2018届江苏省盐城中学高三全仿真模拟检测数学(文)试题(解析版)
盐城市2018届高三年级第三次模拟考试(Word版含答案及详解)

盐城市2018届高三年级第三次模拟考试英语试题第一部分: 听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的各案转涂到答题卡上。
第一节(共5小题,每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What is the woman probably doing?A.W atching a movieB. Reading a newspaper.C. Making an advertisement.2.What are the speakers talking about in general?A.Their best memories of a relaxing holiday.B.Their travelling plans for the summer holiday.C.Their favorite ways of travelling around the world.3.When will the meeting begin?A.At 3:20.B. At 3:40.C. At 4:004.Where are the speakers?A.In a shop.B. In a restaurant.C. In the man’s house.5.What does the woman mean?A.She doesn’t need the man’s help.B.She expects the man to move the desk.C.She wants to remove the books from the desk.第二节(共15 小题; 每小题1分,满分15 分)听下面5段对话或独白。
盐城市2018届高三年级第三次模拟考试(含答案)

开始 k ←0 S ←0S <20k ←k +2 S ←S +2kYN 输出S 结束第6题图盐城市2018届高三年级第三次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:锥体体积公式:13V Sh =,其中S 为底面积,h 为高. 圆锥侧面积公式:S rl π=,其中r 为底面半径,l 为母线长.样本数据12,,,n x x x ⋅⋅⋅的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知(,]A m =-∞,(1,2]B =,若B A ⊆,则实数m 的取值范围为 ▲ .2.设复数1a iz i+=+(i 为虚数单位)为纯虚数,则实数a 的值为 ▲ . 3.设数据12345,,,,a a a a a 的方差为1,则数据123452,2,2,2,2a a a a a 的方差为 ▲ .4.一个袋子中装有2个红球和2个白球(除颜色外其余均相同), 现从中随机摸出2个球,则摸出的2个球中至少有1个是红球 的概率为 ▲ .5.“2,6x k k Z ππ=+∈”是“1sin 2x =”成立的 ▲条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”).6.运行如图所示的算法流程图,则输出S 的值为 ▲ . 7.若双曲线22221(0,0)x y a b a b -=>>的两条渐近线与抛 物线24y x =交于,,O P Q 三点,且直线PQ 经过抛物线的焦点,则该双曲线的离心率为 ▲ .8.函数()ln(13)f x x =-的定义域为 ▲ .9.若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为 ▲ .10.已知函数()3sin()cos()(0,0)f x x x πωϕωϕωϕ+-+><<为偶函数,且其图象的两条相邻对称轴间的距离为2π,则(8f π-的值为 ▲ .11.设数列{}n a 的前n 项和为n S ,若*2()n n S a n n N =+∈,则数列{}n a 的通项公式为n a = ▲ .A12.如图,在18AB B ∆中,已知183B AB π∠=,16AB =,84AB =,点234567,,,,,B B B B B B 分别为边18B B 的7等分点,则当9(18)i j i +=≤≤时,i j AB AB ⋅的最大值 为 ▲ .13.定义:点00(,)M x y 到直线:0l ax by c ++=0022a b+.已知点(1,0)A -,(1,0)B ,直线m 过点(3,0)P ,若圆22(18)81x y +-=上存在一点C ,使得,,A B C 三点到直线m 的有向距离之和为0,则直线l 的斜率的取值范围为 ▲ .14.设ABC ∆的面积为2,若,,A B C 所对的边分别为,,a b c ,则22223a b c ++的最小值 为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)在直四棱柱1111ABCD A BC D -中,已知底面ABCD 是菱形,,M N 分别是棱11,A D 11D C 的中点. (1)求证:AC ∥平面DMN ;(2)求证:平面DMN ⊥平面11BB D D .16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,AD 为边BC 上的中线. (1)若4a =,2b =,1AD =,求边c 的长; (2)若2AB AD c ⋅=,求角B 的大小.A B CD D 1A 1B 1C 1M N第15题图17.(本小题满分14分)如图,是一个扇形花园,已知该扇形的半径长为400米,2AOB π∠=,且半径OC 平分AOB ∠.现拟在OC 上选取一点P ,修建三条路PO ,PA ,PB 供游人行走观赏,设PAO α∠=.(1)将三条路PO ,PA ,PB 的总长表示为α的函数()l α,并写出此函数的定义域; (2)试确定α的值,使得()l α最小.18.(本小题满分16分)如图,已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点(2,3)P -是椭圆C 上一点,且1PF x ⊥轴.(1)求椭圆C 的方程;(2)设圆222:()(0)M x m y r r -+=>.①设圆M 与线段2PF 交于两点,A B ,若2MA MB MP MF +=+,且2AB =,求r 的值;②设2m =-,过点P 作圆M 的两条切线分别交椭圆C 于,G H 两点(异于点P ).试问:是否存在这样的正数r ,使得,G H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.19.(本小题满分16分)若对任意实数,k b 都有函数()y f x kx b =++的图象与直线y kx b =+相切,则称函数()f x 为“恒切函数”.设函数()xg x ae x pa =--,,a p R ∈.(1)讨论函数()g x 的单调性; (2)已知函数()g x 为“恒切函数”.①求实数p 的取值范围;②当p 取最大值时,若函数()()xh x g x e m =-也为“恒切函数”,求证:3016m ≤<. AO BCPα第17题图O P F 1 F 2 yx 第18题图(参考数据:320e ≈)20.(本小题满分16分)在数列{}n a 中,已知121,a a λ==,满足111221222,,,,n n n n a a a a ---++⋅⋅⋅是等差数列(其中2,n n N ≥∈),且当n 为奇数时,公差为d ;当n 为偶数时,公差为d -. (1)当1λ=,1d =时,求8a 的值;(2)当0d ≠时,求证:数列{}2*22||()n n a a n N +-∈是等比数列;(3)当1λ≠时,记满足2m a a =的所有m 构成的一个单调递增数列为{}n b ,试求数列{}n b 的通项公式.盐城市2018届高三年级第三次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知半圆O 的半径为5,AB 为半圆O 的直径,P 是BA 延长线上一点,过点P 作半圆O 的切线PC ,切点为C ,CD AB ⊥于D .若2PC PA =,求CD 的长.B .(选修4-2:矩阵与变换)已知矩阵 2 0 a b ⎡⎤=⎢⎥⎣⎦M 的属于特征值1的一个特征向量为11⎡⎤⎢⎥⎣⎦,求矩阵M 的另一个特征值和对应的一个特征向量.C .(选修4-4:坐标系与参数方程)在平面直角坐标系中,直线l 的参数方程为21222x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(单位长度相同),设曲线C 的极坐标方程为2ρ=,求直线l 被曲线C 截得的弦长.D .(选修4-5:不等式选讲)已知正数,,x y z 满足232x y z ++=,求222x y z ++的最小值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)某公司的一次招聘中,应聘者都要经过三个独立项目,,A B C 的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,A B C 每个项目测试的概率都是12. (1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X ,求X 的概率分布和数学期望. A BCDO· 第21(A )图23.(本小题满分10分)(1)已知*0,0()i i a b i N >>∈,比较221212b b a a +与21212()b b a a ++的大小,试将其推广至一般性结论并证明; (2)求证:3*01213521(1)()2n nn n nn n n n N C C C C ++++++≥∈.盐城市2018届高三年级第三次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.2m ≥ 2.1- 3.4 4.565.充分不必要 6.21 758.(2,3] 9.23102 11.12n - 12.1327 13.3(,]4-∞- 14.二、解答题:本大题共90小题.15.(1)证明:连接11AC ,在四棱柱1111ABCD A BC D -中,因为11//AA BB ,11//BB CC , 所以11//AA CC ,所以11A ACC 为平行四边形,所以11//AC AC . ……2分 又,M N 分别是棱11,A D 11D C 的中点,所以11//MN AC ,所以//AC MN . ……4分 又AC ⊄平面DMN ,MN ⊂平面DMN ,所以AC ∥平面DMN . ……6分 (2)证明:因为四棱柱1111ABCD A BC D -是直四棱柱, 所以1DD ⊥平面1111A B C D ,而MN ⊂平面1111A B C D , 所以1MN DD ⊥. ……8分 又因为棱柱的底面ABCD 是菱形,所以底面1111A B C D 也是菱形, 所以1111AC B D ⊥,而11//MN AC ,所以11MN B D ⊥.……10分 又1MN DD ⊥,111,DD B D ⊂平面1111A B C D ,且1111DD B D D =,所以MN ⊥平面1111A B C D . ……12分 而MN ⊂平面DMN ,所以平面DMN ⊥平面11BB D D . ……14分 16.解:(1)在ADC ∆中,因为11,2,22AD AC DC BC ====,所以由余弦定理, 得2222222217cos 22228AC DC AD C AC DC +-+-===⋅⨯⨯. ……3分 故在ABC ∆中,由余弦定理,得2222272cos 4224268c a b ab C =+-=+-⨯⨯⨯=,所以6c = ……6分(2)因为AD 为边BC 上的中线,所以1()2AD AB AC =+,所以21()2c AB AD AB AB AC =⋅=⋅+221111cos 2222AB AB AC c cb A =+⋅=+,得cos c b A =. ……10分 则2222b c a c b bc+-=⋅,得222b c a =+,所以90B =︒. ……14分17.解:(1)在APO ∆中,由正弦定理,得sin sin sin AP OP AOAOP PAO APO==∠∠∠,即400sin sin sin()44AP OP ππαα==+,从而2002sin()4AP α=+,400sin sin()4OP απα=+. ……4分 所以()l α=400sin 200222sin()sin()44OP PA PB OP PA αππαα++=+=+⨯++, ABCDDABCM N故所求函数为2sin )()sin()4l ααπα=+,3(0,)8πα∈. ……6分 (2)记2sin 22sin 3()(0,)8sin()4f ααπααα++==∈+, 因为22(sin cos )(22)(cos sin )()(sin cos )f ααααααααα+-+-'=+2)24(sin cos )πααα-+=+, ……10分 由()0f α'=,得1sin()42πα-=-,又3(0,)8πα∈,所以12πα=. ……12分 列表如下:α(0,)12π12π 3(,)128ππ()f α' - 0 + ()f α递减极小递增所以,当12πα=时,()l α取得最小值.答:当12πα=时,()l α最小. ……14分18.解:(1)因点(2,3)P -是椭圆C 上一点,且1PF x ⊥轴,所以椭圆的半焦距2c =, 由22221c y a b+=,得2b y a =±,所以2243b a a a -==, ……2分 化简得2340a a --=,解得4a =,所以212b =,所以椭圆C 的方程为2211612x y +=. ……4分 (2)①因2MA MB MP MF +=+,所以2MA MP MF MB -=-,即2PA BF =,所以线段2PF 与线段AB 的中点重合(记为点Q ),由(1)知3(0,)2Q , ……6分因圆M 与线段2PF 交于两点,A B ,所以21MQ AB MQ PF k k k k ⋅=⋅=-,所以303021m --⋅=-,解得98m =-, ……8分 所以229315(0)(0)828MQ =--+-=,故221517()188r =+=. ……10分② 由,G H 两点恰好关于原点对称,设00(,)G x y ,则00(,)H x y --,不妨设00x <,因(2,3)P -,2m =-,所以两条切线的斜率均存在,设过点P 与圆M 相切的直线斜率为k ,则切线方程为3(2)y k x -=+,即230kx y k -++=,由该直线与圆M 相切,得21r k =+,即229r k r -=±,……12分 所以两条切线的斜率互为相反数,即PG PH k k =-,所以00003322y y x x ---=-+-+,化简得006x y =-,即006y x -=,代入220011612x y +=, 化简得420016480x x -+=,解得02x =-(舍),023x =-03y = ……14分 所以(23,3)G -,(23,3)H -,所以333223PG k -==-+, 所以26731()2r ==+ 故存在满足条件的r ,且67r =……16分 19.解:(1)()1x g x ae '=-, ……2分当0a ≤时,()0g x '<恒成立,函数()g x 在R 上单调递减;当0a >时,由()0g x '=得ln x a =-,由()0g x '>得ln x a >-,由()0g x '<得ln x a <-, 得函数()g x 在(,ln )a -∞-上单调递,在(ln ,)a -+∞上单调递增. ……4分 (2)①若函数()f x 为“恒切函数”,则函数()y f x kx b =++的图像与直线y kx b =+相切,设切点为00(,)x y ,则0()f x k k '+=且000()f x kx b kx b ++=+,即0()0f x '=,0()0f x =. 因为函数()g x 为“恒切函数”,所以存在0x ,使得0()0g x '=,0()0g x =,即0000 10xx ae x pa ae ⎧--=⎪⎨-=⎪⎩, 得00x a e -=>,00(1)x p e x =-,设()(1)x m x e x =-, ……6分则()xm x xe '=-,()0m x '<,得0x >,()0m x '>,得0x <,故()m x 在(,0)-∞上单调递增,在(0,)+∞上单调递减,从而[]max ()(0)1m x m ==, 故实数p 的取值范围为(,1]-∞. ……8分②当p 取最大值时,1p =,00x =,01x a e-==,()(1)x x h x e x e m =---,()(22)x x h x e x e '=--,因为函数()h x 也为“恒切函数”, 故存在0x ,使得0()0h x '=,0()0h x =,由0()0h x '=得000(22)0x x e x e --=,00220x e x --=,设()22xn x e x =--, ……10分 则()21xn x e '=-,()0n x '>得ln 2x >-,()0n x '<得ln 2x <-,故()n x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,1°在单调递增区间(ln 2,)-+∞上,(0)0n =,故00x =,由0()0h x =,得0m =;…12分 2°在单调递减区间(,ln 2)-∞-上,2(2)20n e--=>,31223111()22(20)022225n e ---=-≈⨯-=<,又()n x 的图像在(,ln 2)-∞-上不间断,故在区间3(2,)2--上存在唯一的0x ,使得00220xe x --=,故0022x x e +=,此时由0()0h x =,得00000022(1)(1)22x xx x m e x e x ++=--=-- 001(2)4x x =-+2011(1)44x =-++,函数211()(1)44r x x =-++在3(2,)2--上递增,(2)0r -=,33()216r -=,故3016m <<.综上1°2°所述,3016m ≤<. ……16分20.解:(1)由1λ=,1d =,所以21a =,234,,a a a 为等差数列且公差为1-,所以4221a a =-=-,又458,,a a a 为等差数列且公差为1,所以8443a a =+=. ……2分 (2)当21n k =+时,22221221222,,,,k k k k a a a a +++⋅⋅⋅是等差数列且公差为d ,所以2122222k k k a a d +=+,同理可得22121222k k k a a d --=-, ……4分 两式相加,得212121222k k k a a d +---=;当2n k =时,同理可得2222222k k k a a d +-=-, ……6分 所以222||2n n na a d +-=.又因为0d ≠,所以21122122||22(2)||2n n n n n n a a n a a ++---==≥-, 所以数列{}2*22||()n n a a n N +-∈是以2为公比的等比数列. ……8分(3)因为2a λ=,所以4222a a d d λ=-=-,由(2)知212121222k k k a a d +--=+,所以212123212321222222k k k k k k a a d a d d +-----=+=++, 依次下推,得211132*********k k k a a d d d d +--=+++++,所以21222(21)3k ka d λ+=+-, ……10分 当212222k k n ++≤≤时,212321222(2)()33k k k n a a n d n d λ+++=--=+--, 由2m a a =,得232233k m +=-,所以23212233k k b ++=-, 所以22233n n b +=-(n 为奇数); ……12分 由(2)知222222222222222k k k k k k a a d a d d +--=-=--,依次下推,得22224222222222k k k a a d d d d +-=-----,所以22224(21)23k k a d d λ+-=--, ……14分 当222322k k n ++≤≤时,222422222(2)()33k k k n a a n d n d λ+++=+-=+--, 由2m a a =,得242233k m +=+,所以24222233k k b ++=+. 所以22233n n b +=+(n 为偶数). 综上所述,2222(3322(33n n n n b n ++⎧+⎪⎪=⎨⎪-⎪⎩为偶数)为奇数). ……16分方法二:由题意知,23121231222222n n n n n b b b b b +++=<<<<<⋅⋅⋅<<<<<<⋅⋅⋅, ……10分当n 为奇数时,1221222,,,,n n n n a a a a +++⋅⋅⋅的公差为d -,1112221222,,,,n n n n a a a a ++++++⋅⋅⋅的公差为d ,所以112(2)()n n n b n a a b d ++=---,11112(2)n n n b n a a b d ++++=+-,则由12n n b b a a a +==,得111(2)()(2)n n n n b d b d +++---=-,即212n n n b b +++=. 同理,当n 为偶数时,也有212n n n b b +++=.故恒有2*12()n n n b b n N +++=∈. ……12分①当n 为奇数时,由3212n n n b b ++++=,212n n n b b +++=,相减,得222n n n b b ++-=,所以532311()()(222)2n n n n b b b b b b -=-+⋅⋅⋅+-+=+⋅⋅⋅+++13222(14)2221433n n -+-=+=--.……14分②当n 为偶数时,同理可得22233n n b +=+. 综上所述,2222(3322(33n n n n b n ++⎧+⎪⎪=⎨⎪-⎪⎩为偶数)为奇数). ……16分附加题答案21.(A )解:连,AC BC ,因PC 为半圆O 的切线,所以PCA B ∠=∠.又P P ∠=∠, 所以PCA ∆∽PBC ∆,所以12PA AC PC BC ==, 即2AC BC =. ……5分 因AB 为半圆O 的直径,所以22225AB AC BC AC =+=,因半圆O 的半径为5,所以21005AC =,所以25,45AC BC ==由射影定理,得2AC AD AB =⋅,解得2AD =,所以224CD AC AD =-=. ……10分(B )解:由题意得 2 110 11a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,解得11a b =-⎧⎨=⎩,所以 2 10 1-⎡⎤=⎢⎥⎣⎦M . ……2分 矩阵M 的特征多项式为 2 1()(2)(1)0 1f λλλλλ-==---,由()0f λ=,得2,1λλ==,所以矩阵M 的另一个特征值为2. ……6分 此时0 1()0 1f λ=,对应方程组为010010x y x y ⋅+⋅=⎧⎨⋅+⋅=⎩,所以0y =, 所以另一个特征值2对应的一个特征向量为10⎡⎤⎢⎥⎣⎦. ……10分(C )解:直线的普通方程为10x y +-=;由2ρ=,得曲线C 的普通方程为224x y +=, ………………………5分所以1222d -==l 被曲线C 截得的弦长为22222()142-= ……10分 (D )解:根据柯西不等式,有2222222(23)(123)()x y z x y z ++≤++++,因232x y z ++=,所以222222421237x y z ++≥=++, ……5分 当且仅当123x y z ==时等号成立,解得123,,777x y z ===,即当123,,777x y z ===时,222x y z ++取最小值27. ……10分A BCDO·22.解:(1)甲恰好通过两个项目测试的概率为223113()(1)228C -=. ……4分(2)因为每人可被录用的概率为22331111()(1)()2222C -+=,所以311(0)(1)28P X ==-=,1123113(1)()(1)228P X C ==-=,2213113(2)()(1)228P X C ==-=,311(3)()28P X ===.故X 的概率分布表为:X0 1 2 3 P18 38 38 18…………8分所以,X 的数学期望13313()012388882E X =⨯+⨯+⨯+⨯=. ……10分23.解:(1)22222212211212121212()()()b b a b a b a a b b a a a a ++=+++,因为0i a >,0i b >,所以222112120,0a b a b a a >>,则22222112211212121222a b a b a b a b b b a a a a +≥⨯=, 所以22222121212121212()()2()b b a a b b b b b b a a ++≥++=+,即22121212()()b b a a a a ++212()b b ≥+.所以221212b b a a +≥21212()b b a a ++,当且仅当22211212a b a b a a =,即2112a b a b =时等号成立. ……2分 推广:已知0i a >,0i b >(,1i N i n *∈≤≤),则2221212n n b b b a a a +++21212()n nb b b a a a +++≥+++. ……………………………4分证明:①当1n =时命题显然成立;当2n =时,由上述过程可知命题成立; ②假设(2)n k k =≥时命题成立, 即已知0i a >,0i b >(,1i N i k *∈≤≤)时,有2221212k k b b b a a a +++21212()k kb b b a a a +++≥+++成立, 则1n k =+时,222222112112121121()()k k k k k k k k b b b b b b b b a a a a a a a a +++++++++++≥++++, 由221212b b a a +≥21212()b b a a ++,可知222121*********()()k k k k k k k k b b b b b b b b a a a a a a a a ++++++++++++≥+++++++, 故2222112121k k k k b b b b a a a a ++++++2121121()k k k k b b b b a a a a ++++++≥++++, 故1n k =+时命题也成立.综合①②,由数学归纳法原理可知,命题对一切n N ∈*恒成立. ……6分 (注:推广命题中未包含1n =的不扣分)(2)证明:由(1)中所得的推广命题知01213521nn n n nn C C C C +++++ 2222012135(21)35(21)nn n nn n C C C n C +=+++++[]212135(21)35(21)nn nn nn C C C n C +++++≥+++++ ①, …8分记01235(21)nn n n n nS C C C n C =+++++, 则1(21)(21)n n n n n nS n C n C C -=++-++, 两式相加,得0122(22)(22)(22)(22)nn n n n nS n C n C n C n C =++++++++, 012(22)()(22)2nn n n n n n C C C C n =+++++=+⨯,故(1)2n n S n =+⨯ ②,又[]2241(21)135(21)(1)(1)2n n n n ++⎡⎤+++++=⨯+=+⎢⎥⎣⎦③,将②③代入①,得222243012135(21)(1)(1)35(21)(1)22n n nn n n n n n n C C C n C n +++++++≥=++, 所以,301213521(1)2n nn n nn n n C C C C ++++++≥,证毕. ……10分。
江苏省盐城市艺术高级中学2018年高三数学文模拟试卷含解析

江苏省盐城市艺术高级中学2018年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数f(x)=x3+ax2+bx+c,在定义域x∈[﹣2,2]上表示的曲线过原点,且在x=±1处的切线斜率均为﹣1.有以下命题:①f(x)是奇函数;②若f(x)在[s,t]内递减,则|t﹣s|的最大值为4;③f(x)的最大值为M,最小值为m,则M+m=0.④若对?x∈[﹣2,2],k≤f′(x)恒成立,则k的最大值为2.其中正确命题的个数有( )A.1个B.2个C.3个D.4个参考答案:B【考点】函数的单调性与导数的关系;函数单调性的判断与证明;函数奇偶性的判断.【专题】计算题.【分析】首先利用导数的几何意义及函数f(x)过原点,列方程组求出f(x)的解析式;然后根据奇函数的定义判断函数f(x)的奇偶性,且由f′(x)的最小值求出k的最大值,则命题①④得出判断;最后令f′(x)=0,求出f(x)的极值点,进而求得f (x)的单调区间与最值,则命题②③得出判断.【解答】解:函数f(x)=x3+ax2+bx+c的图象过原点,可得c=0;又f′(x)=3x2+2ax+b,且f(x)在x=±1处的切线斜率均为﹣1,则有,解得a=0,b=﹣4.所以f(x)=x3﹣4x,f′(x)=3x2﹣4.①可见f(x)=x3﹣4x是奇函数,因此①正确;x∈[﹣2,2]时,[f′(x)]min=﹣4,则k≤f'(x)恒成立,需k≤﹣4,因此④错误.②令f′(x)=0,得x=±.所以f(x)在[﹣,]内递减,则|t﹣s|的最大值为,因此②错误;且f(x)的极大值为f(﹣)=,极小值为f()=﹣,两端点处f (﹣2)=f(2)=0,所以f(x)的最大值为M=,最小值为m=﹣,则M+m=0,因此③正确.故选B.【点评】本题主要考查导数的几何意义及利用导数研究函数单调性、最值的方法.2. 已知圆C与圆关于直线对称,则C的方程为()A. B.C. D.参考答案:C3. 已知抛物线的动弦的中点的横坐标为,则的最大值为( ) A.B.C.D.参考答案:B【知识点】抛物线【试题解析】因为当AB过焦点时,有最大值为故答案为:B4. 已知函数对于任意的满足(其中是函数的导函数),则下列不等式成立的是()A. B.C. D.参考答案:【知识点】利用导数研究函数的单调性.B12【答案解析】D 解析:由知,所以在上是增函数,所以,即,得,所以不正确;易知,即,得,所以不正确;易知,即,得,所以不正确;易知,即,得,所以正确.故选【思路点拨】根据条件构造函数g(x)=,求函数的导数,利用函数的单调性和导数之间的关系即可得到结论.5. 已知F为双曲线C:(a>0,b>0)的右焦点,l1,l2为C的两条渐近线,点A在l1上,且FA⊥l1,点B在l2上,且FB∥l1,若|FA|=|FB|,则双曲线C的离心率为()A.或B.或C.D.参考答案:A【考点】双曲线的简单性质.【分析】求出|FA|,|FB|,利用|FA|=|FB|,建立方程,即可求出双曲线C的离心率.【解答】解:由题意,l1:y=x,l2:y=﹣x,F(c,0)∴|FA|==b.FB的方程为y=(x﹣c),与l2:y=﹣x联立,可得B(,﹣),∴|FB|==,∵|FA|=|FB|,∴b=?,∴2c2=5ab,∴4c4=25a2(c2﹣a2),∴4e4﹣25e2+25=0,∴e=或,故选A.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程和离心率的求法,属于中档题.6. 设命题甲:ax2+2ax+1>0的解集是实数集R,命题乙:0<a<1,则命题甲是命题乙成立的()A.充分不必要条件 B.充要条件C.必要不充分条件 D.既非充分又非必要条件C略7. 已知圆柱的高为2,底面半径为,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于()A.4π B.C.D.16π参考答案:D设球半径为R, ∵该圆柱的两个底面的圆周都在同一个球面上,∴可得,球的表面积为,故选D.8.设z =, 则复数z的虚部为A. 1B. - 1C. iD. - i参考答案:答案:B9. 某几何体的三视图如图,则该几何体的体积是()A.4 B.C.D.2B【考点】LF:棱柱、棱锥、棱台的体积.【分析】根据三视图,得直观图是三棱锥,底面积为=2,高为,即可求出它的体积.【解答】解:根据三视图,得直观图是三棱锥,底面积为=2,高为;所以,该棱锥的体积为V=S底面积?h=×2=.故选:B.10. 如果函数f(x)=sin(x+θ)(0<θ<π)是最小正周期为T的偶函数,那么( ) A.T=4π,θ= B.T=4,θ=C.T=4,θ= D.T=4π,θ=参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知,则________.参考答案:12. 设i、j分别表示平面直角坐标系x、y轴上的单位向量,且|a-i|+|a-2j|=,则|a+2i|的取值范围是___________.参考答案:13. 已知实数满足,若是使得取得最小值的可行解,则实数的取值范围为参考答案:(不扣分)14. 已知某长方体的长宽高分别为,则该长方体外接球的体积为参考答案:考点:长方体的外接球.15. 方程的根,∈Z,则=----- _参考答案:216. 若命题“”是真命题,则实数的取值范围是_________.参考答案:略17. 若正数a,b,c满足+=+1,则的最小值是.参考答案:【考点】基本不等式.【分析】根据题意,对+=+1变形可得++=2()+1,又由基本不等式的性质分析可得++=+++++≥6,即可得2()+1≥6,化简可得答案.【解答】解:根据题意,若+=+1,则有++=2()+1,而++=+++++=(+)+(+)+(+)≥2+2+2=6,则有2()+1≥6,化简可得≥,即的最小值是;故答案为:.【点评】本题考查基本不等式的运用,关键是对等式变形,配凑基本不等式使用的条件.三、解答题:本大题共5小题,共72分。
江苏省盐城中学2018届高三全仿真模拟检测数学试题(精编含解析)

,
,则 距离最小
解析:(I)以 为坐标原点, 所在直线为 轴,过 且垂直于 的直线为 轴,建立如图所示的平面
直角坐标系,由 直线 的方程为
千米,
,可知
,直线 的方程为 ,
,令 ,得
,所以,
千米;
.所以
(Ⅱ) 为
三点共圆,可求圆的方程为
,
(此时点 为直线
与点 及坐标原点之间劣弧的交点);
,则 距离最小值
平面
,
所以
,从而可得所以
平面
,所以即可证明平面
平面 .
解析:(1)取 中点为 ,连接 , .
由已 知点 是 中点, 是 的中点可以证得,
四边形
,
都为平行四边形,
所以
,所以
.
因为 平面 , 所以 平面 .
平面 ,
点睛:面面垂直的证明的两种思路 (1)用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线; (2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角,把证明面面垂直的问题转化为证 明平面角为直角的问题.
也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.
21.证明见解析 【解析】分析:由切线的性质知
,再根据角平分线的性质及平行线的判定定理求出
. 解析:证明:如图,连接 .
因为圆与 切于 ,所以
.
因为 平分 .所以
.
又
,所以
.
所以
.
点睛:主要考查的是相似三角形判定及有关性质的应用,切线的性质,比较简单.
;(Ⅱ)
.
解析:(1)
,
所以 (2)设
,椭圆的标准方程为
,
,
江苏省盐城市2018届高三第三次模拟考试数学

第6题图盐城市2018届高三年级第三次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:锥体体积公式:13V Sh =,其中S 为底面积,h 为高. 圆锥侧面积公式:S rl π=,其中r 为底面半径,l 为母线长.样本数据12,,,n x x x ⋅⋅⋅的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知(,]A m =-∞,(1,2]B =,若B A ⊆,则实数m 的取值范围为 ▲ .2.设复数1a iz i+=+(i 为虚数单位)为纯虚数,则实数a 的值为 ▲ . 3.设数据12345,,,,a a a a a 的方差为1,则数据123452,2,2,2,2a a a a a 的方差为 ▲ .4.一个袋子中装有2个红球和2个白球(除颜色外其余均相同), 现从中随机摸出2个球,则摸出的2个球中至少有1个是红球 的概率为 ▲ .5.“2,6x k k Z ππ=+∈”是“1sin 2x =”成立的 ▲条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”).6.运行如图所示的算法流程图,则输出S 的值为 ▲ .7.若双曲线22221(0,0)x ya b a b -=>>的两条渐近线与抛物线24y x =交于,,O P Q 三点,且直线PQ 经过抛物线的焦点,则该双曲线的离心率为 ▲ . 8.函数()ln(1f x =的定义域为 ▲ .9.若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为 ▲ . 10.已知函数())cos()(0,0)f x x x πωϕωϕωϕ=+-+><<为偶函数,且其图象的两条相邻对称轴间的距离为2π,则()8f π-的值为 ▲ .11.设数列{}n a 的前n 项和为n S ,若*2()n n S a n n N =+∈,则数列{}n a 的通项公式为n a = ▲ . 12.如图,在18AB B ∆中,已知183B AB π∠=,16AB =,84AB =,点234567,,,,,B B B B B B 分别为边18B B 的7等分点,则当9(18)i j i +=≤≤时,i j AB AB ⋅uuu r uuu r的最大值为 ▲ .13.定义:点00(,)M x y 到直线:0l ax by c ++=的有向距离为0022a b+.已知点(1,0)A -,(1,0)B ,直线m 过点(3,0)P ,若圆22(18)81x y +-=上存在一点C ,使得,,A B C 三点到直线m 的有向距离之和为0,则直线l 的斜率的取值范围为 ▲ . 14.设ABC ∆的面积为2,若角,,A B C 所对的边分别为,,a b c ,则22223a b c ++的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)在直四棱柱1111ABCD A B C D -中,已知底面ABCD 是菱形,,M N 分别是棱11,A D 11D C 的中点.(1)求证:AC ∥平面DMN ; (2)求证:平面DMN ⊥平面11BB D D .16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,AD 为边BC 上的中线. (1)若4a =,2b =,1AD =,求边c 的长;(2)若2AB AD c ⋅=uu u r uuu r ,求角B 的大小.17.(本小题满分14分)如图,是一个扇形花园,已知该扇形的半径长为400米,2AOB π∠=,且半径OC 平分AOB ∠.现拟在OC 上选取一点P ,修建三条路PO ,PA ,PB 供游人行走观赏,设PAO α∠=.(1)将三条路PO ,PA ,PB 的长度之和表示为α的函数()f α,并写出此函数的定义域; (2)试确定α的值,使得()f α最小.A B CD D 1 A 1 B 1 C 1MN第15题图 第12题图AB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 818.(本小题满分16分)如图,已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点(2,3)P -是椭圆C 上一点,且1PF x ⊥轴. (1)求椭圆C 的方程;(2)设圆222:()(0)M x m y r r -+=>.①设圆M 与线段2PF 交于两点,A B ,若2MA MB MP MF +=+uuu r uuu r uuu r uuu u r,且2AB =,求r的值;②设2m =-,过点P 作圆M 的两条切线分别交椭圆C 于,G H 两点(均异于点P ).试问:是否存在这样的正数r ,使得,G H 两点恰好关于坐标原点O 对称?若存在,求出r19.(本小题满分16分)若对任意实数,k b 都有函数()y f x kx b =++的图象与直线y kx b =+相切,则称函数()f x 为“恒切函数”.设函数()xg x ae x pa =--,,a p R ∈. (1)讨论函数()g x 的单调性; (2)已知函数()g x 为“恒切函数”.①求实数p 的取值范围;②当p 取最大值时,若函数()()xh x g x e m =-也为“恒切函数”,求证:3016m ≤<. (参考数据:320e ≈)20.(本小题满分16分)在数列{}n a 中,已知121,a a λ==,并满足:111221222,,,,k k k k a a a a ---++⋅⋅⋅是等差数列(其中2,k k N ≥∈),且当k 为奇数时,公差为d ;当k 为偶数时,公差为d -. (1)当1λ=,1d =时,求8a 的值;(2)当0d ≠时,求证:数列{}2*22||()n n a a n N +-∈是等比数列;(3)当1λ≠时,记满足2m a a =的所有m 构成的一个单调递增数列为{}n b ,试求数列{}n b 的通项公式.盐城市2018届高三年级第三次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知半圆O 的半径为5,AB 为半圆O 的直径,P 是BA 延长线上一点,过点P 作半圆O 的切线PC ,切点为C ,CD AB ⊥于点D .若2PC PA =,求CD 的长.B .(选修4-2:矩阵与变换)已知矩阵 2 0 a b ⎡⎤=⎢⎥⎣⎦M 的属于特征值1的一个特征向量为11⎡⎤⎢⎥⎣⎦,求矩阵M 的另一个特征值和对应的一个特征向量.C .(选修4-4:坐标系与参数方程)在平面直角坐标系中,直线l的参数方程为122x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为A BCD O ·第21(A )图极点,x 轴的正半轴为极轴建立极坐标系(单位长度相同),设曲线C 的极坐标方程为2ρ=,求直线l 被曲线C 截得的弦长.D .(选修4-5:不等式选讲)已知正数,,x y z 满足232x y z ++=,求222x y z ++的最小值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)某公司的一次招聘中,应聘者都要经过三个独立项目,,A B C 的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,A B C 每个项目测试的概率都是12. (1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为X ,求X 的概率分布和数学期望. 23.(本小题满分10分)(1)已知*0,0()i i a b i N >>∈,比较221212b b a a +与21212()b b a a ++的大小,试将其推广至一般性结论并证明;(2)求证:3*01213521(1)()2n nn n n n n n n N C C C C ++++++≥∈L .盐城市2018届高三年级第三次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.2m ≥ 2.1- 3.4 4.565.充分不必要 6.21 78.(2,3] 9.3 10. 11.12n - 12.1327 13.3(,]4-∞- 14.二、解答题:本大题共90小题.15.(1)证明:连接11A C ,在四棱柱1111ABCD A B C D -中,因为11//AA BB ,11//BB CC , 所以11//AA CC ,所以11A ACC 为平行四边形,所以11//A C AC . ……2分又,M N 分别是棱11,A D 11D C 的中点,所以11//MN AC ,所以//AC MN . ……4分又AC ⊄平面DMN ,MN ⊂平面DMN ,所以AC ∥平面DMN . ……6分 (2)证明:因为四棱柱1111ABCD A B C D -是直四棱柱,所以1DD ⊥平面1111A B C D ,而MN ⊂平面1111A B C D , 所以1MN DD ⊥. ……8分 又因为棱柱的底面ABCD 是菱形,所以底面1111A B C D 也是菱形, 所以1111A C B D ⊥,而11//MN AC ,所以11MN B D ⊥.……10分 又1MN DD ⊥,111,DD B D ⊂平面1111A B C D ,且1111DD B D D =I , 所以MN ⊥平面1111A B C D . ……12分而MN ⊂平面DMN ,所以平面DMN ⊥平面11BB D D . ……14分16.解:(1)在ADC ∆中,因为11,2,22AD AC DC BC ====,所以由余弦定理,得2222222217cos 22228AC DC AD C AC DC +-+-===⋅⨯⨯. ……3分故在ABC ∆中,由余弦定理,得2222272cos 4224268c a b ab C =+-=+-⨯⨯⨯=, 所以c = (6)分(2)因为AD 为边BC 上的中线,所以1()2AD AB AC =+uuu r uu u r uuu r,所以21()2c AB AD AB AB AC =⋅=⋅+uu u r uuu r uu u r uu u r uuu r221111cos 2222AB AB AC c cb A=+⋅=+uuu r uu u r uuu r ,得cos c b A =. ……10分则2222b c a c b bc+-=⋅,得222b c a =+,所以ABCDD 1 A 1B 1C 1M N90B =︒. ……14分17.解:(1)在APO ∆中,由正弦定理,得sin sin sin AP OP AOAOP PAO APO==∠∠∠, 即400sin sin sin()44AP OP ππαα==+,从而sin()4AP α=+,400sin sin()4OP απα=+. ……4分所以()l α=400sin 22sin()sin()44OP PA PB OP PA αππαα++=+=+⨯++,故所求函数为sin )()sin()4l ααπα=+,3(0,)8πα∈. ……6分 (2)记sin 23(),(0,)sin cos 8sin()4f ααπααπααα+==∈++,因为2(sin cos )(2)(cos sin )()(sin cos )f ααααααααα+--'=+2)4(sin cos )πααα-=+,……10分由()0f α'=,得1sin()42πα-=-,又3(0,)8πα∈,所以12πα=. ……12分列表如下:所以,当12α=时,()l α取得最小值.答:当12πα=时,()l α最小. ……14分18.解:(1)因点(2,3)P -是椭圆C 上一点,且1PF x ⊥轴,所以椭圆的半焦距2c =,由22221c y a b +=,得2b y a=±,所以2243b a a a-==, ……2分 化简得2340a a --=,解得4a =,所以212b =,所以椭圆C 的方程为2211612x y +=. ……4分 (2)①因2MA MB MP MF +=+uuu r uuu r uuu r uuu u r ,所以2MA MP MF MB -=-uuu r uuu r uuu u r uuu r ,即2PA BF =uu r uuu r,所以线段2PF 与线段AB 的中点重合(记为点Q ),由(1)知3(0,)2Q , ……6分因圆M 与线段2PF 交于两点,A B ,所以21MQ AB MQ PF k k k k ⋅=⋅=-,所以30302122m --⋅=---,解得98m =-, ……8分所以158MQ ==,故178r ==. ……10分② 由,G H 两点恰好关于原点对称,设00(,)G x y ,则00(,)H x y --,不妨设00x <,因(2,3)P -,2m =-,所以两条切线的斜率均存在,设过点P 与圆M 相切的直线斜率为k ,则切线方程为3(2)y k x -=+,即230kx y k -++=,由该直线与圆M 相切,得r =,即k = ……12分 所以两条切线的斜率互为相反数,即PG PH k k =-,所以00003322y y x x ---=-+-+,化简得006x y =-,即006y x -=,代入220011612x y +=, 化简得420016480x x -+=,解得02x =-(舍),0x =-所以0y = ……14分所以(G -,H,所以2PG k ==,所以r ==. 故存在满足条件的r ,且7r =. ……16分 19.解:(1)()1x g x ae '=-, ……2分当0a ≤时,()0g x '<恒成立,函数()g x 在R 上单调递减;当0a >时,由()0g x '=得ln x a =-,由()0g x '>得ln x a >-,由()0g x '<得ln x a <-,得函数()g x 在(,ln )a -∞-上单调递,在(ln ,)a -+∞上单调递增. ……4分 (2)①若函数()f x 为“恒切函数”,则函数()y f x kx b =++的图像与直线y kx b =+相切,设切点为00(,)x y ,则0()f x k k '+=且000()f x kx b kx b ++=+,即0()0f x '=,0()0f x =.因为函数()g x 为“恒切函数”,所以存在0x ,使得0()0g x '=,0()0g x =,即0000 10xx ae x pa ae ⎧--=⎪⎨-=⎪⎩, 得00x a e -=>,00(1)x p e x =-,设()(1)x m x e x =-, ……6分则()xm x xe '=-,()0m x '<,得0x >,()0m x '>,得0x <,故()m x 在(,0)-∞上单调递增,在(0,)+∞上单调递减,从而[]max ()(0)1m x m ==, 故实数p的取值范围为(,1]-∞. ……8分②当p 取最大值时,1p =,00x =,01xa e -==,()(1)x x h x e x e m =---,()(22)x x h x e x e '=--,因为函数()h x 也为“恒切函数”, 故存在0x ,使得0()0h x '=,0()0h x =,由0()0h x '=得000(22)0xx e x e --=,00220x e x --=,设()22xn x e x =--, ……10分则()21xn x e '=-,()0n x '>得ln 2x >-,()0n x '<得ln 2x <-,故()n x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,1°在单调递增区间(ln 2,)-+∞上,(0)0n =,故00x =,由0()0h x =,得0m =; ……12分2°在单调递减区间(,ln 2)-∞-上,2(2)20n e--=>,31223111()22(20)02222n e ---=-≈⨯-=-<,又()n x 的图像在(,ln 2)-∞-上不间断,故在区间3(2,)2--上存在唯一的0x ,使得00220xe x --=,故0022xx e +=, 此时由0()0h x =,得00000022(1)(1)22xx x x m e x ex ++=--=-- 001(2)4x x =-+2011(1)44x =-++,函数211()(1)44r x x =-++在3(2,)2--上递增,(2)0r -=,33()216r -=,故3016m <<.综上1°2°所述,3016m ≤<. ……16分 20.解:(1)由1λ=,1d =,所以21a =,234,,a a a 为等差数列且公差为1-,所以4221a a =-=-,又458,,a a a L 为等差数列且公差为1,所以8443a a =+=. ……2分(2)当21n k =+时,22221221222,,,,k k k k a a a a +++⋅⋅⋅是等差数列且公差为d ,所以2122222k k k a a d+=+,同理可得22121222k k k a a d --=-, ……4分两式相加,得212121222k k k a a d +---=;当2n k=时,同理可得2222222k kk a a d +-=-, ……6分所以222||2n n na a d +-=.又因为0d ≠,所以21122122||22(2)||2n n n n n n a a n a a ++---==≥-, 所以数列{}2*22||()n n aa n N +-∈是以2为公比的等比数列. ……8分(3)因为2a λ=,所以4222a a d d λ=-=-,由(2)知212121222k k k a a d +--=+,所以212123212321222222k k k k k k a a d a d d +-----=+=++,依次下推,得211132321222222k k k a a d d d d +--=+++++L ,所以21222(21)3k k a d λ+=+-, (10)分当212222k k n ++≤≤时,212321222(2)()33k k k n a a n d n d λ+++=--=+--, 由2m a a =,得232233k m +=-,所以23212233k k b ++=-, 所以22233n n b +=-(n 为奇数); ……12分由(2)知222222222222222k k k kk k a a d a d d +--=-=--,依次下推,得22224222222222k k k a a d d d d +-=-----L ,所以22224(21)23k k a d d λ+-=--, (14)分当222322k k n ++≤≤时,222422222(2)()33k k k n a a n d n d λ+++=+-=+--, 由2m a a =,得242233k m +=+,所以24222233k k b ++=+. 所以22233n n b +=+(n 为偶数).综上所述,2222(3322(33n n n n b n ++⎧+⎪⎪=⎨⎪-⎪⎩为偶数)为奇数). ……16分 方法二:由题意知,23121231222222n n n n n b b b b b +++=<<<<<⋅⋅⋅<<<<<<⋅⋅⋅, ……10分当n 为奇数时,1221222,,,,n n n n a a a a +++⋅⋅⋅的公差为d -,1112221222,,,,n n n n a a a a ++++++⋅⋅⋅的公差为d ,所以112(2)()n n n b n a a b d ++=---,11112(2)n n n b n a a b d ++++=+-,则由12n n b b a a a +==,得111(2)()(2)n n n n b d b d +++---=-,即212n n n b b +++=.同理,当n为偶数时,也有212n n n b b +++=.故恒有2*12()n n n b b n N +++=∈. ……12分①当n 为奇数时,由3212n n n b b ++++=,212n n n b b +++=,相减,得222n n n b b ++-=,所以532311()()(222)2nn n n b b b b b b -=-+⋅⋅⋅+-+=+⋅⋅⋅+++13222(14)2221433n n -+-=+=--. ……14分②当n 为偶数时,同理可得22233n n b +=+. 综上所述,2222(3322(33n n n n b n ++⎧+⎪⎪=⎨⎪-⎪⎩为偶数)为奇数). ……16分附加题答案21.(A )解:连,AC BC ,因PC 为半圆O 的切线,所以PCA B ∠=∠.又P P ∠=∠, 所以PCA ∆∽PBC ∆,所以12PA AC PC BC ==, 即2AC BC =. ……5分 因AB 为半圆O 的直径,所以22225AB AC BC AC =+=,因半圆O 的半径为5,所以21005AC =,所以AC BC == 由射影定理,得2AC AD AB=⋅,解得2AD =,所以A BPCDO·4CD =. ……10分(B )解:由题意得 2 110 11a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,解得11a b =-⎧⎨=⎩,所以2 10 1-⎡⎤=⎢⎥⎣⎦M . ……2分矩阵M 的特征多项式为 2 1()(2)(1)0 1f λλλλλ-==---,由()0f λ=,得2,1λλ==,所以矩阵M 的另一个特征值为2. ……6分此时0 1()0 1f λ=,对应方程组为010010x y x y ⋅+⋅=⎧⎨⋅+⋅=⎩,所以0y =,所以另一个特征值2对应的一个特征向量为10⎡⎤⎢⎥⎣⎦. ……10分 (C )解:直线的普通方程为10x y +-=;由2ρ=,得曲线C 的普通方程为224x y +=,……5分所以d ==,所以直线l 被曲线C 截得的弦长为=. ……10分 (D )解:根据柯西不等式,有2222222(23)(123)()x y z x y z ++≤++++,因232x y z ++=,所以222222421237x y z ++≥=++, ……5分 当且仅当123x y z ==时等号成立,解得123,,777x y z ===,即当123,,777x y z ===时,222x y z ++取最小值27. ……10分 22.解:(1)甲恰好通过两个项目测试的概率为223113()(1)228C -=.……4分(2)因为每人可被录用的概率为22331111()(1)()2222C -+=,所以311(0)(1)28P X ==-=, 1123113(1)()(1)228P X C ==-=,2213113(2)()(1)228P X C ==-=,311(3)()28P X ===.故X 的概率分布表为:……8分所以,X的数学期望13313()012388882E X =⨯+⨯+⨯+⨯=. ……10分23.解:(1)22222212211212121212()()()b b a b a b a a b b a a a a ++=+++,因为0i a >,0i b >,所以222112120,0a b a b a a >>,则22211212122a b a b b b a a +≥=, 所以22222121212121212()()2()b b a a b b b b b b a a ++≥++=+,即22121212()()b b a a a a ++212()b b ≥+. 所以221212b b a a +≥21212()b b a a ++,当且仅当22211212a b a b a a =,即2112a b a b =时等号成立. ……2分推广:已知i a >,i b >(,1i N i n*∈≤≤),则2221212n n b b b a a a +++L 21212()n nb b b a a a +++≥+++L L .……4分 证明:①当1n =时命题显然成立;当2n =时,由上述过程可知命题成立; ②假设(2)n k k =≥时命题成立,即已知0i a >,0i b >(,1i N i k *∈≤≤)时,有2221212k k b b b a a a +++L 21212()k kb b b a a a +++≥+++L L 成立,则1n k =+时,222222112112121121()()k k k k k k k k b b b b b b b b a a a a a a a a +++++++++++≥++++L L L , 由221212b b a a +≥21212()b b a a ++,可知222121*********()()k k k k k k k k b b b b b b b b a a a a a a a a ++++++++++++≥+++++++L L L L , 故2222112121k k k k b b b b a a a a ++++++L 2121121()k k k k b b b b a a a a ++++++≥++++L L , 故1n k =+时命题也成立.综合①②,由数学归纳法原理可知,命题对一切n N ∈*恒成立. ……6分(注:推广命题中未包含1n =的不扣分)(2)证明:由(1)中所得的推广命题知01213521n n n n nn C C C C +++++L 2222012135(21)35(21)n n n n nn C C C n C +=+++++L []2012135(21)35(21)n nnnnn C C C n C+++++≥+++++LL①, ……8分记01235(21)nn n n n n S C C C n C =+++++L ,则10(21)(21)n n n n n n S n C n C C -=++-++L ,两式相加,得0122(22)(22)(22)(22)nn n n n n S n C n C n C n C =++++++++L , 012(22)()(22)2nn n n n n n C C C C n =+++++=+⨯L ,故(1)2n n S n =+⨯ ②,又[]2241(21)135(21)(1)(1)2n n n n ++⎡⎤+++++=⨯+=+⎢⎥⎣⎦L ③,将②③代入①,得222243012135(21)(1)(1)35(21)(1)22n n nn n n n n n n C C C n C n +++++++≥=++L , 所以,301213521(1)2n nn n n n n n C C C C ++++++≥L ,证毕. ……10分。
江苏省盐城市2018届高三第三次模拟考试数学试题

江苏省盐城市2017-2018学年高三第三次模拟考试数学试题一、填空题:本大题共14个小题,每小题5分,共70分.1. 已知全集,集合,则___________.【答案】【解析】因为,所以2. 设复数满足(为虚数单位),则___________.【答案】2【解析】3. 某高级中学高一、高二、高三年级的学生人数分别为600人、700人、700人,为了解不同年级学生的眼睛近视情况,现用分层抽样的方法抽取了容量为100的样本,则高三年级应抽取的学生人数为___________.【答案】35【解析】由题意结合抽样比可得,高三年级应抽取的学生人数为. 点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)=;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.4. 若命题“,”是假命题,则实数的取值范围是___________.【答案】【解析】为真命题,所以5. 甲、乙两组各有三名同学,他们在一次测试中的成绩分别为:甲组:88、89、90;乙组:87、88、92,如果分别从甲、乙两组中随机选取一名同学,则这两名同学的成绩之差的绝对值不超过3的概率是___________.【答案】【解析】只有当选取的成绩为88,92时不满足题意,由对立事件概率公式可知:这两名同学的成绩之差的绝对值不超过3的概率是.6. 执行如图所示的伪代码,输出的值为___________.【答案】77. 设抛物线的焦点与双曲线的右焦点重合,则___________.【答案】【解析】由题意可知:抛物线的焦点坐标为,在双曲线中:.8. 设满足,则的最大值为___________.【答案】1【解析】绘制不等式组所表示的可行域如图所示,由目标函数的几何意义可得,目标函数在线段AB上取得最大值,考查点B的坐标可得目标函数的最大值为.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.9. 将函数的图象向左平移个单位后,恰好得到函数的的图象,则的最小值为___________.【答案】【解析】由题意可得:,由诱导公式的结论可知:,取可得:.点睛:由y=sin x的图象,利用图象变换作函数y=A sin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再平移变换,平移的量是个单位.10. 已知直三棱柱的所有棱长都为2,点分别为棱的中点,则四面体的体积为___________.【答案】【解析】解:,当作为三棱锥的底面时,三棱锥的高是边长为2的等边三角形的边上的高,四面体的体积为.11. 设数列的首项,且满足,与,则___________.【答案】2056【解析】由递推关系可知该数列的奇数项构成一个首项为1,公比为2的等比数列,偶数项由其前项加1而得,前20项和中:.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.12. 若均为非负实数,且,则的最小值为___________.【答案】3...【解析】由题意可知:,故:当且仅当时等号成立.13. 已知四点共面,,,,则的最大值为__________.【答案】10【解析】解:设,由题意可得:,则:,ABC构成三角形,则:,解得:,由余弦定理:,当时,取得最大值为10.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.14. 若实数满足,则__________.【答案】二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. 如图,在四棱柱中,平面底面,且.(1)求证:平面;(2)求证:平面平面.【答案】(1)见解析(2)见解析【解析】试题分析:(1)利用题意由可得平面.(2)由面面平行的判断定理,平面,则平面.试题解析:证明:(1)在四棱柱中,有.又平面,平面,所以平面. ... (2)因为平面底面ABCD,交线为,底面ABCD,且,所以平面.又平面,所以平面平面.16. 设面积的大小为,且.(1)求的值;(2)若,,求.【答案】(1)(2)【解析】试题分析:(1)利用题意结合数量积的定义可得;(2) 利用(1)的结论有:,结合题意和正弦定理可得:.试题解析:解:(1)设的三边长分别为,由,得,得. 即,所以. 又,所以,故.(2)由和,得,又,所以,得①. 又,所以.在△中,由正弦定理,得,即,得②. 联立①②,解得,即.17. 一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实践所示,是等腰梯形,米,(在的延长线上,为锐角),圆与都相切,且其半径长为100-80米,是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?【答案】当时,立柱最矮.【解析】试题分析:利用题意建立直角坐标系,得到关于的函数:,求导之后讨论函数的单调性可知时取得最值.试题解析:解:方法一:如图所示,以所在直线为轴,以线段的垂直平分线为轴,建立平面直角坐标系.因为,,所以直线的方程为,即.设圆心,由圆与直线相切,得,...所以.令,,则,设,. 列表如下:所以当,即时,取最小值. 答:当时,立柱最矮.方法二:如图所示,延长交于点,过点作于,则,.在中,. 在中,.所以.(以下同方法一)点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.18. 已知分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时,.(1)求椭圆的离心率;...(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线与的斜率之积;(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为,直线的横、纵截距分别为,求证:为定值. 【答案】(1)(2)(3)49【解析】试题分析:(1)利用题意得到关于的齐次方程,求解方程组可得椭圆的离心率;(2) 由题意,,,则,结合(1)的结论可得.(3) 由(1)知椭圆方程为,圆的方程为.四边形的外接圆方程为,所以,因为点在椭圆上,则.试题解析:解:(1)由轴,知,代入椭圆的方程,得,解得.又,所以,解得. (2)因为四边形是平行四边形,所以且轴,所以,代入椭圆的方程,解得,因为点在第一象限,所以,同理可得,,所以,由(1)知,得,所以.(3)由(1)知,又,解得,所以椭圆方程为,圆的方程为①. 连接,由题意可知,,,所以四边形的外接圆是以为直径的圆,设,则四边形的外接圆方程为,即②.①-②,得直线的方程为,令,则;令,则. 所以,因为点在椭圆上,所以,所以.19. 设函数.(1)若函数是奇函数,求实数的值;(2)若对任意的实数,函数(为实常数)的图象与函数的图象总相切于一个定点.①求与的值;②对上的任意实数,都有,求实数的取值范围.【答案】(1)(2)① .②【解析】试题分析:...(1)由奇函数的定义得到关于实数a的方程,解方程可得a=0;(2)由导函数研究函数的切线可得切点为,切线的方程为,则.(3)由题意分类讨论和两种情况可得实数的取值范围是.试题解析:解:(1)因为函数是奇函数,所以恒成立,即,得恒成立,. (2)① ,设切点为,则切线的斜率为,据题意是与无关的常数,故,切点为,由点斜式得切线的方程为,即,故.② 当时,对任意的,都有;当时,对任意的,都有;故对恒成立,或对恒成立.而,设函数.则对恒成立,或对恒成立,,当时,,,恒成立,所以在上递增,,故在上恒成立,符合题意.当时,令,得,令,得,故在上递减,所以,而设函数,则,恒成立,在上递增,恒成立,在上递增,恒成立,即,而,不合题意.综上,知实数的取值范围.20. 已知数列都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列.(1)设数列分别为等差、等比数列,若,,,求;(2)设的首项为1,各项为正整数,,若数列是等差数列,求数列的前项和;(3)设(是不小于2的正整数),,是否存在等差数列,使得对任意的,在与之间数列的项数总是?若存在,请给出一个满足题意的等差数列;若不存在,请说明理由.【答案】(1).(2)或. (3)首项,公差的等差数列符合题意.【解析】试题分析:...(1)由题意可得;(2)由题意可得等比数列的项都是等差数列中的项,所以. 数列的前项和或.(3) 存在等差数列,只需首项,公差.利用题中的结论可证得此命题成立.试题解析:解:(1)设等差数列的公差为,等比数列的公比为,由题意得,,解得或,因数列单调递增,所以,所以,,所以,. 因为,,,,所以. (2)设等差数列的公差为,又,且,所以,所以. 因为是中的项,所以设,即.当时,解得,不满足各项为正整数;当时,,此时,只需取,而等比数列的项都是等差数列中的项,所以;当时,,此时,只需取,由,得,是奇数,是正偶数,有正整数解,所以等比数列的项都是等差数列中的项,所以. 综上所述,数列的前项和或.(3)存在等差数列,只需首项,公差.下证与之间数列的项数为. 即证对任意正整数,都有,即成立.由,.所以首项,公差的等差数列符合题意.点睛:学习能力型问题必将成为以后高考考核的重点,它题目新颖,考察全面,摆脱了以往只考察学生记忆、计算等方面知识.而这类题型是考察学生的阅读理解力、知识迁移能力和归纳概括能力等,是考察学生素质能力的典型题目,应引起广大师生的关注,学习有两个过程:一个是“从薄到厚”,一个是“从厚到薄”.前者是知识不段丰富、积累的过程,是“量”的积累;“从厚到薄”则是质的飞跃.在这里正是应用到了“从厚到薄”.而这类问题涉及知识面广、开放度高、灵活性强,能够很好地考核考生利用所学知识分析问题和解决问题的能力,需要平时结合所学的知识多联想和多类比,注意知识的活学活用,才能够处理好这类问题. (在四小题中只能选做2题,每小题10分,计20分,请把答案写在答题纸的指定区域内)21. A.(选修4-1:几何证明选讲)已知是圆两条相互垂直的直径,弦交的延长线于点,若,,求的长.【答案】【解析】试题分析:利用题意由割线定理和勾股定理列方程可求得.试题解析:...解:设半径为r,由切割线定理,得即,在三角形DOF中,由勾股定理,得,即.由上两式解得.22. B.(选修4-2:矩阵与变换)已知矩阵所对应的变换把曲线变成曲线:,求曲线的方程. 【答案】【解析】试题分析:利用变换矩阵求得变换为,据此可得的方程为.试题解析:设曲线C上任一点为(x,y),经过变换T变成,则,即 .又,得 .23. C.(选修4-4:坐标系与参数方程)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,圆的参数方程为(为参数),若直线与圆相切,求的值. 【答案】1【解析】试题分析:化简为直角坐标方程,利用圆心到直线的距离等于半径列方程求得半径.试题解析:解:由题意得,直线的直角坐标方程为,圆的直角坐标方程为.则直线和曲线相切,得.24. D.(选修4-5:不等式选讲)已知为正实数,且,证明:.【答案】见解析【解析】试题分析:利用题中不等式的特点写出三个不等式,将不等式相加即可得到结论. 试题解析:证:因为,所以由基本不等式,得. 三式相加,得.又,所以. (第22、23题,每小题10分,计20分,请把答案写在答题纸的指定区域内)25. 如图,在四棱锥中,底面是矩形,面底面,且是边长为2的等边三角形,,在上,且平面....(1)求直线与平面所成角的正弦值;(2)求平面与平面所成锐二面角的大小.【答案】(1)直线PC与平面BDM所成角的正弦值为 .(2)平面BDM与平面PAD所成锐二面角的大小为.【解析】试题分析:利用题意建立空间直角坐标系,据此可得:(1) 直线PC与平面BDM所成角的正弦值为(2) 平面BDM与平面PAD所成锐二面角的大小为.试题解析:解:因为,作AD边上的高PO,则由,由面面垂直的性质定理,得,又是矩形,同理,知,,故.以AD中点O为坐标原点,OA所在直线为x轴,OP所在直线为z轴,AD的垂直平分线y轴,建立如图所示的坐标系,则,连结AC交BD于点N,由,所以,又N是AC的中点,所以M是PC的中点,则,设面BDM的法向量为,,,得,令,解得,所以取.(1)设PC与面BDM所成的角为,则,所以直线PC与平面BDM所成角的正弦值为 .(2)面PAD的法向量为向量,设面BDM与面PAD所成的锐二面角为,则,故平面BDM与平面PAD所成锐二面角的大小为.26. 一只带中装有编号为1,2,3,…,的个小球,,这些小球除编号以外无任何区别,现从袋中不重复地随机取出4个小球,记取得的4个小球的最大编号与最小编号的差的绝对值为,如,或4,或4或5,记的数学期望为.(1)求;(2)求.【答案】(1),(2)【解析】试题分析:(1)利用题意求得,(2)利用题意归纳推理并进行证明可得...试题解析:解:(1)的概率分布为:则.的概率分布如下:则.(2) 方法一:,………………6分方法二:得猜想. 下面用数学归纳法证明.证明:①时猜想显然成立;...②假设时猜想成立,即,则,当时即时命题也成立.综上①②,对一切猜想都成立.。
推荐-江苏省盐城中学2018届高三第二次模拟考试数学试题 精品

江苏省盐城中学2018届高三年级第二次模拟考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第一卷从第1页到第2页,第二卷从2页到第3页.考试结束后,将答题卡和答题纸一并交回.满分150分.考试时间120分钟.第一卷 (选择题,共50分)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上.用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|1}A x x =<,}0))(2(|{≤--=a x x x B ,若1≤a 则=B A (A ){|2}x x ≤ (B ){|1}x x ≤ (C ) {|2}x x ≥ (D ){|1}x x ≥2.设21cos ),0,2(=-∈απα,则=+)6tan(πα (A )3 (B )33 (C )3- (D )33- 3.设等差数列}{n a 的前n 项和是n S ,且0864=++a a a ,则6S 与5S 的大小关系是 (A )56S S < (B ) 56S S > (C ) 56S S = (D )无法确定 4.设b a 、表示直线,βα、表示平面,则βα//的充分条件是 (A )b a b a //,,βα⊂⊂ (B )βα⊥⊥b a b a ,,// (C )αββα//,//,,b a b a ⊂⊂ (D )αβ⊥⊥⊥b a b a ,,5.与直线34-=x y 平行的曲线23-+=x x y 的切线方程是(A )04=-y x (B )044=--y x(C )024=--y x (D )04=-y x 或044=--y x6.将函数x y 2cos =的图象沿向量a平移得到函数1)62sin(--=πx y 的图象,则向量a可以是 (A ))1,3(-π(B ))1,6(π (C ))1,3(--π (D ))1,6(π-7.若实数y x 、满足:⎩⎨⎧≤+≥+1022y x y x ,则y x +2的最小值是 (A )2-(B )22-(C )5- (D )52- 8.某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点进行机组试运行,且该水池的蓄水量与时间(时间单位:小时)的关系如图丙所示:丙乙甲给出以下三个判断:①0点到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水不出水. 则上述判断中一定正确的是(A )① (B )② (C )①③ (D )②③ 9.设函数xxx x f -+⋅=11ln)(,若)()(21x f x f >,则下列不等式必定成立的是 (A )21x x > (B )21x x < (C )2221x x > (D )2221x x < 10.已知数列{}n a 的通项公式是)193)(72(10--=n n a n ,则该数列的最大项和最小项的和为 (A )73- (B )75- (C )79- (D )1-第二卷 (非选择题,共100分)注意事项:1. 请用书写黑色字迹的0.5毫米的签字笔在答题纸上指定区域内作答,在试题上作答一律无效.2. 作图题可先用2B 铅笔作答。
江苏省盐城市2018届高三年级第三次模拟考试数学试题-Word版含答案

……01 、…此时f (九)= ,对应方程组为0 1所以另一个特征值2对应的一个特征向量为10分(C)解:直线的普通方程为x + y—1 = 0 ;由p = 2,得曲线C 的普通方程 2 2x + y =4 , ........................... 5 分所以, 所以直线l被曲线C截得的弦长2 22;2"(f)2 =应. ••…10 分2 2 2 2 2 2 2(D)解:根据柯西不等式,有(x+2y+3z)主(1 +2+3)(x +y +z),因x+2y+3z=2 , 所4122232当且仅当-=1=-时等号成立,解得x = 1,y=2,z=3,1 2 3 7 7 7… 1 2 3…即当x = —,y =—,z =—时,77 710分2 1 2 1 322.解:(1)甲恰好通过两个项目测试的概率为C3(—)(1——) = —.……2 2 84分2 1 2 1 13 1 一 1 3 1 (2)因为每人可被录用的概率为C3(一)(1-一)+(一)=一,所以P(X=0) = (1——)=—,2 2 2 2 2 8_ -1 1 1 1 2 3 _ -2 1 2 1 1 3P(X =1) =03(3(1 =)2二, P(X =2)=C2(京2(1 二)1=匕2 2 8 2 2 81 3 1P(X =3)=(二)=;•2 8故X的概率分布表为:8分所以,X 的数学期望13 3 13E(X) =0乂一十1 x一十2乂—+3尺一 =一 .-••…10分所以y = 0,23.解:(1)(里+ ^)01+a?) =W +房a 〔 a 2a十餐,a 22 2 a2。
a^----- 0,--------- 0 a i a2a2b2i a ba〔a2I』2 2ab2ab治--- 乂----- = 2D i b2 ,a〔a2b2 b2(4也)(a a2) _b; b22bb2 =(b b2)a a2b b(—+—)(a〔+a2)兰(加 +烷) a i a2.2.2 2b| b2(b| b2)所以—+—> — -------- -- , 当且仅a i a2 立. ……2分推广:2 2 2b b2bn2■ H I ■工a a2 a n(2) a i a2 a ia i bfa2,即a2 b i = a i b时等号成已知司》0(b i b2 川町)2a〔a?川a”b i 0证明:①当n=i时命题显然成立;当n=2时,由上述过程可知命题成立;②假设n=k(k芝2)时命题成立,即已知a^>0,b^>0(^ N*,i W 主k)时,有《堕.川b2 (b b2川b k)a i a2则n=k +1时,由W b2由—•一a i 球b2故a i 故na2b2a2b2 (b b2 |l| b k)2+——>------------------ 成*a k a a2 HI a k(b2 十房+川+ &)+*♦兰(b+B+lll + b k)2^ 隽a a2 a k a k ia a2 川a k(b+烷)2可知(b b2 b k)2况*' a k a k< b ki)2a k ia i a2b k b《ia k a k ik i时命题也成立.(b ia ia2b2a2 ak综合①②,由数学归纳法原理可知,命题对一切2_+=a ki '(b b2 b k b ki)2a k a k i 'a i a2恒成立.(注:推广命题中未包含n i的不扣分)证明:由(i)中所得的推广命题知\ 3 5 2n「C n C n C n C ni23252(2n i)2H 3 5 (2n i)? ①C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届江苏省盐城中学高三全仿真模拟检测数学试题(解析版)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分,把答案填写在答题卡上相应位置上..........1. 已知集合,,则___________.【答案】【解析】分析:根据集合交集运算法则即可得出结论.解析:集合,,.故答案为:.点睛:(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.2. 命题:若,则.其否命题是___________.【答案】若,则.【解析】分析:根据否命题的定义:若原命题为:若p,则q;否命题为:若,则.即可得出答案.解析:根据否命题的定义:若原命题为:若p,则q;否命题为:若,则.原命题为:若,则.否命题为:若,则.故答案为:若,则.点睛:写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.3. 已知直线过点,且与直线垂直,则直线的方程为___________.【答案】【解析】分析:设与直线垂直的直线方程为,根据直线过点,即可求得直线方程.解析:由题意,设与直线垂直的直线方程为,直线过点,直线的方程为:.故答案为:.点睛:1.直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0,(1)若l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0).(2)若l1⊥l2⇔A1A2+B1B2=0.2.与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0,(m≠C),与直线Ax+By+C=0垂直的直线方程可设为Bx-Ay+m=0.4. 一只口袋内装有大小相同的4只球,其中2只黑球,2只白球,从中一次随机摸出2只球,恰有1只黑球的概率是___________.【答案】【解析】分析:先求出基本事件总数,再求出有1只黑球包含的基本事件个数,由此能求出有1只黑球的概率.解析:一只口袋内装有大小相同的4只球,其中2只黑球,2只白球,从中一次随机摸出2只球,基本事件的总数为,有1只黑球包含的基本事件个数,有1只黑球的概率是.故答案为:.5. 根据如下图所示的伪代码,当输入的值为3时,输出的值为___________.【答案】9【解析】分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加,当不满足条件时退出循环,得到S的值即可.解析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加,当不满足条件时退出循环.此时.故输出的S值为9.故答案为:9.点睛:解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.6. 有100件产品编号从00到99,用系统抽样方法从中抽取5件产品进行检验,分组后每组按照相同的间隔抽取产品,若第5组抽取的产品编号为91,则第2组抽取的产品编号为___________.【答案】31【解析】分析:根据系统抽样原理的抽样间隔相等,求出第1组抽取的数据,再求第2组抽取的产品编号. 解析:据系统抽样原理,抽样间隔为.设第1组抽取数据为,则第5组抽取的产品编号为,解得.第2组抽取的产品编号为.故答案为:31.点睛:(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.7. 已知的三边长成公比为的等比数列,则其最大角的余弦值为___________.【答案】【解析】试题分析:设最小边为,所以另外两边为考点:余弦定理解三角形8. 已知函数若,则实数___________.【答案】或-1【解析】试题分析:由题意可将,转化为或,解得或考点:函数求值9. 已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为___________.【答案】【解析】试题分析:因为圆柱的表面积为,所以圆柱的表面积为考点:圆柱的侧面积10. 在平面直角坐标系中,若不等式组(为常数)所表示的平面区域的面积等于2,则___________.【答案】3【解析】试题分析:不等式组所围成的区域如图所示,∵其面积为2,∴,∴C的坐标为,代入,得.考点:1.线性规划;2.基本不等式.11. 如果双曲线的渐近线与抛物线相切,则该双曲线的离心率为___________.【答案】【解析】分析:先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案即可得到.解析:已知双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,,即.故答案为:.点睛:双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a,b,c的齐次关系式,将b用a,e表示,令两边同除以a或a2化为e的关系式,进而求解.12. 在中,,且,为所在平面内的一点,则的最小值是___________.【答案】【解析】分析:以为坐标原点,为轴建立直角坐标系,则,设点的坐标为,可得,从而可得结果.详解:由,且,得,如图,以为坐标原点,为轴建立直角坐标系,则,设点的坐标为,则,即的最小值是,故答案为.点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).13. 若函数在处取得极小值,则实数的取值范围是___________.【答案】【解析】分析:求出函数的导数,通过讨论m的范围求出函数的单调区间,从而确定m的具体范围即可.解析:,,.①当时,恒成立,即在R上递增,若时,则.若时,则.故函数在递增,在递减,故在处取得极小值,符合题意;②当时,恒成立,即在R上递减,若时,则.若时,则.故函数在递减,在递增,故在处取得极大值,不符合题意;③当时,使得,即,但当时,即,在递减,故,即在递减,不符合题意.综上所述:m的范围是.故答案为:.点睛:求函数的极值应先确定函数的定义域,再解方程,再判断的根是否是极值点,可通过列表的形式进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.14. 已知数列的首项,.若对,且,不等式恒成立,则实数的取值范围是___________.【答案】【解析】分析:,可得,即可得到数列为等比数列,公比为,首项为a,而不等式恒成立化为:,由,不等式化为:,分类讨论即可得出答案.解析:,,数列为等比数列,公比为,首项为a,即,不等式等式恒成立可化为:,即:当n为奇数时,,,即对且恒成立.,解得:.当n为偶数时,,,即对且恒成立.,解得:.综上所述:.故答案为:.点睛:本题考查了数列递推关系、等差数列与等比数列的通项公式、分类讨论方法,考查了推理能力与计算能力.二、解答题:本大题共6小题,共计90分解答应写出文字说明、证明过程或演算步骤.15. 如图,四棱柱为长方体,点是中点,是的中点.(I)求证:平面;(l)若,求证:平面平面.【答案】(1)证明见解析;(2)证明见解析.【解析】分析:(1)取中点为,连接,,从而可得四边形,都为平行四边形,所以,从而即可证明;(2)因为四棱柱为长方体,,所以;因为平面,所以,从而可得所以平面,所以即可证明平面平面.解析:(1)取中点为,连接,.由已知点是中点,是的中点可以证得,四边形,都为平行四边形,所以,所以.因为平面,平面,所以平面.(Ⅱ)因为四棱柱为长方体,,所以.因为平面,所以.因为,平面,平面,所以平面,平面,所以平面平面.点睛:面面垂直的证明的两种思路(1)用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线;(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角,把证明面面垂直的问题转化为证明平面角为直角的问题.16. 在平面直角坐标系中,以轴为始边作角,角的终边经过点.(I)求的值;(Ⅱ)求的值.【答案】(1);(2).【解析】分析:(1)由于角其终边经过点,故,,再利用两角和与差的正余弦公式即可;(2)直接利用公式即可.解析:(1)由于角其终边经过点,故,..(2).则,.点睛:三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.17. 在平面直角坐标系中,椭圆的焦距为2,分别为其左右焦点,过的直线与椭圆交于两点,直线的斜率为-1.(I)若直线与椭圆的右准线交于点且,求椭圆的标准方程;(Ⅱ)若,求的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】分析:(1)设,结合的坐标,代入,即可求出答案;(2)设,,,,,为钝角,,再联立直线与椭圆方程,由韦达定理得到,,从而表示出,然后代入式子即可得到答案.解析:(1),,所以,椭圆的标准方程为.(2)设,,为钝角联立直线与椭圆方程,其中整理可得:,.代入,解得:舍去).点睛:在解决直线与圆锥曲线相交,所得弦端点的有关的向量问题时,一般需利用相应的知识,将该关系转化为端点坐标满足的数量关系,再将其用横(纵)坐标的方程表示,从而得到参数满足的数量关系,进而求解.18. 某市公园内的人工湖上有一个以点为圆心的圆形喷泉,沿湖有一条小径,在的另一侧建有控制台,和之间均有小径连接(小径均为直路),且,喷泉中心点距离点60米,且连线恰与平行,在小径上有一拍照点,现测得米,米,且.(I)请计算小径的长度;(Ⅱ)现打算改建控制台的位置,其离喷泉尽可能近,在点的位置及大小均不变的前提下,请计算距离的最小值;(Ⅲ)一人从小径一端处向处匀速前进时,喷泉恰好同时开启,喷泉开启分钟后的水幕是一个以为圆心,半径米的圆形区域(含边界),此人的行进速度是米/分钟,在这个人行进的过程中他会被水幕沾染,试求实数的最小值.【答案】(Ⅰ)千米;(Ⅱ);(Ⅲ)4.【解析】分析:(I) 以为坐标原点,所在直线为轴,过且垂直于的直线为轴,建立平面直角坐标系,由题意可知,,则AB所在直线即可表示,即可求出A点坐标,从而得出答案;(Ⅱ)三点共圆,可求圆的方程为,,则距离最小值为圆心与C之间的距离减去半径;(Ⅲ) 因为在的正西方向,且千米,所以. 假设在时刻人所在的位置为,所以,则可表示,又在时,,欲使这个人行进的过程中会被水幕沾染,则存在,使得,化简即可得出答案.解析:(I)以为坐标原点,所在直线为轴,过且垂直于的直线为轴,建立如图所示的平面直角坐标系,由千米,,可知,直线的方程为,.所以直线的方程为,令,得,所以,千米;(Ⅱ)三点共圆,可求圆的方程为,,则距离最小值为(此时点为直线与点及坐标原点之间劣弧的交点);(Ⅲ)因为在的正西方向,且千米,所以.人从行驶到所需要的时间为 (分钟),假设在时刻人所在的位置为,则千米,所以,则.又在时,,欲使这个人行进的过程中会被水幕沾染,则存在,使得,即成立,所以存在,使得成立,当时,,当且仅当,即时取等号.所以,即实数的最小值为4.点睛:解函数应用题常见的错误:①不会将实际问题抽象转化为函数模型,或转化不全面;②在求解过程中忽略实际问题对变量参数的限制条件.19. 已知正项数列的前项和为,其中.(I)若,求数列的通项公式;(I)若,求证:是等差数列.【答案】(1);(2)证明见解析.【解析】分析:(1)根据题意,有,解得,故,再利用与之间的关系式即可求出;(2)根据题意,有,设,通过求解可得,再利用与之间的关系式即可证明.解析:(1)根据题意,有,解得,故,当时有,两式相减得,又恒成立,则,所以数列是等差数列,故,(2)根据题意,有,因为,所以可设,(2)-(1)得 (4),(3)-(2)得 (5)(5)-(4)得,当时故舍,则有,代入(4)式得,代入(1)式得,所以,当时有.两式相减得,整理得.又恒成立,则,所以是等差数列.点睛:已知S n求a n的一般步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.20. 已知函数,.(I)若,求函数的单调区间;(Ⅱ)若存在极小值点,且,其中,求证:;(Ⅲ)试问过点可作多少条直线与的图像相切?并说明理由.【答案】(Ⅰ)单调减区间为单调增区间为;(Ⅱ)证明见解析;(Ⅲ)答案见解析.【解析】分析:(1)对进行求导计算即可得到单调区间;(2)若存在极小值点,,则,由可得,化简代入,即可得到证明;(2)设切点坐标是,依题意:,化简得:设,,故函数在上零点个数,即是曲线切线的条数.,接下来对a进行分析讨论即可.解析:(1),所以的单调减区间为单调增区间为;(2),存在极小值点,则.,则,所以代入所以,则,又,所以;(3)时,有1条切线;时,有2条切线.设切点坐标是,依题意:即,化简得:设,故函数在上零点个数,即是曲线切线的条数.,①当时,,在上恰有一个零点1;②当时,在上恒成立,在上单调递减,且,故在上有且只有一个零点,当时,在上恰有个零点;③时,在上递减,在上递增,故在至多有两个零点,且又函数在单调递增,且值域是,故对任意实数,必存在,使,此时由于,函数在上必有一零点;先证明当时,,即证若,,而,由于若,构建函数,在为增函数,综上时,,所以,故又,,所以在必有一零点.当时,在上有两个零点综上:时,有1条切线;时,有2条切线.点睛:导数在研究函数零点中的作用(1)研究函数图象的交点、方程的根、函数的零点,归根到底是研究函数的性质,如单调性、极值等.(2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.。