激光散射的光谱进行分析的方法。
通过分析拉曼光谱,可以研究物质的分子振动、晶格振动等信息。
拉曼光谱:拉曼光谱是一种通过测量物质对激光散射的光谱进行分析的方法。
通过分析拉曼光谱,可以研究物质的分子振动、晶格振动等信息。
6. 质谱:质谱是一种通过对物质进行电离和分子碎裂并测量其离子质量比进行分析的技术。
质谱可用于确定物质的分子结构和分子量。
质谱:质谱是一种通过对物质进行电离和分子碎裂并测量其离子质量比进行分析的技术。
质谱可用于确定物质的分子结构和分子量。
7. 核磁共振光谱:核磁共振光谱(NMR)是一种根据原子核在磁场中的共振吸收特性来分析物质的方法。
光谱分析(1IR)
光谱分析(1IR)光谱分析(1IR)光谱分析是一种应用广泛的分析技术,其中红外光谱(IR)是非常重要的一种。
本文将介绍红外光谱分析的基本原理、仪器设备以及在不同领域的应用。
一、基本原理红外光谱分析基于物质分子的振动和转动引起的红外辐射吸收现象。
每个物质分子都有特定的振动和转动模式,而这些模式与特定波数的红外辐射相匹配。
通过观察物质在红外光谱范围内的吸收峰,可以确定物质的组成和结构。
红外光谱分析的主要原理包括以下几点:1. 物质分子的振动:红外光通过作用于物质分子上的对应光谱区域,使分子从低能级跃迁到高能级,从而被吸收;2. 传统的红外光谱区域:传统红外光谱范围为4000-400 cm-1,主要包括近红外、中红外和远红外;3. 可见于红外光谱中的吸收峰:吸收峰的位置和强度可以提供物质的结构信息;4. 红外光谱的解析:红外光谱可以通过谱图的解析,确定物质的成分与结构。
二、仪器设备红外光谱分析通常使用一台红外光谱仪器,该仪器包括以下主要部件:1. 光源:通常使用钨灯、硝酸纤维电炉或氨鉍灯作为红外辐射的光源;2. 分光器:将红外辐射耦合到样品中;3. 样品室:用于容纳样品,保持其稳定温度;4. 探测器:将经过样品的红外辐射转换成电信号;5. 计算机系统:用于采集、处理和解析红外光谱的数据。
三、应用领域红外光谱分析在许多领域都有广泛的应用,下面列举了几个典型的应用领域:1. 化学分析:红外光谱可以用于分析化学品的组成、结构和纯度,如有机化合物、聚合物和无机物质等;2. 药物研发:红外光谱分析可以用于药物的质量控制和结构鉴定;3. 食品检测:红外光谱可以用于食品中添加剂、污染物和成分的检测;4. 环境监测:红外光谱可用于检测空气中的污染物、水质分析和土壤分析等;5. 生命科学:红外光谱在生物医学、生物化学和生物物理学等领域中具有重要应用,如蛋白质结构分析、疾病诊断和基因组研究等。
结论红外光谱分析作为一种快速、非破坏性的分析技术,在科学研究和工业生产中有着广泛的应用。
第二章 可见紫外吸收光谱分析1
由于玻璃可吸收紫外光,所以玻璃棱镜只能用于
用于可见光域内。 石英棱镜可使用的波长范围较宽,可从185- 4000nm,即可用于紫外、可见和近红外三个光域。
光栅是利用光的衍射与干涉作用制成的。
它可用于紫外、可见及红外光域,而且
在整个波长区具有良好的、几乎均匀一 致的分辨能力。
它具有色散波长范围宽、分辨本领高、 成本低、便于保存和易于制备等优点。 缺点是各级光谱会重叠而产生干扰。
它是分光光度法定量分析的依据。
吸光系数
朗伯-比耳定律中,当c以克/升,液层厚 度b以厘米表示时,常数K以a表示,称 为吸光系数。 a的单位为升/克.厘米。 朗伯-比耳定律 :A=abc
摩尔吸光系数
朗伯-比耳定律中,浓度用摩尔/升,液 层厚度b用厘米为单位表示,则K用另一 符号ε来表示。 ε称为摩尔吸光系数(或克分子消光系数), 单位为升/摩尔.厘米。 它表示物质的浓度为1摩尔/升,液层厚 度为1厘米时溶液的吸光度。 朗伯-比耳定律 : A=εbc
72型 721型
751型 WFD-8型
760 40000
~
硅碳棒或 辉光灯
岩盐或萤 石棱镜
WFD-3型 WFD-7型
一、组成部件
光源
单色器
样品池
记录装置
检测器
(一)光源
对光源的基本要求是应在仪器操作所 需的光谱区域内能够发射连续辐射,有足 够的辐射强度和良好的稳定性,而且辐射 能量随波长的变化应尽可能小。 常用的光源有热辐射光源(如钨丝灯 和卤钨灯)和气体放电光源(如氢灯和氘 灯)两类。
1)非单色光的影响: 光吸收定律的重要前提是入射光
光谱分析基础知识
光谱分析基础知识光谱分析是一种常见的科学分析技术,通过研究物质与光的相互作用,可以获取物质的结构、组成和性质等信息。
光谱分析主要利用物质对不同波长、频率和能量的光有不同的吸收、散射、发射等现象,从而通过光谱的特征来确定物质的性质。
光谱分析的基础知识主要包括光的性质和光谱的特征。
首先,光的性质是光谱分析的基础。
光是一种电磁波,具有粒子性和波动性的双重性质。
光波具有特定的频率、波长和能量。
频率是指光波振动的次数,波长是指光波在空间中传播的距离。
频率与波长成反比关系,即频率越高,波长越短。
能量与频率成正比关系,即频率越高,能量越大。
光谱分析主要利用这些性质来研究物质与光的相互作用。
其次,光谱的特征是光谱分析的关键。
光谱是指将光按照其频率或波长进行分解,并记录下不同频率或波长的强度变化。
根据不同的物质和光谱类型,光谱可以分为连续谱、线谱和带谱三种。
连续谱是指由不同波长的连续光强度构成的光谱。
一个常见的连续谱是白炽灯发出的光,它包含了从紫外线到红外线的所有波长范围内的光。
连续谱的特点是波长范围广,且强度连续变化。
线谱是指由不连续的亮线组成的光谱。
线谱的特点是波长有限,强度集中在几个特定的波长上。
每个物质都有其独特的线谱,可以用于物质的鉴定和定量分析。
线谱的产生主要是由于物质在光谱仪中吸收、散射和发射光的特定波长。
带谱是介于连续谱和线谱之间的光谱。
带谱的特点是波长范围广,但在一些波长范围内具有一定的宽度。
带谱通常由分子或固体物质引起,故其带宽度可用于分析物质的结构和性质。
光谱分析有许多具体的分析方法,包括吸收光谱、发射光谱、拉曼光谱、荧光光谱、紫外-可见吸收光谱等。
每种方法都有其独特的应用范围和特点。
例如,吸收光谱可以用于测定物质的浓度和反应机理,发射光谱可以用于测定物质中其中一种元素的含量,拉曼光谱可以用于研究物质的结构和分子振动等。
这些不同的光谱方法在实际应用中常常相互结合使用,以提高分析的准确性和可靠性。
第三章 红外吸收光谱分析-1
波长和波数
红外区光谱用波长和波数( 红外区光谱用波长和波数(wave number) 波长和波数 ) 来表征 ; 波长多用m做单位; 做单位; 波长多用 做单位 波数: 表示, 波数:以σ表示,定义为波长的倒数,单位 表示 定义为波长的倒数, cm-1,其物理意义是每厘米长光波中波的数 目. σ=1/λ(cm)=104/λ(m)=υ/c 用波数表示频率的好处是比用频率要方便, 用波数表示频率的好处是比用频率要方便,且 数值小. 数值小. 一般用透光率 波数曲线或透光度-波长曲线 透光率-波数曲线 波长曲线来 一般用透光率 波数曲线或透光度 波长曲线来 描述红外吸收光谱. 描述红外吸收光谱.
第三章 红外吸收光谱分析
3.2 基本原理 3.2.1 产生红外吸收的条件
产生红外吸收的条件
1) 辐射光子具有的能量与发生振动 跃迁所需的跃迁能量相等. 跃迁所需的跃迁能量相等. 2)辐射与物质之间有耦合作用. )辐射与物质之间有耦合作用.
条件一: 条件一:辐射光子的能量应与振动跃 迁所需能量相等
红外光谱的特点-1 红外光谱的特点
紫外,可见吸收光谱常用于研究不饱和 紫外,可见吸收光谱常用于研究不饱和 有机物, 有机物,特别是具有共轭体系的有机化 合物; 红外光谱法主要研究在振动中 合物;而红外光谱法主要研究在振动中 伴随有偶极矩变化的化合物. 伴随有偶极矩变化的化合物. 因此,除了单原子和同核分子如Ne, , 因此,除了单原子和同核分子如 ,He, O2,H2等之外,几乎所有的有机化合物 等之外, 在红外光谱区均有吸收. 在红外光谱区均有吸收. 一般只要结构上不同, 一般只要结构上不同,就会有不同的红 外光谱图. 外光谱图.
红外光谱的特点-2 红外光谱的特点
红外谱图吸收带的位置与吸收谱带的强 红外谱图吸收带的位置与吸收谱带的强 度反映了分子结构上的特点, 度反映了分子结构上的特点,可以用来 定基团,定结构; 定基团,定结构; 谱带的强度与分子组成以及含量有关 与分子组成以及含量有关, 谱带的强度与分子组成以及含量有关, 可以用来进行定量分析及纯度的检查; 可以用来进行定量分析及纯度的检查; 红外光谱分析特征性强,气体, 红外光谱分析特征性强,气体,液体和 固体样品均可以测定,并且具有用量少, 固体样品均可以测定,并且具有用量少, 分析速度快和不破坏样品等特点. 分析速度快和不破坏样品等特点.
光谱的分析原理及应用
光谱的分析原理及应用光谱分析是一种通过观察物体发射或吸收光的特定波长和强度来确定其组成和性质的方法。
基于不同的原理和应用,光谱分析可以分为多种类型。
原子吸收光谱(Atomic Absorption Spectroscopy, AAS)是一种常用的光谱分析方法。
它利用化学元素在特定波长下吸收光的规律,通过测量样品吸收光的强度来确定元素的存在和浓度。
原子吸收光谱广泛应用于环境监测、食品安全等领域。
紫外-可见吸收光谱(Ultraviolet-Visible Absorption Spectroscopy, UV-Vis)是一种用于分析有机物和无机化合物的常见方法。
UV-Vis光谱通过测量样品对紫外和可见光的吸收程度,可以确定其化学结构和浓度。
此技术广泛应用于生物化学、药学、环境科学等领域。
红外光谱(Infrared Spectroscopy, IR)是一种用于分析物质结构和化学键的方法。
红外光谱通过测量样品对红外光的吸收能谱,可以获得物质分子的信息,如官能团的存在和化学键的类型。
红外光谱在有机化学、医药研究等领域具有广泛应用。
拉曼光谱(Raman Spectroscopy)是一种通过测量样品散射光的频移来分析其结构和组成的技术。
拉曼光谱具有高灵敏度和非破坏性的特点,可被应用于材料科学、药物分析等领域。
核磁共振光谱(Nuclear Magnetic Resonance Spectroscopy, NMR)是一种常用的结构分析方法。
核磁共振光谱通过测量原子核在外加磁场下的共振行为,可以获得物质的结构和化学环境信息。
核磁共振光谱广泛应用于有机化学、生化学和医药领域。
光谱分析在许多领域中具有重要的应用价值,如环境监测、食品安全、药物研发、材料科学等。
通过光谱分析技术,可以确定物质的组成、浓度、结构以及相互作用等信息,为科学研究和工业生产提供了可靠的数据支持。
材料现代分析测试方法1-1
L-S耦合
称总自旋量子数,表征 的大小。 称总自旋量子数,表征PS的大小。 称总(轨道)角量子数,表征P 的大小。 称总(轨道)角量子数,表征 L的大小。 称内量子数(或总量子数),表征P 的大小, ),表征 称内量子数(或总量子数),表征 J的大小, 为正整数或半整数,取值为: 为正整数或半整数,取值为:L+S,L+S-1, , , L+S-2,…,│L-S│, , , , 个值; 若L≥S,则J有2S+1个值; , 有 个值 个值。 若L<S,则J有2L+1个值。 < , 有 个值 MJ 称总磁量子数,表征 J沿外磁场方向分量大小, 称总磁量子数,表征P 沿外磁场方向分量大小, MJ 取值为:0,±1,±2,…,±J(当J为整数时) 取值为: , 为整数时) , , , ( 为整数时 或±1/2,±3/2,…,±J(当J为半整数时)。 , , , ( 为半整数时)。 为半整数时 S L J J
L-S耦合可记为: 耦合可记为:
)(l )=(S, )= )=J (s1,s2, …)( 1,l2, …)=( ,L)= )( )=( 将各电子自旋角动量( 将各电子自旋角动量(Ps1,Ps2,…)与各电 ) 子轨道角动量( 子轨道角动量 ( Pl1 , Pl1 , …) 分别加和 ( 矢量 ) 分别加和( 获得原子的总自旋角动量 和),获得原子的总自旋角动量PS和总轨道角动量 PL,然后再由PS与PL合成总(自旋-轨道)角动量PJ 合成总 自旋-轨道) (即P J=P S+P L)。 耦合, 按L-S耦合,得到S、L、J、MJ等表征原子运动 状态的原子量子数。 状态的原子量子数。
或任意正整数; 1)主量子数变化Δn=0或任意正整数; 主量子数变化Δ 2)总角量子数变化ΔL=±1; 总角量子数变化Δ 3)内量子数变化ΔJ=0,±1(但J=0时,ΔJ=0的跃 内量子数变化Δ 迁是禁阻的); 迁是禁阻的); 4)总自旋量子数的变化ΔS=0。 总自旋量子数的变化Δ
紫外吸收光谱分析1
n → π*跃迁:兰移; λ↓ ;ε↑ 兰移; 兰移
π → π*跃迁:红移; λ↑;ε↓ λ↑;
21:29:56
1
1:正己烷 2:水 2
250 300 异丙叉丙酮 非极性 → 极性 兰移; 兰移 极性溶剂使精细结构消失; n → π*跃迁:兰移; λ↓ ;ε↑ π → π*跃迁:红移; λ↑;ε↓ λ↑;
[Fe3+CNS-]2+
电子接受体
电子给予体
21:29:56
分子内氧化还原反应; 分子内氧化还原反应 特点:ε > 104 ,吸收峰在紫外区 Fe2+与邻菲罗啉配合物的紫外吸收光谱属于此。
2.配体场跃迁 配体场跃迁 d-d电子跃迁和 f - f 电子跃迁 电子跃迁和
在配体的作用下,过渡金属离子 的d轨道和镧系、锕系的f 轨道裂分, 吸收辐射后,产生d一d、 f 一f 跃迁; 一 必须在配体的配位场作用下才可能 产生也称配位场跃迁 配位场跃迁; 配位场跃迁 特点:ε〈 100,吸收峰在可见区
第三节
无机化合物的紫外可见吸收光谱
电子跃迁形式: 电子跃迁形式:电荷迁移跃迁与配位场跃迁 1.电荷迁移跃迁 1.电荷迁移跃迁
吸收光辐射后,分子中原定域在配位体L轨道的电子转移 到金属M轨道上,或按相反方向转移,所产生的吸收光谱称 为荷移光谱 荷移光谱。 荷移光谱 Mn+—Lbhν hν M(n-1) +—L(b-1) [Fe2+CNS]2+
21:29:56
21:29:56
λmax(正己烷) λmax(氯仿) λmax(甲醇) λmax(水)
π→π n→π
230 329
21:29:56
238 315
光谱分析(1IR)
6
电磁波谱
7
原子能态-原子结构与电子量子数
• 核外电子的运动状态由n(主量子数)、l(角量子数)、m(磁 量子数)、s(自旋量子数)和ms(自旋磁量子数)表征。5个量 子数也相应表征了电子的能量状态(能级结构)。
n、l、m对核外电子状态的表征意义
8
原子的电子能级示意图
9
原子能态与原子量子数
• 多电子原子中,存在着电子与电子相互作用等复 杂情况,量子理论将这些复杂作用分解为:
例如
5m
10 4 2000cm 1 5
38
红外光谱的历史
• • • • • •
1800年英国科学家赫谢尔发现红外线 1936年世界第一台棱镜分光单光束红外光谱仪制成 1946年制成双光束红外光谱仪 60年代制成以光栅为色散元件的第二代红外光谱仪 70年代制成傅立叶变换红外光谱仪,使扫描速度大 大提高 70年代末,出现了激光红外光谱仪,共聚焦显微红 外光谱仪等
– 轨道-轨道相互作用:各电子轨道角动量之间的作用 – 自旋-自旋相互作用:各电子自旋角动量之间的作用 – 自旋-轨道相互作用:指电子自旋角动量与其轨道角动 量的作用,单电子原子中也存在此作用 – 并将轨道-轨道及自旋-自旋作用合称为剩余相互作用, 进而通过对各角动量进行加和组合的过程(称为偶合) 获得表征原子整体运动状态与能态的原子量子数。
2 频率(v)
单位时间内通过传播方向某一点的波峰或波谷的数 目,即单位时间内电磁场振动的次数称为频率,单 位为赫兹(Hz,即s-1)。
5
3 波数(σ)
每厘米长度内所含的波长的数目,它是波长的倒数,即 σ =1 / λ 波数单位常用cm-1来表示。
4 传播速度 辐射传播速度υ等于频率v乘以波长λ,即υ=v λ。在 真空中辐射传播速度与频率无关,并达到最大数值, 用c表示,c值准确测定为2.99792×1010cm/s
原子吸收光谱分析-1
1965年上海复旦大学陈树乔等组装成功了实 验室型原子吸收光谱仪器,用于教学实验。 1969年北京矿冶研究院、北京有色研究院与 北京科学仪器厂合作研制了WFD-Y1型单光束火 焰原子吸收分光光度计。 1970年WFD-Y1仪器全体设计装调人员转入 北京第二光学仪器厂(今北京瑞利仪器公司的前 身),并于当年实现了我国第一台火焰原子吸收 分光光度计上市。 1971年地质部地矿局南京仪器室与地质部地 矿所8室合作生产了单光束火焰原子吸收分光光 度计。 2013-5-13 17 原子吸收光谱分析
2013-5-13 原子吸收光谱分析 6
2.原子吸收光谱分析在国外的发展
尽管早在两百多年前就已经发现了原子吸收 现象,但在之后的一百五十年间,这种发现仅仅 应用于天文观察领域内,在分析化学领域中一直 未能得到重视和应用,其根本原因是仪器制造上 的困难。但1939年伍德森(T. T. Woodson)还是利 用原子吸收现象测定了空气中汞的含量。 上个世纪初,原子结构和原子光谱理论的建 立,使得火焰原子发射光谱分析得到了迅速的发 展,制造了大量的原子发射光谱仪器,测定了大 量的样品中碱金属和碱土金属的含量。这些原子 发射光谱仪的出现尤其是原子光谱理论的建立, 促进了原子吸收理论的发展。
2013-5-13 原子吸收光谱分析 10
1959年,里沃夫(Б .В .Л ь в о в )提出 了电加热装置,将样品溶液在石墨坩埚内快速加 热汽化,再通入预先加热到高温的石墨管中,大 大延长了原子在测定区域内的停留时间,其灵敏 度大大提高,可达10-12~10-14g。为表彰里沃夫对 开创和发展石墨炉原子吸收光谱分析法方面所做 出的杰出贡献, 1997年在澳大利亚墨尔本召开的 第30届国际光谱学大会上授予他第二届CSI奖。 1968年,马斯曼(H. Massmann)对里沃夫提 出的电加热装置进行了重大改进,采用半封闭条 件下使样品溶液在石墨管内低电压大电流直接加 热,分阶段将石墨炉温度升至原子化温度,大大 简化了石墨炉。
光谱分析(1IR)
光谱分析(1IR)光谱分析(IR)光谱分析是一种科学研究和应用中常用的技术,通过测量物质与电磁辐射之间的相互作用,可以了解物质的结构和组成。
其中,红外光谱分析(IR)是一种常见且重要的光谱分析方法。
本文将探讨光谱分析的原理、应用以及未来的发展方向。
一、原理红外光谱是指位于可见光波长范围之外、偏离可见光谱段的电磁波。
物质与红外光谱的相互作用是通过不同分子振动和转动引起的。
物质的分子振动和转动会吸收特定的红外光谱,形成特征光谱图案。
红外光谱仪是红外光谱分析的主要设备。
它由光源、样品室、光谱仪和检测器等组成。
首先,光源产生红外光,然后红外光通过样品室中的样品,被样品吸收或透射。
最后,透过样品的红外光由检测器测量分析,并产生红外光谱。
二、应用红外光谱分析在许多领域中都有广泛的应用。
下面将介绍一些主要的应用领域。
1. 化学应用:红外光谱可以用于物质的鉴别和定性分析。
通过与数据库比对,可以快速识别出未知样品。
此外,红外光谱还可用于检测溶剂残留和反应动力学研究。
2. 材料科学:红外光谱可用于检测不同材料的组分和结构。
例如,可以用于检测塑料中的添加剂、纤维素材料中的纤维结构等。
此外,红外光谱还可以用于研究材料的变形、变化和降解。
3. 纳米技术:随着纳米技术的发展,红外光谱在纳米材料的研究和表征中也起到了重要的作用。
红外光谱可以用于表征纳米颗粒的尺寸、形状和表面等。
此外,利用红外光谱还可以研究纳米材料的电磁相互作用和稳定性。
4. 生物医学:在生物医学领域,红外光谱被广泛应用于疾病的诊断和治疗。
红外光谱可以检测生物样品中的蛋白质、核酸和糖类等生物分子,以帮助研究疾病的发生和发展机制。
此外,还可以利用红外光谱进行药物分析和药物释放的研究。
5. 环境监测:红外光谱可以应用于环境监测和污染物的检测。
例如,可以用于检测大气中的温室气体,通过红外光谱的吸收峰来确定污染物的类型和浓度。
三、发展趋势随着科技的不断发展,红外光谱分析在未来有着广阔的发展前景。
第三章-红外吸收光谱分析-1
由于分子非谐振性质,各倍频峰并非正好是基频峰的 整数倍,而是略小一些。
HCl的基频峰和倍频峰
基频峰(V0→1) 二倍频峰( V0→2 ) 三倍频峰( V0→3 ) 四倍频峰( V0→4 ) 五倍频峰( 0→5 )
折合质量μ的影响
对于相同化学键的基团,波数与折合 质量μ平方根成反比。例如C-C、C-O、 C-N键的力常数相近,但折合质量不同。
μ : C-C < C-N < C-O 1430 cm-1 1330 cm-1 1280 cm-1
第三章 红外吸收光谱分析
3.2 基本原理 3.2.3 多原子分子振动
在红外吸收光谱上除基频峰外,还有振动能级由基 态( V =0)跃迁至第二激发态( V =2)、第三激 发态( V =3),所产生的吸收峰称为倍频峰。
除此之外,还有合频峰(1+2,21+2,),差 频峰( 1-2,21-2, )等,这些峰多数很弱, 一般不容易辨认。
倍频峰、合频峰和差频峰统称为泛频峰。
通过试样后的红外光在一些波数范围减弱,在 另一些波数范围内仍然较强,用仪器记录该试 样的红外吸收光谱,进行样品的定性和定量分 析。
第三章 红外吸收光谱分析
3.2 基本原理 3.2.2 双原子分子的振动
红外光谱是由于分子振动能级的跃迁(同时伴有转动能级跃迁) 而产生,即分子中的原子以平衡位置为中心作周期性振动,其振 幅非常小。这种分子的振动通常想象为一根弹簧联接的两个小球 体系,称为谐振子模型。这是最简单的双原子分子情况,如下图 所示。
EL=hL 产生红外吸收光谱的第一条件为:
EL =△Ev hL = △Vh 即 L= △V
光谱分析方法
光谱分析方法光谱分析是一种通过分析物质吸收、发射或散射光的波长和强度来确定物质成分和结构的方法。
它是一种非常重要的分析技术,广泛应用于化学、生物、环境和材料等领域。
在光谱分析中,常用的方法包括紫外可见光谱、红外光谱、拉曼光谱、质谱等。
下面将分别介绍这些光谱分析方法的原理和应用。
紫外可见光谱是通过测量样品对紫外可见光的吸收来确定样品的成分和浓度。
紫外可见光谱广泛应用于有机化合物、药物、食品和环境监测等领域。
其原理是物质分子在吸收光能后,电子从基态跃迁到激发态,从而产生吸收峰。
根据吸收峰的位置和强度,可以确定物质的结构和浓度。
红外光谱是通过测量样品对红外光的吸收来确定样品的成分和结构。
红外光谱广泛应用于有机化合物、聚合物、药物和生物分子等领域。
其原理是物质分子在吸收红外光后,分子振动和转动产生特定的吸收峰。
根据吸收峰的位置和强度,可以确定物质的结构和功能基团。
拉曼光谱是通过测量样品对激光光的散射来确定样品的成分和结构。
拉曼光谱广泛应用于无机化合物、材料和生物分子等领域。
其原理是激光光与样品发生相互作用后,产生拉曼散射光,其频率和强度与样品的分子振动和转动有关。
根据拉曼光谱的特征峰,可以确定物质的结构和晶体形态。
质谱是通过测量样品离子的质量和丰度来确定样品的成分和结构。
质谱广泛应用于有机化合物、生物分子和环境样品等领域。
其原理是样品分子经过电离后,产生离子,经过质谱仪的分析,可以得到样品分子的质量和丰度信息。
根据质谱图谱的特征峰,可以确定物质的分子量和结构。
综上所述,光谱分析方法是一种非常重要的分析技术,它可以通过测量样品对光的吸收、发射或散射来确定样品的成分和结构。
不同的光谱分析方法具有不同的原理和应用领域,可以相互补充和验证,为科学研究和工程应用提供了重要的手段。
希望本文对光谱分析方法有所帮助,谢谢阅读!。
X射线荧光光谱仪光谱分析(1)
1895年德国物理学家伦琴(Rontgen W C)发现X射线,1896年法国物理学家乔治 (Georges S)发现X射线荧光,20世纪40年代末,弗利德曼(Friedman H)和伯克斯(BirkS L S)应用盖克 (Geiger H)计数器研制出波长色散X射线荧光光谱 仪。自此,X射线 荧光光谱分析(X射线荧光光谱)进入蓬勃发展的阶段。经过几代人的努力,现已由单一 的波长色散X射线荧光光谱仪发展成拥有波长色散、能量色散、全反射、同步辐射、 质子X射线荧光光谱 仪和X射线微荧光分析仪等一个大家族。 X射线荧光光谱分析之所以获得如此迅速的发展,一方面得利于微电子和计算机 技术的飞跃发展,另一方面是为了满足科学技术对分析的要求。该方法作为常规定性 和定量分析手段,现已成为物质组成分析的必备方法之一。该分析技术具有如下的特 点: (1)可直接对块状、液体、粉末样品进行分析,亦可对小区域或微区试样进行分析, 如质子X射线荧光通过良好聚焦的带电粒子束可提供0.5μm的束斑。 (2)可分析镀层和薄膜的组成和厚度,如用基本参数法薄膜软件可分析多达十层膜 的组成和厚度。 (3)波长色散和能量色散X射线荧光光谱仪对元素的检测范围为10-5%~100%,对 水样的分析可达10-9数量级;全反射X射线荧光光谱的检测限已达到Байду номын сангаас0-9~10-12g。它 们已能满足许多物质的分析要求。
Presentation Outline
概要
元素周期表
(4)随着计算机技术的迅猛发展,理论影响系数和基本参数法用于元素间吸 收增强效应校正的软件,已可在线用于常规定量分析。这使得目前进行定量分析时, 所用标准样品已由过去必须与试样在物理化学形态上相似的标准样品,过渡为可以用 非相似标准样品,如纯元素或氧化物标准样品,因此进行定量分析更方便。 (5)谱仪不仅已具有自动化、智能化、小型化和专业化等特点,并在性能上也 有很大改进。如顺序式波长色谱仪对主、次量元素测定仅需2s,以至于过去必须用 多道波长色散谱仪分析的项目,现在可用性能优越、价格低廉的顺序式谱仪完成。这 为用户根据需要选用相应的仪器提供更多的选择空间。 (6)由于仪器光源稳定,保证了长期稳定性,其指标已从20世纪80年代的0.1% 提高到目前的0.04%,保证了分析数据的可靠性和分析结果的高精度。 (7)从常规分析的需要来看,其分析结果的准确度可与化学分析相媲美。 (8)X射线荧光光谱是非破坏分析方法,随其分析技术的发展,已广泛用于 古陶瓷、金属屑和首饰的组成分析,为文物的断源和断代提供了可靠的信息。 (9)能量色散谱仪特别是低分辨率谱仪已是在线分析的首选仪器之一,对提 高产品质量起很大作用。 (10)除提供组成分析外,以波长色散谱仪为代表,该法还可在许多情况下 提供待测元素的价态、配位和键性能等化学态信息。
光谱分析ppt
第二节 紫外-可见分光光度计
➢ 分光光度计:能从含有各种波长的混合光中将每 一单色光分离出来并测量其强度的仪器。
分析精密度高 测量范围广 分析速度快 样品用量少
➢根据使用的波长范围不同分为紫外光区、可见光区、 红外光区以及万用(全波段)分光光度计等。
10-2 nm 10 nm 102 nm 104 nm 0.1 cm 10cm 103 cm 105 cm
☺ 发射光谱分析方法就是根 据每种元素特有的线光谱 来识别或检查各种元素。
线状光谱 由原子或 离子被激 发而发射
发 射 光 谱
带状光谱 由分子被 激发而发
射
连续光谱 由炙热的 固体或液 体所发射
二、光谱分析技术的分类
分子光谱 光谱技术
原子光谱
分子吸收法: 可见与紫外分光光度法、红外光谱法 分子发射法: 分子荧光光度法 原子吸收法:原子吸收法 原子发射法:发射光谱分析法、原子荧光法等
(五)其它因素的影响
吸光度读数刻度误差、仪器安装环境(如振动、温度 变化)、化学因素(如荧光、溶剂效应等)等也可影 响捡测结果的准确度。
三、紫外-可见分光光度计的类型
☺ 按其光学系统分可分为 单波长分光光度计 单光束单波长分光光度计 双光束单波长分光光度计 双波长分光光度计
➢ 单波长单光束分光光度计特点
①单光束光路,从光源到试样至接收器只有一个光通道; ②仪器只有一个色散元件,工作波长范围较窄; ③通常采用直接接收放大显示的简单电子系统,用电表或 数字显示; ④结构简单、附件少、功能范围小,不能做特殊试样如浑 浊样品、不透明样品等的测定。
检测准确性不够稳定,不能用于精密分析。
单波长单光束分光光度计
光深入到物体内部,将物体内部原子中的一部分束缚电 子激发成自由电子,但这些电子并不逸出物体,而是留 在物体内部从而使物体导电性增强,称为内光电效应。 利用内光电效应可制成光敏电阻、光敏二极管以及光电 池。
光谱分析 1教材
分子光谱法是由 分子中电子能级、 振动和转动能级 的变化产生的,表现
形式为带光谱。
属于这类分析方法的有紫外-可见 分光光度法(UV-Vis),红外光谱法 (IR),分子荧光光谱法(MFS)和分 子磷光光谱法(MPS)等。
2020/4/15
2. 光谱分析法的特点
(1)分析速度较快 原子发射光谱用于炼钢炉前的分析,可在
2020/4/15
第二节 原子、分子结构与光谱
2020/4/15
(一) 原子能态与光谱
1. 原子的组成及电子量子数
➢ 原子是由带正电荷的原子核和核外高速 运动的带负电荷的电子组成。
2020/4/15
➢ 电子在核外运动没有固定的轨道,只能取 一定的运动状态。
➢ 为了描述电子的运动状态,量子力学引入 四个量子数来确定一个电子的运动状态。
➢ 量子数是表征微观粒子运动状态的一些特 定数字。
2020/4/15
一个电子的运动状态
主量子数(n) 角量子数(l)
磁量子数(m) 自旋量子数(ms)
2020/4/15
(1)主量子数(n)
一般说来,电子所在的原子轨道离核越近,电子受原子核的吸引 大,电子的能量越低,反之,离核越远轨道上,电子的能量越高, 这说明电子在不同的原子轨道上运动时其能量有所不同。
敏度可达到千万分之一至十亿分之一,绝对灵敏度可达10-8g~10-9g
(7)样品损坏少 可用于古物以及刑事侦察等领域
随着新技术的采用(如应用等离子体光源),定量分析的线性范 围变宽,使高低含量不同的元素可同时测定。还可以进行微区分析
➢局限性 光谱定量分析建立在相对比较的基础上,必须有一套标
准样品作为基准,而且要求标准样品的组成和结构状态应与被分析 的样品基本一致,这常常比较困难
光谱分析的原理和应用
光谱分析的原理和应用
光谱分析是通过将物质样品与电磁辐射进行相互作用,然后通过测量样品吸收、发射或散射电磁辐射的能量来分析物质的化学或物理性质的一种方法。
它的原理基于不同物质吸收或发射光线的特定频率与其化学成分或结构之间的关系。
在光谱分析中,常用的方法包括紫外可见光谱、红外光谱、核磁共振光谱、质谱等。
紫外可见光谱利用物质吸收可见光的原理,可以确定物质的结构、浓度和存在形式。
红外光谱则通过物质吸收或发射红外光的吸收带图案,可以识别物质的分子结构及功能基团。
核磁共振光谱则利用原子核在外磁场中的共振吸收特性,可以确定物质分子的构型、功能团及巨观量子力学性质。
质谱则通过对物质分子进行分解,并通过对离子质量的测量来确定物质的组成和结构。
光谱分析在许多领域中有广泛的应用。
在材料科学中,光谱分析可以用于鉴定材料的组成、纯度、晶体结构和形态。
在环境科学中,光谱分析可用于检测空气、水、土壤中的有害物质,从而评估环境的污染程度。
在生物医学研究中,光谱分析可以用于研究生物分子的结构、功能和相互作用,从而为药物开发和疾病诊断提供重要信息。
在食品科学中,光谱分析可用于分析食物中的成分、香味物质、添加剂等。
此外,光谱分析还在天文学、地质学、考古学等领域中有重要的应用。
总之,光谱分析是一种基于物质与电磁辐射相互作用的分析方法。
它的原理基于不同物质吸收或发射光线的特性与其化学成分或结构之间的关系。
光谱分析在许多领域中有广泛的应用,
从材料科学到环境科学,从生物医学研究到食品科学,都可以从中获得重要的分析信息。
第八章原子发射光谱分析1
S = 0、1/2、1、 3/2 、2 、5/2、3、 、 m s
光谱的多重性(M):
M=2S+1
内量子数(J):光谱支项
J = L+S、、 L-S J = S+L、、 S-L
(LS ) (S >L)
(二).原子的能级与能级图
1.光谱项:原子发射光谱是由原子或离子的核外电子在高低级间跃迁 而产生的,原子或离子的能级通常用光谱项符号来表示:
Na: (1s)2(2s)2(2p)6(3s)1 (3s)1 n = 3 l = 0 m = 0 m s =+1/2
2.多价电子的原子
主量子数(n):
n =1、 2、 3、 4、 5、 6、7、
总角量子数(L): L= l,
对于2个价电子: L = ( l1+ l2)、 ( l1+ l2-1)、、 ( l1- l2)
三、谱线的自吸与自蚀
self-absorption and self reversal of spectrum line
A. 自吸 原子在高温时被激发,发射某一波长的谱线,而处于低温状态的同类原 子又能吸收这一波长的辐射,这种现象称为自吸现象
I = I0e-ad
I0 为弧焰中心发射的谱线强度; a 为吸收系数(与基态原子浓度有关); d 为弧层厚度
C充电电压达到G击穿 电压
G 放电;
回路 L-C-G 中高压高频振荡电流, G 放电中断;
下一回合充放电开始 火花不灭。
分析隙
火花特点: (1)放电稳定,分析重现性好; (2)放电间隙长,电极温度(蒸发温度)低,检出限低,自 吸现象小。多适于分析易熔金属、合金样品及高含量元素分 析; (3)激发温度高(瞬间可达10000K)适于难激发元素分析。 (4)灵敏度差,背景大,不安全,不宜作痕量分析。
光谱分析方法和技术综述
光谱分析方法和技术综述光谱分析是一种广泛应用于化学、物理、生物等领域的重要分析方法。
通过测量物质与电磁波相互作用的结果,可以获取物质的结构、组成和性质等信息。
在过去几十年中,光谱分析方法和技术得到了巨大的发展,不断扩大了应用范围,并具备更高的分析精度和敏感度。
本文将综述几种常用的光谱分析方法和技术,包括紫外可见吸收光谱、红外光谱、拉曼光谱和质谱。
紫外可见吸收光谱是一种测量物质对紫外和可见光的吸收能力的方法。
该方法基于物质分子电子能级的跃迁,通过测量在不同波长下吸收率的变化,可以确定物质的吸收峰位和强度,进而推断物质的结构和浓度。
紫外可见吸收光谱常用于生物化学、环境监测和药物研发等领域。
红外光谱是一种测量物质对红外辐射的吸收、散射和透射等现象的方法。
红外光谱的原理是物质中的化学键振动和分子转动引起不同波数的吸收峰。
通过分析吸收峰的特征和位置,可以确定物质的结构、官能团和组成。
红外光谱广泛应用于有机化学、聚合物材料和医药领域。
拉曼光谱是一种测量物质对激光光谱的散射光信号的方法。
拉曼光谱利用物质分子产生共振散射光的特性,通过测量光谱中频移后的散射信号,可以确定物质的分子结构、键振动模式和晶格振动等信息。
拉曼光谱在化学、材料科学和生物医学等领域具有广泛的应用前景。
质谱是一种测量物质中离子分子质量和相对丰度的方法。
质谱仪通过将物质分子转化为离子,并按质量-荷电比对离子进行分析和检测。
根据离子质量的不同,可以推断出物质的分子结构、元素组成和分子量。
质谱广泛应用于有机化学、环境分析和食品安全等领域。
除了上述几种常用的光谱分析方法和技术外,还有许多其他高级的光谱技术,如核磁共振光谱、电子自旋共振光谱和质谱成像等。
这些先进的技术在物质分析和科学研究中发挥着重要作用,为我们提供了更深入的分析结果和更高的分析精度。
总之,光谱分析方法和技术是科学研究和应用领域中不可或缺的工具。
紫外可见吸收光谱、红外光谱、拉曼光谱和质谱等方法的综述,旨在帮助读者了解这些技术的原理和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/10/31
1 光谱的分类
( 1 )按波长区域不同 远红外光谱,红外光谱,可见光谱,紫 外光谱,远紫外光谱(真空紫外光谱)等等
(2)按光谱的形态不同 线状光谱,带状光谱,连续光谱 原子光谱,分子光谱
(3)按发生作用的物质类型不同 ( 4 )按激发光源的不同 离子体光谱等
火焰光谱,闪光光谱,激光光谱,等 发射光谱,吸收光谱,散射光谱
磁量子数与电子的能量无关,磁量子数的个 数表明了一个电子亚层中原子轨道的数目, 这些轨道通常可称为等价轨道或简并轨道。
2018/10/31
轨道名称
轨道的名称包括为第几电子层,什么类型 (s、p、d、f 等)两方面的信息。 如:1s轨道 表示 n=1,l=0,m=0 2p轨道 表示 n=2,l=1,m=-1,0,+1
(3)不需纯样品
只需利用已知谱图,即可进行光谱定性分析
。这是光谱分析一个十分突出的优点
(4)可同时测定多种元素或化合物
2018/10/31
省去复杂的分离操作
(5)选择性好
可测定化学性质相近的元素和化合物。如测
定铌、钽、锆、铪和混合稀土氧化物,它们的谱线可分开而不受干 扰,成为分析这些化合物的得力工具 可利用光谱法进行痕量分析。目前,相对灵 敏度可达到千万分之一至十亿分之一,绝对灵敏度可达10-8g~10-9g
4 N
5 O
2018/10/31
(2)角量子数(l)
一些元素原子光谱的一条谱线往往是由两条、三条或更多的非常 靠近的细谱线构成的。这说明在同一电子层内电子的运动状态和 具有的能量稍有差异。因此,除主量子数外,还要多用一个参数 来描述核外电子的运动状态和能量,这个量子数称为角量子数, 用符号“l”表示。
2018/10/31
(4)自旋量子数ms
实验证明,电子除绕核运动外,还有绕 自身的轴旋转的运动,称为自旋。 为了描述核外电子的自旋状态,需要引 入第四个量子数-自旋量子数。用符号 “ms”表示。 ms可能取值只有两个,-1/2和+1/2这两 个数值。其中每一个数值表示电子的一 种自旋方向。
(5)按产生光谱的方式不同
2018/10/31
各种电磁波及其对应的光谱分析方法
波谱区名称 射线 波长范围 0.005 nm~0.14nm 0.001 nm ~10nm 10 nm ~200nm 跃迁能级类型 原子核能级 分析方法 放射化学分析法
X射线 远紫外 光 近紫外 光
可见光 近红外 光 中红外 光 远红外 光 微波
2018/10/31 射频 (无线电波)
内层电子能级 价电子或成键电子 能级 价电子或成键电子 能级
价电子或成键电子 能级 分子振动能级 原子振动/分子转动 能级 分子转动、晶格振 动能级 电子自旋、分子转 动能级 磁场中核自旋能级
X射线光谱法 真空紫外光度法 紫外分光光度法
比色法、可见分光光 度法 近红外光谱法 中红外光谱法 远红外光谱法 微波光谱法 核磁共振光谱法
原子发射光谱用于炼钢炉前的分析,可在 l~2分钟内,同时给出二十多种元素的分析结果
(2)操作简便
有些样品不经任何化学处理,即可直接进行光 谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析 、数据处理和打印出分析结果。在毒剂报警、大气污染检测等方面 ,采用分子光谱法遥测,不需采集样品,在数秒钟内,便可发出警 报或检测出污染程度
l=1时,m有-1,0,+1三个取值,表示P亚层有三个伸展方向,P 亚层有3个原子轨道,分别记为Px,Py,Pz,这三个轨道的伸展 方向是相互垂直的。 l=2时,m有-2,-1,0,+1,+2 五个取值,表示d亚层有五个不 同伸展方向的原子轨道。
2018/10/31
l=0的轨道都称为S轨道,其中按n值分别称为 1S,2S,3S …轨道,S轨道内的电子称为S电 子。 l =1,2,3的轨道依次分别称为p,d,f 轨道, 其中按n值分别称为np,nd,nf 轨道。p,d, f 轨道内的电子依次称为p,d,f 电子。
材料现代分析测试方法
Modern Methods of Analysis and Test for Materials
第六章
光谱分析
Spectroanalysis
2018/10/31
光谱分析法及其分类 1 简介
光谱 是电磁辐射的波长和强度分布的记录。
光谱分析法 是基于物质与电磁辐射作用时,测 量由物质内部发生量子化的能级之间的跃迁而产 生的发射、吸收或散射特征光谱波长和强度,进 行材料分析的方法。 光谱仪 把光按波长展开,把不同波长成分的强 度记录下来
角量子数l是确定电子云形状和几率径向分布,它和主量子数一 起决定电子能量,标志电子亚层。 当主量子n数值一定时,l 可取0、l、2,…(n-l)的正整数,l 值受n值的限制,只能取小于n的正整数。 l 的每一个数值表示一个电子亚层。 电子亚层分别用s、p、d、f 等符号表示。 K层只包含一个S亚层 L层包含S 和P 两个亚层 M层包含S、P、d 三个亚层 2018/10/31 N层包含S、P、d、f 四个亚层
整个原子的状态(state),往往在一个组态中,由于这些复杂的相
互作用,而出现不止一种能量状态,描述原子的状态使用原子光谱 项( term) ,由于这种能级分裂变化主要来自原子中电子间相互作
用和轨道与自旋运动相互作用。且这些相互作用可用它们的角动量
2018/10/31
角量子数l也是决定电子能量
在多电子原子中,角量子数 l也是决定电 子能量的一个因素。它和主量子数一起 决定电子的能量。 只有主量子数 n 和角量子数 l 都相同,电 子能量才相等。主量子数相同,但角量 子数不同的电子,其能量也不相同。
(3)磁量子数(m)
同一亚层(如 P 亚层)中往往还包含着若干个空间伸展 方向不同的原子轨道。 磁量子数就是用来描述原子轨道或电子云在空间伸展方 向的。 某种形状的电子云,可以在空间取不同的伸展方向,而 得到几个空间取向不同的原子轨道。
m的取值受l的数值限制
m的取值受角量子数l 的限制。共可取(2 l +1)个, 从- l 到+ l (包括零在内)的整数。即m取值为0, ±1, ±2, ±3…的整数。 例如: l =0时,m只能为0 ; l =1时,m可以为-1,0,+1三个数值,余类推。
2018/10/31
m的每一个数值表示具有某种空间方向的一个原子轨道。 一个亚层中,m有几个可能的取值,这亚层就只能有几个不同的 伸展方向的同类原子轨道。 例如: l=0时,m为0,表示S亚层只有一个轨道,即S轨道。
光 学 光 谱 区
200 nm ~400nm
400 nm ~756nm 0.756mm ~2.5mm 2.5mm ~50mm 50mm ~1000mm 0.1 cm ~100cm 1m ~1000m
按发生作用的物质微粒不同,光谱法可分为原子 光谱法和分子光谱法。
原子光谱法是由原子外层或内层电子能级 的变化产生的,它的表现形式为线光谱。 属于这类分析方法的有原子发射光谱法 (AES)、原子吸收光谱法(AAS),原子荧光 光谱法(AFS)以及X射线荧光光谱法(XFS) 等。
2018/10/31
分子光谱法是由 分子中电子能级、 振动和转动能级 的变化产生的,表现 形式为带光谱。
属于这类分析方法的有紫外-可见 分光光度法(UV-Vis),红外光谱法 (IR),分子荧光光谱法(MFS)和分 子磷光光谱法(MPS)等。
2018/10/31
2. 光谱分析法的特点 (1)分析速度较快
量子数是表征微观粒子运动状态的一些特 定数字。
2018/10/31
一个电子的运动状态
主量子数(n) 角量子数(l) 磁量子数(m) 自旋量子数(ms)
2018/10/31子轨道离核越近,电子受原子核的吸引 大,电子的能量越低,反之,离核越远轨道上,电子的能量越高, 这说明电子在不同的原子轨道上运动时其能量有所不同。 原子中电子所处的不同能量状态,称为原子轨道的能级。 主量子数是决定电子能级高低的主要因素。用符号“n”表示 “n”通常可以取非零的任意正整数,即n =1、2、3……等值。 其中每一个n 值代表一个电子层。 在一个原子内,具有相同的主量子数的电子(n值相同的电子) 近乎在同样的空间范围内运动,所以常将n值相同的电子称为同 层电子,它们所占有的区域称为电子层。 当n=1,2,3 ……时,分别称为第一、第二、第三……电子层。常 用符号K、L、M、N等来表示。
2018/10/31
从上述讨论中,可知: 第一电子层(n=1),只有一个1s轨 道;第二电子层( n = 2 ),有四个轨 道,包括一个 2s 轨道,三个 2p 轨道; 第三电子层( n = 3 ),有九个轨道, 包括一个 3s 轨道,三个 3p 轨道,五个 3d 轨道。因此,每个电子层的轨道总 数应为n2。
(6)灵敏度高
(7)样品损坏少
可用于古物以及刑事侦察等领域
随着新技术的采用(如应用等离子体光源),定量分析的线性范 围变宽,使高低含量不同的元素可同时测定。还可以进行微区分析
局限性 光谱定量分析建立在相对比较的基础上,必须有一套标
准样品作为基准,而且要求标准样品的组成和结构状态应与被分析 的样品基本一致,这常常比较困难
2018/10/31
ms=1/2, 分别表示电子的顺时针和逆时 针两种自旋方向。 通常也用符号和表示自旋方向。 两个电子的自旋方向相同时称为自旋平 行,记为 或 ;而两个电子自旋 方向相反时,称为自旋反平行,记为 或 。
2018/10/31
综上所述,一组合理的量子数n,l,m确 定一个原子轨道。 例如:n=3,l=1,m=0 就可确定一个原子轨道,即3p轨道
2018/10/31