电力电子技术I-实验1-直流斩波电路

合集下载

电力电子直流斩波电路实验

电力电子直流斩波电路实验

特性曲线
六、思考问题回答
1.二极管在电路里起到什么作用 · 提供续流通道;单向导通 2.在观察负载电阻R两端电压波形时应 注意什么? · 3.将测试数据与理论计算做比较 分析 误差产生的原因 ·
测, 图由 形于 反二 向极 。管 方 向 原 电 因 路 应 实 将 验 探 时
பைடு நூலகம்
则波 用 会形 示 造时 波 成, 器 短要 两 路注 探 。意 头 共同 地时 问观 题测 ,两 否处
分别用示波器测量PWM脉宽调制信号 的VT-G端及负载电阻R两端的波形 通过改 变PWM脉宽调制信号的占空比 按下面表 格来进行波形及数据的测试
数据记录
20
负载 R 两端电压U o ( V )
35
50
65
80
此表格可用于所有直流斩波电路的测试
五、实验报告要求
1.记录降压斩波电路buck chopper的 输入及输出波形 2.分别画出不同斩波电路的Uo =f (������)
实验一 直流斩波电路实验
一、实验目的
熟悉六种斩波电路(buck chopper 、 boost chopper 、buck-boost chopper、 cuk chopper、 sepic chopper、 zeta chopper)的工作原理, 掌握这六种斩波电路的工作状态及波形 情况。
二、实验设备和仪器
1 SMCL-1电力电子教学实验装置 2 NMCL-22组件 3 数字双踪记忆示波器 4 数字万用表
三、实验原理接线图
直流斩波电路实验线路
四、实验内容及步骤
按照实验面板上各种斩波器的电路 图,取用相应的元件,搭成相应的斩波 电路即可 (可带电操作) 直流电源取上面的5v 电阻 电容 电感任选 PWM脉宽调制信号的输出VT-G端 与斩波电路中的 VT管的控制端G连 接 地线与VT管的E端连接 通过旋转 电位计来调节占空比 用示波器测出 脉宽调制信号的幅值 频率及占空比 的调节范围

电力电子技术实验报告--直流斩波电路的仿真

电力电子技术实验报告--直流斩波电路的仿真

实验报告(理工类)
通过本实验,加深对直流斩波电路工作原理的理解,并学习采用仿真软件来研究电力电子技术及相关控制方法。

二、实验原理
V L/R
¥GVD u 。

图2.1直流降压电路原理图
直流降压变流器用于降低直流电源的电压,使负载侧电压低于电源电压,其原理电路如图2.1所示。

U 。

=
&E=『E=aE (2-1) 4>n+^off /
式(2-1)中,T 为V 开关周期,%为导通时间,为占空比。

在本实验中,采用保持开关周期T 不变,调节开关导通时间&I 的脉冲宽度调制方式来实验对输出电压的控制。

仿真的模型线路如下图所示。

开课学院及实验室:
实验时间:年月日 一、实验目的
图2.2降压斩波电路仿真模型
在模型中采用了IGBT,IGBT的驱动信号由脉冲发生器产生,设定脉冲发生器的脉冲周期和脉冲宽度可以调节脉冲占空比。

模型中连接多个示波器,用于观察线路中各部分电压和电流波形,并通过傅立叶分析来检测输出电压的直流分量和谐波。

三、实验设备、仪器及材料
PC机一台、MATLAB软件
四、实验步骤(按照实际操作过程)
1.打开MATLAB,点击上方的SimUlink图标,进入SimUIinkLibraryBroWSer模式O
2.新建model文件,从SimulinkLibraryBrowser选择元器件,分别从sinks和SimPowerSystems 中选择,powergui单元直接搜索选取
3.根据电路电路模型正确连线
五、实验过程记录(数据、图表、计算等)
六、实验结果分析及问题讨论。

直流斩波电路工作原理

直流斩波电路工作原理

直流斩波电路工作原理
直流斩波电路是一种电子电路,用于将直流电源输出变为脉冲或交流信号。

其工作原理基于开关管的导通和断开,使得直流电源的电压在输出端产生高频脉冲。

直流斩波电路由两个主要部分组成:开关管和滤波电容。

开关管的导通和断开控制通过外部电路或脉冲生成器进行调控。

当开关管导通时,直流电源的电压就会传递到输出端,此时输出就是高电平。

相反,当开关管断开时,输出端的电压就会降为低电平。

滤波电容与开关管并联连接,作为电荷储存和释放的元件。

当开关管导通时,滤波电容开始充电,存储电荷。

当开关管断开时,滤波电容开始放电,释放电荷。

由于滤波电容具有一定的电荷和放电时间常数,输出信号会变为脉冲或周期性交流信号。

通过调控开关管的导通和断开时间,可以改变输出信号的频率和占空比。

频率可以通过改变开关管操作频率来调节,而占空比可以通过调控导通和断开时间比例来实现。

直流斩波电路的主要应用是在交流电源中产生脉冲信号,例如交流变频器、电力电子传动等领域。

它也可以用于产生交流电信号进行实验室测试和研究。

直流斩波电路实验报告电力电子技术实验报告

直流斩波电路实验报告电力电子技术实验报告

直流斩波电路实验报告电力电子技术实验报告导读:就爱阅读网友为您分享以下“电力电子技术实验报告”的资讯,希望对您有所帮助,感谢您对的支持! 实验二直流斩波电路的性能研究一.实验目的熟悉降压斩波电路(Buck Chopper)和升压斩波电路(Boost Chopper)的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。

二.实验内容1.SG3525芯片的调试。

2.降压斩波电路的波形观察及电压测试。

3.升压斩波电路的波形观察及电压测试。

三.实验设备及仪器1.电力电子教学实验台主控制屏。

2.MCL-16组件。

3.MEL-03电阻箱(900/0.41A)或其它可调电阻盘。

4.万用表。

5.双踪示波器6.2A直流安培表(MCL-Ⅱ2A直流毫安表为数字式仪表,MCL-Ⅲ2A直流安培表为指针式仪表,其他型号可能为MEL-06)。

四.实验方法1.SG3525的调试。

原理框图见图2-4。

将扭子开关S1打向“直流斩波”侧,S2电源开关打向“ON”,将“3”端和“4”端用导线短接,用示波器观察“1”端和左侧地之间的输出电压波形应为锯齿波,并记录其波形的频率和幅值。

f=27.40kHz,幅值为3.30V扭子开关S2扳向图2-4 PWM波形发生“OFF”,用导线分别连接“5”、“6”、“9”,再将S2扳向“ON”,用示波器观察“5”端波形,并记录其波形、频率、幅度。

调节“脉冲宽度调节”电位器,记录其最大占空比和最小占空比。

Dmax=77.7%,Dmin=9.5%,波形为方波,f=27.86kHz,幅度为14.0V2.实验接线图见图2-5。

(1)将“主电源2”的“2”端和“直流斩波电路”的“2”端相连,将“PWM波形发生”的“7”、“8”端分别和直流斩波电路VT1的G1、S1端相连,“直流斩波电路”的“4”、“5”端串联MEL-03电阻箱(将两组900Ω/0.4lA的电阻并联起来,逆时针旋转调至阻值最大约450Ω),和直流安培表(将量程切换到2A挡)。

电力电子技术直流斩波电路

电力电子技术直流斩波电路

a) Sepic斩波电路
输入输出关系:
b) Zeta斩波电路
Uo
ton toff
E ton T ton
E 1
E图3-6(S3e-p4ic9斩)波电路和Zeta斩波电路
电源电压与输出电压极性相同
23
3.1.4 Sepic斩波电路和 ZeVt处a斩于波通Z态电期e路间t原a,理斩电源波E经电开关路
i
i
1
2
续旳时间tx,即 ton
tx
1 me ln
1 m
I
20
O
t
onttt1来自x2t
t
off
T
c)
tx<t0ff
图3-3 用于直流电动机回馈能 量旳升压斩波电路及其波形
m
1 e b 1 e
--------电流断续旳条件
16
升降压斩波电路和Cuk斩波电路
1)升降压斩波电路 (buck -boost Chopper)
分V处于通态和处于断态 初始条件分电流连续和断续
7
一样能够从能降量传压递斩关系波出发电进路行旳推导 假定L为无穷大,负载电流Io维持不变(详见P101-102) 电源只在V处于通态时提供能量,为 EIoton 在整个周期T中,负载消耗旳能量为 RIo2T EM IoT
一周期中,忽视损耗,则电源提供旳能量与负载消耗旳能量相等。
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1旳能量转移至C1,
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (3-50)

直流斩波电路研究实验报告

直流斩波电路研究实验报告

直流斩波电路研究实验报告直流斩波电路研究实验报告引言直流斩波电路是一种常见的电子电路,它可以将直流电转换为可变的脉冲电流。

在本次实验中,我们将研究直流斩波电路的原理和性能,并通过实验验证其工作效果。

一、实验目的本次实验旨在通过搭建直流斩波电路,研究其工作原理和性能,并通过实验结果验证理论分析的正确性。

二、实验原理直流斩波电路由三个主要部分组成:输入直流电源、可变电阻和输出负载。

当输入直流电压经过可变电阻调节后,通过开关控制,形成一系列脉冲电流,最后通过输出负载得到所需的电压波形。

三、实验步骤1. 搭建直流斩波电路:将输入直流电源与可变电阻相连,并接入开关和输出负载。

2. 调节可变电阻:通过调节可变电阻的阻值,控制输出电压的大小。

3. 控制开关:通过控制开关的开关频率和占空比,调节输出脉冲的频率和宽度。

4. 观察输出波形:使用示波器观察输出波形,并记录实验数据。

四、实验结果与分析通过实验观察和数据记录,我们得到了直流斩波电路的输出波形。

根据理论分析,我们可以得出以下结论:1. 输出波形的频率和宽度与开关的开关频率和占空比有关。

当开关频率较高且占空比较大时,输出波形的频率较高且宽度较宽。

2. 输出波形的幅值与输入直流电压和可变电阻的阻值有关。

当输入直流电压较高且可变电阻的阻值较小时,输出波形的幅值较大。

五、实验结论通过本次实验,我们验证了直流斩波电路的工作原理和性能。

我们发现,通过调节可变电阻和控制开关,我们可以得到不同频率、宽度和幅值的输出波形。

这种电路在实际应用中具有广泛的用途,例如在电力变换、电子通信和电动机控制等领域都有重要的应用。

六、实验总结通过本次实验,我们对直流斩波电路有了更深入的了解。

我们通过实验验证了理论分析的正确性,并掌握了搭建和调节直流斩波电路的方法。

在实验过程中,我们还学会了使用示波器观察和记录波形数据的技巧。

这些实验技能对我们今后的学习和研究都具有重要的意义。

七、参考文献[1] 张三, 李四. 直流斩波电路原理与应用[M]. 北京:电子工业出版社,2010.[2] 王五, 赵六. 电子电路实验指导[M]. 北京:高等教育出版社,2015.以上为直流斩波电路研究实验报告的主要内容。

电力电子技术直流斩波电路的性能研究实验报告

电力电子技术直流斩波电路的性能研究实验报告

电力电子技术直流斩波电路的性能研究实验总结
备注:序号(一)、(二)、(三)、(四)为实验预习填写项。

五、实验内容与步骤
图1 降压斩波电路的原理图及波形
图2 升压斩波电路的原理图及波形
图3 升降压斩波电路的原理图及波形
1、控制与驱动电路的测试
(1)启动实验装置电源,开启PE-19 控制电路电源开关。

(2)调节PWM 脉宽调节电位器改变Ur,用数字存储示波器分别观测SG3525 的第11 脚与第14 的波形,观测输出PWM 信号的变化情况。

(3)用示波器分别观测A、B 和PWM 信号的波形,记录其波形、频率和幅值。

(4)用数字存储示波器的两个探头同时观测11 脚和14 脚的输出波形,调节PWM 脉宽调节电位器,观测两路输出的PWM 信号,测出两路信号的相位差,并测出两路PWM 信号之间最小的“死区”时间。

2、直流斩波器的测试
斩波电路的输入直流电压Ui 由三相调压器输出的单相交流电经DJK20 挂箱上的单相桥式整流及电容滤波后得到。

接通交流电源,观测Ui 波形,记录其平均值。

电力电子技术课程设计---直流斩波电路的性能研究

电力电子技术课程设计---直流斩波电路的性能研究
6脚:振荡器外接定时电阻RT端,RT值为2~150 kΩ;
7脚:振荡器放电端,用外接电阻来控制死区时间,电阻范围为0~500 Ω;
8脚:软启动端,外接软启动电容,该电容由内部Vref的50μA恒流源充电;
9脚:误差放大器的输出端;
10脚:PWM信号封锁端,当该脚为高电平时,输出驱动脉冲信号被封锁,该脚主要用于故障保护;
11脚:A路驱动信号输出;
12脚:接地;
13脚:输出集电极电压;
14脚:B路驱动信号输出;
15脚:电源, 其范围为8~35 V,通常采用+15V;
16脚:内部+5 V基准电压输出。
SG3525芯片内部结构如图所示
图2-3bSG3525内部结构图
SG3525芯片内部集成了精密基准电源、误差放大器、带同步功能的振荡器、脉冲同步触发器、图腾柱式输出晶体管、PWM比较器、PWM锁存器、软启动电路、关断电路和欠压锁定电路。
1脚:误差放大器的反相输入端;
2脚:误差放大器的同相输入端;
3脚:同步信号输入端, 同步脉冲的频率应比振荡器频率fs要低一些;
4脚:振荡器输出;
5脚:振荡器外接电容CT端,振荡器频率fs=1/CT(0.7RT+3R0),R0为5脚与7脚之间跨接的电阻,用来调节死区时间,定时电容范围为0.001~0.1 μF;
稳态时,一个周期T中L积蓄能量与释放能量相等
化简得:
(1)
,输出电压高于电源电压,故称升压斩波电路。也称之为boost变换器。 表示升压比,调节其大小即可改变Uo。将升压比的倒数记作β,即 。β和导通占空比α有如下关系:
(2)
因此,式(1)可表示为
(3)
升压斩波电路能使输出电压高于电源电压的原因:L储能之后具有使电压泵升的作用,电容C可将输出电压保持住。

直流斩波电路原理实验报告

直流斩波电路原理实验报告

直流斩波电路原理实验报告【实验日期】2021年05月24日【实验目的】1. 了解直流斩波电路的工作原理。

2. 掌握直流斩波电路的实现方法。

3. 学会使用示波器观测斩波电路的输出波形。

直流斩波电路是一种将直流电信号转换为可控的脉冲信号的电路。

斩波电路是通过对输入直流电压进行切割,使其呈现出一个矩形脉冲的形式,从而得到一个近似于正弦波的波形。

直流斩波电路的核心部件是斩波元件(如晶闸管、场效应管等),它的主要作用是控制输出信号的幅度和频率。

直流斩波电路的两个主要类型是单相半波斩波电路和单相全波斩波电路。

单相半波斩波电路将正弦波输入信号的负半周期直接截去,只保留正半周期,这样就可以得到一个具有不同占空比(也称为工作比)脉冲的输出信号。

如果幅度和频率能够精确控制,输出信号的形状就可以接近正弦波。

单相全波斩波电路通过使用两个斩波器,将正弦波信号的负半周期和正半周期都切割,然后将两个斩波器的输出信号相加,可以得到一个输出波形更接近正弦波的脉冲信号。

1. 直流电源2. 稳压电源3. 晶闸管4. 电阻5. 电容6. 示波器7. 多用电表1. 按照电路图连接电路。

2. 接通直流电源和稳压电源,调节稳压电源输出电压,并使用多用电表检测电压值。

3. 使用示波器观测晶闸管的正向电压和负向电压,并实时记录值。

4. 调节输入直流电压和斩波角度,观察输出脉冲信号的波形变化,并记录每个角度的输出波形。

通过实验可以得到不同控制角度下的直流斩波输出波形,并可以根据输出波形的变化情况分析电路的工作性质。

当斩波角度较小时,输出波形接近正弦波,但波形略有扭曲;当斩波角度增大时,输出波形形态变化,幅度减小,频率增大,直到波形变为矩形脉冲,输出电压为零。

通过本次实验可以深入了解直流斩波电路的工作原理和实现方法,掌握使用示波器观测输出波形的方法,同时也可以理解不同控制角度下的输出波形变化特点。

直流斩波电路在电力调控、数码电子等领域有广泛的应用,掌握其原理和实现方法对于工程实践具有重要意义。

直流斩波电路原理实验报告新颖完整

直流斩波电路原理实验报告新颖完整

直流斩波电路原理实验报告新颖完整实验报告:直流斩波电路原理及实验一、实验目的掌握直流斩波电路的基本原理,了解其在工程中的应用,进一步加深对电路的理解。

二、实验器材1.直流电源2.电阻、电容、二极管、晶体管等元器件3.示波器、万用表等测试仪器三、实验原理四、实验步骤1.搭建直流斩波电路按照实验原理搭建直流斩波电路,将直流电源连接到斩波器的输入端,然后将输出端连接到滤波电路。

2.测量电路参数使用万用表等测试仪器,依次测量电阻、电容、二极管等元器件的电阻值、电容值、正向电压降等参数。

3.进行示波器测量将示波器的探头分别连接到斩波器的输入端和输出端,观察输入信号和输出信号的波形,并记录下相关数据。

4.更换元器件在保持电路基本结构不变的情况下,更换其中一元器件,并观察输出信号的变化,记录下相关数据。

五、实验数据记录及分析1.电路参数记录测得的电阻、电容、二极管等元器件的电参数。

2.示波器测量数据记录输入信号和输出信号的波形,并分析其频率、幅值等特征。

3.元器件更换实验数据记录更换元器件后输出信号的波形,并分析其变化原因。

六、实验结果讨论通过实验数据的记录和分析,得出直流斩波电路的输入信号和输出信号的关系,进一步认识到电路中各元器件的作用与影响。

七、实验心得通过本次实验,我深入理解了直流斩波电路的原理和应用,并通过实际操作了解了不同元器件对输出信号的影响,加深了对电路的认识。

这次实验让我更加熟悉了直流斩波电路的特点,培养了动手实验的能力,提高了解决问题的能力。

希望今后能在工程中更好地应用直流斩波电路的知识。

直流斩波电路实验报告

直流斩波电路实验报告

直流斩波电路实验报告实验目的,通过实验,掌握直流斩波电路的工作原理和特性,了解斩波电路在电力电子中的应用。

实验器材,示波器、直流电源、电阻、电容、开关管等。

实验原理,直流斩波电路是一种将直流电压转换为脉冲或方波电压的电路。

其工作原理是利用开关管(如晶闸管、场效应管等)周期性地将直流电源接通和断开,通过控制开关管的导通和关断时间比,可以得到不同占空比的方波输出。

直流斩波电路的输出波形可以通过控制开关管的导通和关断来实现调制,从而实现对电压的调节和控制。

实验步骤:1. 搭建直流斩波电路。

将直流电源、开关管、电阻和电容按照电路图连接起来,并接上示波器。

2. 调节开关管的导通和关断时间比。

通过改变开关管的导通和关断时间比,观察输出波形的变化。

3. 测量电压和电流。

利用示波器和万用表测量输出波形的电压和电流值。

4. 分析实验结果。

根据实验数据和波形图,分析直流斩波电路的工作特性和输出波形的变化规律。

实验结果与分析:通过实验,我们得到了不同占空比的方波输出波形,并测量了相应的电压和电流值。

实验结果表明,随着开关管导通时间比的增加,输出波形的占空比也相应增加,电压值随之变化。

当导通时间比为50%时,输出波形的占空比为50%,电压值为直流电源的一半。

当导通时间比为100%时,输出波形为直流电压。

根据实验结果,我们可以得出直流斩波电路的特性,通过控制开关管的导通和关断时间比,可以实现对输出波形的调制,从而实现对电压的调节和控制。

直流斩波电路在电力电子中有着广泛的应用,如变频调速、逆变器等领域。

实验总结:通过本次实验,我们深入了解了直流斩波电路的工作原理和特性,掌握了斩波电路的搭建和调节方法。

实验结果表明,直流斩波电路可以实现对电压的调节和控制,具有广泛的应用前景。

在今后的学习和工作中,我们将进一步深入研究电力电子领域,不断提高自己的专业能力。

以上就是本次实验的全部内容,希望对大家有所帮助。

感谢大家的阅读!。

电力电子技术I-实验1-直流斩波电路

电力电子技术I-实验1-直流斩波电路

电力电子技术I-实验1-直流斩波电路-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII实验报告课程名称:电力电子技术指导老师:马皓成绩:__________________实验名称:直流斩波电路的研究实验类型:_________________同组学生姓名:___________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1、熟悉六种直流斩波电路(Buck、Boost、Buck-Boost、Cuk、Sepic、Zeta)的工作原理与特点;2、掌握六种直流斩波电路在负载电流连续工作时的工作状态以及负载波形。

二、实验内容1、分别按照六种直流斩波电路的结构分别连接对应的试验电路;2、分别观察六种不同直流斩波电路在电路不同占空比的PWN波时的工作情况,并记录负载电压,与理论值进行比较,分析实验结果。

三、主要实验设备与仪器1、MPE-I电力电子探究性实验平台2、NMCL-22H直流斩波电路3、NMCL-22H-CK直流斩波电路插卡4、NMCL-50数字直流表5、示波器四、实验线路1、Buck chopper降压斩波电路(1)将PWN波形发生器的占空比调节电位器左旋到底(使占空比最小),输出端“VG-T”端接到斩波电路中IGBT管VT的”G“端,将PWN的”地“接到斩波电路中IGBT的”E“端,按照下图接成Buck chopper斩波器;(2)检查电路无误后,闭合电源开关,用示波器观察PWN输出波形,调节PWN触发器的电位器RP1,即改变触发脉冲的占空比记录占空比10%~80%实际负载电压,观察PWN占空比分别为10%、50%、80%下的负载电压波形。

2、Boost chopper升压斩波电路(1)按照下图接成Boost chopper电路,电感电容任选,负载电阻为R;(2)参照Buck chopper斩波电路,改变触发脉冲的占空比记录占空比10%~80%实际负载电压;(3)观察PWN占空比分别为10%、50%、80%下的负载电压波形。

直流斩波电路

直流斩波电路

直流斩波电路简介直流斩波电路(DC Chopper)是一种用来控制直流电动机的电路。

它可以为直流电机提供高效的调速和转向控制,因此在工业应用中非常广泛。

直流斩波电路主要由斩波器、控制电路和直流电源组成。

斩波器是控制电动机转速和方向的核心部分,它通过调节输出电压和电流的波形来实现电机的控制。

控制电路则通常采用微处理器或单片机,用来控制斩波器的工作状态和输出信号的频率、幅值和相位。

直流电源则是为整个系统提供电能,以保证电机能够正常运行。

斩波器斩波器是直流斩波电路中最重要的部分,它通常包括一个开关器件和一个电感元件。

开关器件可以是晶闸管、MOSFET管、IGBT管等。

而电感元件则是用来限制输出电流和平滑输出电压波形的。

在斩波器中,当开关器件导通时,电感元件会吸收输入电源中的能量,同时输出电压也会上升。

而当开关器件关断时,电感元件会反向放电,同时输出电压也会下降。

通过改变开关器件的工作状态,我们就可以改变电源的输出电压和电流波形,从而实现对电动机的控制。

控制电路在直流斩波电路中,控制电路主要负责控制斩波器的开关状态。

控制电路通常由微处理器或单片机实现,可以使用PID等算法来控制输出电压和电流的稳定性和响应性。

控制电路同样可以控制输出信号的频率、幅值和相位。

这些信号不仅可以控制电动机的运行状态,还可以用来监测电机的转速和位置,以实现更加精确的控制。

直流电源直流电源是为整个电路提供电能的部分,它的稳定性和可靠性对整个电路的运行非常重要。

在直流斩波电路中,直流电源通常采用整流电路和充电电路的结合,以实现对电池的充电和电机运行的供电。

直流电源的质量也直接影响了斩波器和控制电路的稳定性,因此需要特别注意。

应用直流斩波电路可以应用于各种不同类型的电机控制,包括直流电动机、无刷直流电机和步进电机等。

它的高效能和高精度控制使得它在精密控制和节能降耗等方面具有广泛的应用前景。

除此之外,直流斩波电路还可以应用在光伏逆变器、风力发电机、电子变压器等领域中,以实现对电能的转换和传输。

直流斩波电路原理实验

直流斩波电路原理实验

直流斩波电路原理实验概述直流斩波电路是一种将直流信号转换为脉冲信号的电路。

该电路通过控制开关管的导通和截止,实现了直流信号的二值化处理。

本文将介绍直流斩波电路的原理和实验步骤。

直流斩波电路原理直流斩波电路的原理基于开关管的开关功能,当开关管导通时,直流信号通过;当开关管截止时,直流信号被切断,产生脉冲信号。

在直流斩波电路中,常用的开关管有晶体管和场效应管。

实验材料1.直流电源2.NPN型晶体管3.耦合电容4.变压器5.负载电阻6.示波器实验步骤1. 搭建电路根据电路原理图,搭建直流斩波电路实验电路。

将直流电源连接到变压器的输入端,变压器的输出端与晶体管的集电极相连,同时将负载电阻接在晶体管的发射极和地之间。

2. 调整参数调整变压器的变比,使得输出信号的幅值适当。

同时调整负载电阻的阻值,以达到所需的输出功率。

3. 连接示波器将示波器的探头分别连接到晶体管的集电极和发射极上,以观察输出信号的波形。

4. 实验记录记录示波器显示的波形和各个参数的数值。

实验结果分析根据实验记录的数据,分析直流斩波电路的性能和特点。

主要包括以下几个方面:1. 输出波形通过示波器观察输出波形,可以判断直流斩波电路的工作状态和性能。

根据波形的幅值、频率和占空比等参数,可以评估电路的性能。

2. 电路效率根据输入功率和输出功率的比值,计算直流斩波电路的效率。

效率越高,电路的能量转换效率越高。

3. 噪声分析通过分析输出波形的噪声水平,可以评估直流斩波电路的抗干扰能力和噪声性能。

实验应用直流斩波电路在实际应用中有着广泛的用途,主要包括以下几个方面:1. 消息传输直流斩波电路可以将模拟信号转换为数字信号,用于消息传输和通信系统中。

2. 电力变换直流斩波电路在电力系统中可以用于直流与交流的转换,实现电力的变压变频控制。

3. 电动机控制直流斩波电路可用于电动机控制系统,实现电机的速度和方向控制。

4. 脉冲控制直流斩波电路产生的脉冲信号可用于触发其他电路和系统的工作,如触发器、计数器等。

直流斩波电路实验报告

直流斩波电路实验报告

直流斩波电路实验报告直流斩波电路实验报告引言:直流斩波电路是电力电子学中的重要实验之一。

通过该实验,我们可以深入了解斩波电路的原理和工作方式,以及其在电力转换中的应用。

本实验旨在通过搭建和测试直流斩波电路,验证其性能和有效性。

一、实验目的本实验的主要目的是搭建直流斩波电路,并通过实验测试来验证其性能和有效性。

具体而言,我们将实现以下目标:1. 理解直流斩波电路的原理和工作方式;2. 掌握搭建直流斩波电路的方法和步骤;3. 测试直流斩波电路的输出波形,分析其性能和有效性。

二、实验原理直流斩波电路是一种将直流电压转换为交流电压的电路。

其基本原理是利用开关器件(如晶闸管、IGBT等)控制直流电源的导通和截断,从而改变电路中的电流路径,实现对直流电压的切割和转换。

直流斩波电路通常由三个主要部分组成:1. 输入滤波电路:用于滤除直流电源中的纹波和杂散信号,保证直流电压的稳定性;2. 斩波开关电路:由开关器件和控制电路组成,用于控制直流电源的导通和截断;3. 输出滤波电路:用于滤除斩波开关引起的高频脉冲信号,使输出电压变为平滑的交流电压。

三、实验步骤1. 搭建直流斩波电路:按照实验指导书提供的电路图和元器件清单,依次连接电路中的各个元器件和开关器件。

确保连接正确无误。

2. 调整控制电路参数:根据实验要求,调整控制电路中的参数,如频率、占空比等。

确保电路能够正常工作。

3. 测试输出波形:将示波器连接到输出端口,调整示波器的设置,观察并记录输出波形。

分析波形的频率、幅值和形状,评估直流斩波电路的性能和有效性。

4. 分析实验结果:根据实验数据和观察结果,对直流斩波电路的性能和有效性进行分析和总结。

比较实验结果与理论预期的差异,并提出可能的原因和改进方法。

四、实验结果与分析经过实验测试,我们得到了直流斩波电路的输出波形。

通过观察和分析波形,我们可以得出以下结论:1. 输出波形呈现出周期性的正弦波形,表明直流斩波电路能够将直流电压有效地转换为交流电压。

直流斩波电路实验报告

直流斩波电路实验报告

实验名称:直流斩波电路实验实验日期:2021年X月X日实验地点:实验室实验目的:1. 理解直流斩波电路的工作原理及组成;2. 掌握直流斩波电路的基本性能参数;3. 分析直流斩波电路在不同负载下的性能变化。

实验仪器:1. 直流斩波电路实验装置;2. 数字示波器;3. 数字万用表;4. 电源及负载。

实验原理:直流斩波电路是一种将直流电压转换为可调直流电压的电力电子电路。

它主要由斩波器、滤波器和控制器等部分组成。

斩波器是直流斩波电路的核心部分,其主要作用是将输入的直流电压斩成脉冲电压,再通过滤波器滤去脉冲电压中的高频谐波,得到稳定的输出电压。

实验步骤:1. 连接实验装置,确保各部分连接正确;2. 打开电源,调整输入电压,观察斩波器输出波形;3. 使用示波器观察斩波器输出波形,分析斩波器开关频率、占空比等参数;4. 调整负载,观察输出电压变化,分析负载对斩波电路性能的影响;5. 记录实验数据,进行数据分析。

实验结果与分析:1. 斩波器输出波形通过观察斩波器输出波形,可以看出斩波器开关频率和占空比对输出波形有重要影响。

当开关频率较高时,输出波形较为平滑;当占空比较大时,输出电压较高。

2. 负载对斩波电路性能的影响当负载增大时,输出电压降低,电流增大。

这是由于负载电流的增加导致斩波器开关频率和占空比发生变化,进而影响输出电压。

3. 实验数据分析通过对实验数据的分析,可以得出以下结论:(1)斩波器开关频率对输出波形有重要影响,频率越高,输出波形越平滑;(2)占空比对输出电压有直接影响,占空比越大,输出电压越高;(3)负载对斩波电路性能有较大影响,负载增大时,输出电压降低,电流增大。

实验结论:通过本次实验,我们了解了直流斩波电路的工作原理及组成,掌握了直流斩波电路的基本性能参数,分析了负载对斩波电路性能的影响。

实验结果表明,斩波器开关频率、占空比和负载对斩波电路性能有显著影响。

注意事项:1. 实验过程中,注意安全,确保电源及负载连接正确;2. 观察波形时,注意调整示波器参数,确保波形清晰;3. 实验数据记录准确,便于后续分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:电力电子技术指导老师:马皓成绩:__________________实验名称:直流斩波电路的研究实验类型:_________________同组学生姓名:___________一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
*
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的
1、熟悉六种直流斩波电路(Buck、Boost、Buck-Boost、Cuk、Sepic、Zeta)的工作原理与
特点;
2、掌握六种直流斩波电路在负载电流连续工作时的工作状态以及负载波形。

二、实验内容
1、分别按照六种直流斩波电路的结构分别连接对应的试验电路;
2、分别观察六种不同直流斩波电路在电路不同占空比的PWN波时的工作情况,并记录负载
电压,与理论值进行比较,分析实验结果。


三、主要实验设备与仪器
1、MPE-I电力电子探究性实验平台
2、NMCL-22H直流斩波电路
3、NMCL-22H-CK直流斩波电路插卡
4、NMCL-50数字直流表
5、示波器
四、实验线路
1、Buck chopper降压斩波电路
(1)将PWN波形发生器的占空比调节电位器左旋到底(使占空比最小),输出端“VG-T”端接到斩波电路中IGBT管VT的”G“端,将PWN的”地“接到斩波电路中IGBT的”E“端,按照下图接成Buck chopper斩波器;
(2)检查电路无误后,闭合电源开关,用示波器观察PWN输出波形,调节PWN触发器的电位器RP1,即改变触发脉冲的占空比记录占空比10%~80%实际负载电压,观察PWN占空比分别为10%、50%、80%下的负载电压波形。

`
2、Boost chopper升压斩波电路
(1)按照下图接成Boost chopper电路,电感电容任选,负载电阻为R;
(2)参照Buck chopper斩波电路,改变触发脉冲的占空比记录占空比10%~80%实际负载电压;
(3)观察PWN占空比分别为10%、50%、80%下的负载电压波形。

3、Buck-Boost chopper升压斩波电路
(1)按照下图接成Buck-Boost chopper电路,电感电容任选,负载电阻为R;
(2)参照Buck chopper斩波电路,改变触发脉冲的占空比记录占空比10%~80%实际负载电压;
(3)观察PWN占空比分别为10%、50%、80%下的负载电压波形。

4、—
5、Cuk chopper升压斩波电路
(1)按照下图接Cuk chopper电路,电感电容任选,负载电阻为R;
(2)参照Buck chopper斩波电路,改变触发脉冲的占空比记录占空比10%~80%实际负载电压;
(3)观察PWN占空比分别为10%、50%、80%下的负载电压波形。

五、实验数据记录与处理
1、Buck chopper降压斩波电路
/
PW占空比分别为10%、50%、80%下的负载电压与V D电压波形:
2、Boost chopper升压斩波电路
PW占空比分别为10%、50%、80%下的负载电压波形:
3、Buck-Boost chopper升压斩波电路

PW占空比分别为10%、50%、80%下的负载电压波形:
4、Cuk chopper升压斩波电路
PW占空比分别为10%、50%、80%下的负载电压波形:
}
六、实验结果与分析
1、前两个实验中所采用的电路中,负载两端并未并联电容,因此,负载两端的电压无法采用线性纹波近似。

从示波器上可以明显观察到输出端电压变化,因为存在交流分量。

加入电容后则在负载两端观察到的的近似为直流电压输出。

2、实验中实测负载端输出电压与理论值基本符合。

但当占空比增加时,误差会增大,实际使用中需要选择合理的占空比。

七、思考问题
1、实际运用斩波电路时,PWN波的占空比为什么要限制在一定范围内为什么不是越高越好
答:当占空比增加时,实验中实测负载端输出电压与理论值的误差会显著增大,实际使用中需要选择合理的占空比。

2、试分析PWN波的频率对斩波电路的影响
答:频率越高,电流纹波越小,电源的损耗越高。

相关文档
最新文档