因式分解练习题精选
《因式分解500题》(含答案)
服务内核部-初数教研
\ 3 /
25. 因式分解:−4 3 2 + 6 2 3 − 12 2 2
26. 分解因式:−6 − 142 3 + 123
27. 分解因式:−26 3 2 + 13 2 2 + 52 5 2 4
28. 因式分解:
\ 5 /
43. 分解因式:( − )5 + ( − )5
44. 分解因式:(1 − + 2 ) − 1 + − 2
45. 将下列各式因式分解:
①53 ( − )3 − 104 3 ( − )2 ;
②( − )2 + ( − ) + ( − );
6. 分解因式:32 + 6 2
7. 因式分解:2 2 −
8. 分解因式:32 − 6
9. 分解因式:12 − 3 2
10. 用提公因式法因式分解:22 3 + 6 2
11. 因式分解:2( − ) − ( − )
12. 分解因式:( − ) − ( − )
29. 分解因式:( − 3)2 − (2 − 6);
30. 分解因式:18( − )2 − 12( − )3
31. 因式分解:10( − )2 + 5( − )
32. 计算:( + )2 − ( + )( − )
33. 分解因式:( + 1)( − 1) + ( − 1)
19. 因式分解:−43 + 162 − 26
20. 分解因式:6 2 − 9 + 3
21. 分解因式:−82 − 2 + 6 2
22. 因式分解:−14 − 7 + 49 2
(完整版)经典因式分解练习题100道
1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-48.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3)²-6(a+3)13.)(x+1)²(x+2)-(x+1)(x+2)²14.)16x²-8115.)9x²-30x+2516.)x²-7x-3017.)x(x+2)-x18.)x²-4x-ax+4a19.)25x²-4920.)36x²-60x+2521.)4x²+12x+922.)x²-9x+1823.)2x²-5x-324.)12x²-50x+825.)3x²-6x26.)49x²-2527.)6x²-13x+528.)x²+2-3x29.)12x²-23x-2430.)(x+6)(x-6)-(x-6)31.)3(x+2)(x-5)-(x+2)(x-3)32.)9x²+42x+4933.)x4-2x³-35x34.)3x6-3x²35.)x²-2536.)x²-20x+10037.)x²+4x+338.)4x²-12x+539.)3ax²-6ax40.)(x+2)(x-3)+(x+2)(x+4)41.)2ax²-3x+2ax-342.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+2546.)-20x²+9x+2047.)12x²-29x+1548.)36x²+39x+949.)21x²-31x-2250.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3)52.)2ax²-3x+2ax-353.)x(y+2)-x-y-154.)(x²-3x)+(x-3)²55.)9x²-66x+12156.)8-2x²57.)x4-158.)x²+4x-xy-2y+459.)4x²-12x+560.)21x²-31x-2261.)4x²+4xy+y²-4x-2y-362.)9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是(64.)若9x²−12xy+m是两数和的平方式,那么m的值是(65)把多项式a4− 2a²b²+b4因式分解的结果为()66.)把(a+b)²−4(a²−b²)+4(a−b)²分解因式为()) )1ö67.)æç-÷è2ø2001æ1ö+ç÷è2ø200068)已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N的大小关系为()69)对于任何整数m ,多项式( 4m+5)²−9都能()A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.)将−3x ²n −6x n 分解因式,结果是()71.)多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是()2x 72.)若+2(m -3)x +16是完全平方式,则m 的值等于_____。
因式分解专项练习题(含答案)
因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
因式分解习题50道及答案
因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。
通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。
下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。
1. 将x^2 + 4x + 4因式分解。
答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。
答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。
答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。
答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。
答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。
答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。
答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。
答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。
10. 将x^2 + 6x + 9因式分解。
答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。
答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。
答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。
答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。
答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。
答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。
答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。
答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。
答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。
答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。
因式分解100题及答案
因式分解100题及答案1. $2x^2 + 5x$解:首先找到两个数的乘积等于2乘以5,并且它们的和等于5。
这两个数是2和1。
因此,我们可以将原式改写为$(2x + 1)(x + 0)$。
2. $3xy + 6y$解:首先找到两个数的乘积等于3乘以6,并且它们的和等于6。
这两个数是3和2。
因此,我们可以将原式改写为$(3x + 2)(y + 0)$。
3. $4x^2 - 9$解:这是一个差的平方形式。
我们可以将其改写为$(2x - 3)(2x + 3)$。
4. $5a^2 - 20a$解:首先进行因式分解,我们可以将原式写为$a(5a - 20)$。
然后,再将括号中的表达式进行简化,得到$a(5(a - 4))$。
最终结果为$a^2(5 -4)$,即$a^2$。
5. $6xy^2 - 3xy$解:首先进行因式分解,我们可以将原式写为$3xy(2y - 1)$。
在括号中的表达式无法再简化,因此最终结果为$3xy(2y - 1)$。
6. $7x^3 - 7x$解:首先进行因式分解,我们可以将原式写为$7x(x^2 - 1)$。
然后,再将括号中的表达式进行简化,得到$7x(x - 1)(x + 1)$。
最终结果为$7x(x - 1)(x + 1)$。
7. $8a^2b - 4ab^2$解:首先进行因式分解,我们可以将原式写为$4ab(2a - b)$。
在括号中的表达式无法再简化,因此最终结果为$4ab(2a - b)$。
8. $9x^2 + 12xy + 4y^2$解:这是一个完全平方形式。
我们可以将其改写为$(3x + 2y)^2$。
9. $10a^2 - 5ab + 15a$解:首先进行因式分解,我们可以将原式写为$5a(2a - b + 3)$。
在括号中的表达式无法再简化,因此最终结果为$5a(2a - b + 3)$。
10. $11xy^3 - 22xy^2 + 11xy$解:首先进行因式分解,我们可以将原式写为$11xy(y^2 - 2y + 1)$。
因式分解练习题40道
因式分解练习题40道因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a36.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3第1页(共25页)2x+7)27.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.第2页(共25页)13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分化因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.第3页(共25页)19.把以下各式因式分化:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣324.分化因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2第4页(共25页)25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y ﹣x).27.阅读下面的问题,然后回答,分化因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.第5页(共25页)29.因式分解:(1)a3﹣2a2+a(2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分化(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a第6页(共25页)(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.第7页(共25页)36.因式分化①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)37.分化因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y阐发:该多项式不克不及间接利用提取公因式法,公式法举行因式分化.因而细致窥察多项式的特性.甲发觉该多项式前两项有公因式2x,后两项有公因式﹣3,划分把它们提出来,剩下的是不异因式(x+y),能够连续用提公因式法分化.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.第8页(共25页)解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分化法并非一种自力的因式分化的办法,而是经由过程对多项式举行恰当的分组,把多项式转化为能够使用“根本办法”分化的布局方式,使之具有公因式,大概吻合公式的特性等,从而到达能够利用“根本办法”举行分化因式的目标.【学致利用】:测验考试活动分组分化法解答以下题目:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分化因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.第9页(共25页)40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.第10页(共25页)2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分化:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m(x﹣2y);第11页(共25页)2x+7)](2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分化:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)第12页(共25页)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+9.分化因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x ﹣y);)(x﹣).(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分化(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);第13页(共25页)(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分化因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)第14页(共25页)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25=(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分化因式:第15页(共25页)(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分化因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).第16页(共25页)21.分化因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分化:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分化因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2=(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;第17页(共25页)(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)2 26.分化因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4第18页(共25页)=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分化:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)第19页(共25页)=a(a﹣1)2;(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.第20页(共25页)【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x ﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分化:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分化因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2 第21页(共25页)③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2 =[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)第22页(共25页)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究研究”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy ﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b阐发:该多项式亦不克不及间接利用提取公因式法,公式法举行因式分化,因而若将此题按探讨1的办法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发觉a(a+4)与﹣b(b+4)再没有公因式可提,没法再分化下去.因而再细致窥察发觉,若先将a2﹣b2看做一组使用平方差公式,别的两项看做一组,提出公因式4,则可连续再提出因式,从而到达分化因式的目标.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a ﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【办法总结】:对不克不及间接利用提取公因式法,公式法举行分化因式的多项式,我们可斟酌把被分化的多项式分红多少组,划分按“根本办法”即提取公因式法和第23页(共25页)运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展晋升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;第24页(共25页)(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y (x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)] =(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42。
因式分解练习题40道
因式分解一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+93.因式分解:(1)3ax2﹣6axy+3ay2 (2)(3x﹣2)2﹣(2x+7)24.分解因式:(1)3mx﹣6my (2)4xy2﹣4x2y﹣y3.5.因式分解:(1)9a2﹣4 (2)ax2+2a2x+a36.分解因式:①﹣a4+16 ②6xy2﹣9x2y﹣y37.因式分解:x4﹣81x2y2.8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy310.因式分解(1)﹣x3+2x2y﹣xy2 (2)x2(x﹣2)+4(2﹣x)11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.(1)8ax2﹣2ax (2)4a2﹣3b(4a﹣3b)14.因式分解(1)m2﹣4n2 (2)2a2﹣4a+2.15.分解因式:(m2+4)2﹣16m2.16.分解因式:(1)﹣2m2+8mn﹣8n2 (2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.17.分解因式:m2﹣25+9n2+6mn.18.分解因式:(1)x3y﹣2x2y2+xy3 (2)x2﹣4x+4﹣y2.(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y220.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.21.分解因式:a2b﹣b3.22.因式分解:x4﹣10x2y2+9y4.23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2 (2)a3b﹣ab;(3)x2+2x﹣324.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2(1)5a2+10ab;(2)mx2﹣12mx+36m.26.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3 (2)4x2+12x﹣7.28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.(1)a3﹣2a2+a (2)x4﹣130.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16 (4)a2﹣2ab+b2﹣1.33.因式分解:(1)x2﹣2x﹣8=(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y435.将下列多项式因式分解①4ab2﹣4a2b+a3 ②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.36.因式分解①﹣2a3+12a2﹣18a ②9a2(x﹣y)+4b2(y﹣x)37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b 【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz ﹣z2(3)尝试运用以上思路分解因式:m2﹣6m+8.39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.40.分解因式:(1)x2﹣9 (2)x2+4x+4(3)a2﹣2ab+b2﹣16 (4)(a+b)2﹣6(a+b)+9.2018年04月15日173****3523的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.2.因式分解:(x2﹣6)2﹣6(x2﹣6)+9【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.3.因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)2【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y);(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)]=(5x+5)(x﹣9)=5(x+1)(x﹣9).4.分解因式:(1)3mx﹣6my(2)4xy2﹣4x2y﹣y3.【解答】解:(1)3mx﹣6my=3m (x﹣2y);(2)原式=﹣y(﹣4xy+4x2+y2)=﹣y(y﹣2x)2.5.因式分解:(1)9a2﹣4(2)ax2+2a2x+a3【解答】解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)26.分解因式:①﹣a4+16②6xy2﹣9x2y﹣y3【解答】解:①﹣a4+16=(4﹣a2)(4+a2)=(2+a)(2﹣a)(4+a2);②6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2.7.因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)8.在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y)2;(2)原式=x(x2﹣5),=x(x+)(x﹣).9.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.10.因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.11.因式分解:(1)x2y﹣y;(2)a3b﹣2a2b2+ab3.【解答】解:(1)x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1);(2)a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.12.分解因式:(1)3a3b2﹣12ab3c;(2)3x2﹣18xy+27y2.【解答】解:(1)3a3b2﹣12ab3c;=3ab2(a2﹣4bc);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.将下列各式分解因式(1)8ax2﹣2ax(2)4a2﹣3b(4a﹣3b)【解答】解:(1)8ax2﹣2ax=2ax(4x﹣1);(2)4a2﹣3b(4a﹣3b)=4a2﹣12ab+9b2=(2a﹣3)2.14.因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【解答】解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)=2(a﹣1)215.分解因式:(m2+4)2﹣16m2.【解答】解:(m2+4)2﹣16m2=(m2+4+4m)(m2+4﹣4m)=(m+2)2(m﹣2)2.16.分解因式:(1)﹣2m2+8mn﹣8n2(2)a2(x﹣1)+b2(1﹣x)(3)(m2+n2)2﹣4m2n2.【解答】解:(1)﹣2m2+8mn﹣8n2=﹣2(m2﹣4mn+4n2)=﹣2(m﹣2n)2;(2)a2(x﹣1)+b2(1﹣x)=(x﹣1)(a2﹣b2)=(x﹣1)(a﹣b)(a+b);(3)(m2+n2)2﹣4m2n2=(m2+n2+2mn)(m2+n2﹣2mn)=(m+n)2(m﹣n)2.17.分解因式:m2﹣25+9n2+6mn.【解答】解:原式=(m2+6mn+9n2)﹣25 =(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).18.分解因式:(1)x3y﹣2x2y2+xy3(2)x2﹣4x+4﹣y2.【解答】解:(1)x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)x2﹣4x+4﹣y2=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).19.把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.20.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).21.分解因式:a2b﹣b3.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b).22.因式分解:x4﹣10x2y2+9y4.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).23.分解因式:(1)(m+n)2﹣4m(m+n)+4m2(2)a3b﹣ab;(3)x2+2x﹣3【解答】解:(1)原式=[(m+n)﹣2m]2 =(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).24.分解因式:(1)81x4﹣16;(2)8ab3+2a3b﹣8a2b2【解答】解:(1)原式=(9x2+4)(9x2﹣4)=(9x2+4)(3x+2)(3x﹣2);(2)原式=2ab(4b2+a2﹣4ab)=2ab(a﹣2b)2.25.分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)226.分解因式:(1)2x﹣8x3;(2)﹣3m3+18m2﹣27m(3)(a+b)2+2(a+b)+1.(4)9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)2x﹣8x3;=2x(1﹣4x2)=2x(1﹣2x)(1+2x);(2)﹣3m3+18m2﹣27m=﹣3m(m2﹣6m+9)=﹣3m(m﹣3)2;(3)(a+b)2+2(a+b)+1=(a+b+1)2;(4)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.【解答】解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.因式分解:(1)a4﹣a2b2;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=a2(a2﹣b2)=a2(a+b)(a﹣b)(2)原式=x2﹣4x+3+1=(x﹣2)229.因式分解:(1)a3﹣2a2+a(2)x4﹣1【解答】解:(1)原式=a(a2﹣2a+1)(2)原式=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).30.分解因式(1)x3﹣9x;(2)﹣x3y+2y2x2﹣xy3;(3)1﹣a2+2ab﹣b2.【解答】解:(1)原式=x(x2﹣9)=x(x﹣3)(x+3)(2)原式=﹣xy(x2﹣2xy+y2)=﹣xy(x﹣y)2(3)原式=1﹣(a2﹣2ab+b2)=1﹣(a﹣b)2=(1﹣a+b)(1+a﹣b)31.(1)计算:2(a﹣3)(a+2)﹣(4+a)(4﹣a).(2)分解因式:9a2(x﹣y)+4b2(y﹣x).【解答】解:(1)原式=2a2﹣2a﹣12﹣(16﹣a2)=2a2﹣2a﹣12﹣16+a2=3a2﹣2a﹣28.(2)原式=9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).32.因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.【解答】解:(1)原式=a(x2﹣16y2)=a(x+4y)(x﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)33.因式分解:(1)x2﹣2x﹣8=(x+2)(x﹣4);(2)﹣a4+16;(3)3a3(1﹣2a)+a(2a﹣1)2+2a(2a﹣1).【解答】解:(1)原式=(x+2)(x﹣4)(2)原式=16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(3)原式=3a3(1﹣2a)+a(1﹣2a)3﹣2a(1﹣2a)=a(1﹣2a)(3a2+1﹣2a﹣2)=a(1﹣2a)(a﹣1)(3a+1)故答案为:(1)(x+2)(x﹣4)34.分解因式:(1)2a3﹣4a2b+2ab2;(2)x4﹣y4【解答】解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).35.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2=[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.36.因式分解①﹣2a3+12a2﹣18a②9a2(x﹣y)+4b2(y﹣x)【解答】解:①﹣2a3+12a2﹣18a,=﹣2a(a2﹣6a+9),=﹣2a(a﹣3)2;②9a2(x﹣y)+4b2(y﹣x),=(x﹣y)(9a2﹣4b2),=(x﹣y)(3a+2b)(3a﹣2b).37.分解因式:(1)x(x﹣y)﹣y(y﹣x).(2)(a2+1)2﹣4a2.【解答】解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x﹣y)(x+y);(2)(a2+1)2﹣4a2.=(a2+1﹣2a)(a2+1+2a)=(a﹣1)2(a+1)2.38.【问题提出】:分解因式:(1)2x2+2xy﹣3x﹣3y;(2)a2﹣b2+4a﹣4b【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)2x2+2xy﹣3x﹣3y分析:该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2+2xy)﹣(3x+3y)=2x(x+y)﹣3(x+y)=(x+y)(2x ﹣3)另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把y、x提出来,剩下的是相同因式(2x﹣3),可以继续用提公因式法分解.解:2x2+2xy﹣3x﹣3y=(2x2﹣3x)+(2xy﹣3y)=x(2x﹣3)+y(2x﹣3)=(2x ﹣3)(x+y)探究2:分解因式:(2)a2﹣b2+4a﹣4b分析:该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组即﹣b2﹣4b=﹣b(b+4),但发现a(a+4)与﹣b(b+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2﹣b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.解:a2﹣b2+4a﹣4b=(a2﹣b2)+(4a﹣4b)=(a+b)(a﹣b)+4(a﹣b)=(a﹣b)(4+a+b)【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运动公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.【学以致用】:尝试运动分组分解法解答下列问题:(1)分解因式:x3﹣x2﹣x+1;(2)分解因式:4x2﹣y2﹣2yz﹣z2【拓展提升】:(3)尝试运用以上思路分解因式:m2﹣6m+8.【解答】【学以致用】:解:(1)x3﹣x2﹣x+1=(x3﹣x2)﹣(x﹣1)=x2(x﹣1)﹣(x﹣1)=(x﹣1)(x2﹣1)=(x﹣1)(x+1)(x﹣1)=(x﹣1)2(x+1)(2)解:4x2﹣y2﹣2yz﹣z2=4x2﹣(y2+2yz+z2)=(2x)2﹣(y+z)2=(2x+y+z)(2x﹣y﹣z)′【拓展提升】:(3)解:m2﹣6m+8=m2﹣6m+9﹣1=(m﹣3)2﹣1=(m﹣2)(m﹣4).39.分解因式:(1)2x2y﹣8xy+8y;(2)a2(x﹣y)﹣9b2(x﹣y);(3)9(3m+2n)2﹣4(m﹣2n)2;(4)(y2﹣1)2+6(1﹣y2)+9.【解答】解:(1)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;(2)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(3)9(3m+2n)2﹣4(m﹣2n)2=[3(3m+2n)﹣2(m﹣2n)][3(3m+2n)+2(m﹣2n)]=(7m+10n)(11m+2n);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.40.分解因式:(1)x2﹣9(2)x2+4x+4(3)a2﹣2ab+b2﹣16(4)(a+b)2﹣6(a+b)+9.【解答】(1)x2﹣9=(x+3)(x﹣3)(2)x2+4x+4=(x+2)2(3)a2﹣2ab+b2﹣16=(a﹣b)2﹣42=(a﹣b+4)(a﹣b﹣4)(4)(a+b)2﹣6(a+b)+9=(a+b﹣3)2。
超经典的因式分解练习题有答案精品
超经典的因式分解练习题有答案精品1. 因式分解.(1) a(a-b) -2(w-b).(2)x²-2x²+x.2.因式分解:(1)12m²κ⁻¹−8m²κ⁴;(2) x³-4x²y+4xy².3.将下列多项式因式分解:(1) 2x²-6x;(2) -6x²+12a-6;(3) 4x²-(y²-4y-4).4. 因式分解: (m+1) (m-9) +8m.5.因式分解:25x²{a-b}+49y² (b-a).6.因式分解:2x¹-8r³y8xy².7.因式分解:(1) 4a²-9;(2) 16m³-8me+n³.8. 因式分解:(1) 2ax²-2m²;(2) 3a²-6a²b+3ab².9. 因式分解:(1) m²-m;(2) x³-4x²+4x.10. 因式分解:4.²(x-1) -9 (x+7).11.因式分解:-3a+12a²-12a³.12. 因式分解:(1) m²-y³;(2) x(x-y) ty(y-x).参考答案10. 因式分解.(1) a(a-b) -2(a-b).(2) x³2x³+x.【分析】(1) 原式提取公因式分解即可;(2) 原式提取公因式,再利用完全平方公式分解即可.【解答】解: (1) a (a -b) -2(a -b) = (a-b) ( a -2).(2)x³-2x²+x=x (x²-2x-1)=x(x-1)².【点评】此题考查了提公园式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.因式分解:(1) 12m³k⁴-8m²n³;(2)x³-4r³y+4xy².【分析】(1) 找到公因式,提取公因式即可:(2) 先提取公因式,再看用完全平方公式.【解答】解: (1) 原式=4m²n⁴ (3m-2m²);(2)原式: =x(x²-4xy-4y²)=x (x-2y)².【点评】本题考查了整式的因式分解,掌握提取公因式法,公式法是解决本题的关键。
因式分解练习题40道
因式分解练习题40道因式分解1.因式分解:ab²-2ab+a2.因式分解:(x²-6)²-6(x²-6)+93.因式分解:1) 3ax²-6axy+3ay²2) (3x-2)²-(2x+1)²4.分解因式:1) 3m(x-y)2) -y(x-y)(4x+y)5.因式分解:1) (3a+2)(3a-2)2) a(ax+2a)+a²(ax+2a)6.分解因式:1) -(a²-4)(a²+4)2) -3(y-x)(y+2x)(y-x)7.因式分解:(x²-9y²)(x²+y²)8.在实数范围内将下列各式分解因式:1) 3a(x-y)(x-ay)2) x(x-5)(x+1)9.分解因式:1) 9a(x-y)(x+y)2) 2xy(x+y)(x+2y) 10.因式分解1) -x(x-y)(x-2y)2) (x+2)(x-2)(x²-4) 11.因式分解:1) y(x-1)(x+1)2) ab(a-b)²12.分解因式:1) 3ab²(a-4c)2) 3(x-y)²13.将下列各式分解因式1) 2ax(4a-1)2) (2a-3b)(2a+3b)14.因式分解1) (m+2n)(m-2n)2) 2(a-1)²15.分解因式:(m+2)^2(m-2)^216.分解因式:1) -2(m-2n)²2) (a+b)(a-b)+(b-1)^23) (m+n)^2-(2mn)^217.分解因式:(m+3n)(m-3n)+(n+2m)(n-2m)18.分解因式:1) xy(x-y)(x+y)2) (x-2)^2-y^219.把下列各式因式分解:1) 9a^2(x-y)+4b^2(y-x)2) (x^2y^2+1-2xy)(x^2y^2+1+2xy)20.分解因式:1) 4ab^2(2a+3c)2) (x+y+3)(x-y-3)21.分解因式:b(a^2-b^2)22.因式分解:(x²-9y²)(x²-y²)23.分解因式:1) (m-2)^22) ab(a^2-b^2)3) (x+3)(x-1)24.分解因式:1) (9x^2-4)(3x+2)(3x-2)2) 2b(a-b)(a+2b)25.分解因式:1) 5a(a+2b)2) m(x-6)^226.分解因式:1) 2x(1-4x^2)2) -3(m-3)^33.题目解答及改写28.因式分解:1) a^4 - a^2b^2.(2) (x-1)(x-3)+1.1) a^4 - a^2b^2 可以看做 a^2(a^2 - b^2)。
因式分解经典题型(含详细答案)
因式分解经典题型【编著】黄勇权经典题型一:1、x3+2x2-12、4x2+4x-4y2+13、3x+xy-y-34、3x3+5x2-25、3x2y-3xy-6y6、x2-7x-607、3x2-2xy-8y28、x(y-2)-x2(2-y)9、x2+8xy-33y210、(x2+3x)4-8(x2+3x)2+16经典题型一:【答案】1、x32-1将2x2拆分成x2+x2=x3+x2+x2-1=(x3+x2)+(x2-1)=x2(x+1)+(x+1)(x-1)提取公因式(x+1)=(x+1)[x2+(x-1)]=(x+1)(x2+x-1)2、4x2+4x-4y2+1将-4y2与+1 位置互换=4x2+4x+1-4y2=(4x2+4x+1)-4y2=(2x+1)2-4y2=[(2x+1)+2y][(2x+1)-2y]=(2x+2y+1)(2x-2y+1)3、3x+xy-y-3将前两项结合,后两项结合=(3x+xy)+(-y-3)= x(3+y)-(y+3)提取公因式(y+3)=(y+3)(x-1)4、3x3+5x2-2将5x2拆分成3x2+2x2=3x3+3x2+2x2-2=(3x3+3x2)+(2x2-2)=3x2(x+1)+2(x2-1)=3x2(x+1)+2(x+1)(x-1)提取公因式(x+1)=(x+1)[3x2+2(x-1)]=(x+1)(3x2+2x-2)5、3x2y-3xy-6y将-6y拆分成-3y-3y=3x2y-3xy-3y-3y将3x2y与-3y结合,-3xy与-3y结合=(3x2y-3y)+(-3xy-3y)=3y(x2-1)-3y(x+1)=3y(x+1)(x-1)-3y(x+1)提取公因式3y(x+1)=3y(x+1)[(x-1)-1]=3y(x+1)(x-2)6、x2-7x-60用十字叉乘法,将-60拆分成-12与5的乘积X -12X 5=(x-12)(x+5)7、3x2-2xy-8y2【详细讲解十字叉乘法】用十字叉乘法,用逐一罗列(1)3x2只能拆分成3x与x的乘积,(2)-8y2,可拆分成①-8y与y的乘积②8y与-y的乘积③-4y与2y的乘积④4y与-2y的乘积逐一尝试,看哪一组结果是-2xy(1)3X -8yX y3xy-8xy=-5xy(结果不是-2xy,舍去)(2)3X yX -8y-24xy+xy=-23xy(结果不是-2xy,舍去)(3)3X 8yX -y-3xy+8xy=5xy(结果不是-2xy,舍去)(4)3X -yX 8y24xy-xy=23xy(结果不是-2xy,舍去)(5)3X -2yX 4y12xy-2xy=10xy(结果不是-2xy,舍去)(6)3X 4yX -2y-6xy+4xy=-2xy(结果是-2xy,符合题意)(7)3X 2yX -4y-12xy+2xy=-10xy(结果不是-2xy,舍去)(8)3X -4yX 2y6xy-4xy=2xy(结果不是-2xy,舍去)通过逐一尝试,第(6)就是我们要的答案,所以:3x2-2xy-8y2用十字叉乘法,3X 4yX -2y=(3x+4y)(x-2y)8、x(y-2)-x2(2-y)将(2-y)变为-(y-2)= x(y-2)+x2(y-2)提取公因式x(y-2)-2)(1+x)整理一下(y-2)、(1+x)的顺序= x(1+x)(y-2)9、x2+8xy-33y2用十字叉乘法X 11yX -3y=(x+11y)(x-3y)10、(x2+3x)4-8(x2+3x)2+16把(x2+3x)4看着(x2+3x)2看平方,把16 看着4的平方。
因式分解练习题精选
因式分解练习题精选一、基础题1. 分解因式:x^2 + 2x + 12. 分解因式:a^2 b^23. 分解因式:4m^2 9n^24. 分解因式:x^3 y^35. 分解因式:8a^3 27b^3二、提高题1. 分解因式:x^2 + 5x + 62. 分解因式:a^2 + 2ab + b^23. 分解因式:2x^2 5x 34. 分解因式:3a^2 4ab 5b^25. 分解因式:x^4 16三、拓展题1. 分解因式:x^3 + 3x^2 + 3x + 12. 分解因式:a^3 b^3 c^3 + 3abc3. 分解因式:x^2 + 2xy + y^2 4z^24. 分解因式:x^4 + 4x^2 + 45. 分解因式:a^5 b^5四、综合题1. 分解因式:x^2 + 6x + 9 4y^22. 分解因式:a^3 + 3a^2b + 3ab^2 + b^3 4a^23. 分解因式:x^4 4x^2 + 4 9y^24. 分解因式:a^4 b^4 + 2a^2b^25. 分解因式:x^6 y^6五、特殊因式分解题1. 分解因式:x^2 5x + 62. 分解因式:2a^2 8a + 83. 分解因式:3x^2 12x + 94. 分解因式:4y^2 20y + 255. 分解因式:5z^2 10z + 5六、多项式因式分解题1. 分解因式:x^3 + 2x^2 x 22. 分解因式:a^4 b^43. 分解因式:x^4 6x^2 + 94. 分解因式:4a^2 12ab + 9b^25. 分解因式:x^5 32x七、复杂因式分解题1. 分解因式:x^6 y^6 z^6 + 3x^2y^2z^22. 分解因式:a^3 + b^3 + c^3 3abc3. 分解因式:x^4 + 4x^3 + 6x^2 + 4x + 14. 分解因式:x^8 y^85. 分解因式:a^5 + b^5 + c^5 5abc(a + b + c)八、应用题1. 已知一个长方体的长、宽、高分别为x、x+1和x+2,求其体积的因式分解形式。
经典因式分解练习题100道
1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-48.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3) ²-6(a+3)13.)(x+1) ²(x+2)-(x+1)(x+2) ²14.)16x²-8115.)9x²-30x+2516.)x²-7x-3017.) x(x+2)-x18.) x²-4x-ax+4a19.) 25x²-4920.) 36x²-60x+2521.) 4x²+12x+922.) x²-9x+1823.) 2x²-5x-324.) 12x²-50x+825.) 3x²-6x26.) 49x²-2527.) 6x²-13x+528.) x²+2-3x29.) 12x²-23x-2430.) (x+6)(x-6)-(x-6)31.) 3(x+2)(x-5)-(x+2)(x-3)32.) 9x²+42x+4933.) x4-2x³-35x34.) 3x6-3x²35.)x²-2536.)x²-20x+10037.)x²+4x+338.)4x²-12x+539.)3ax²-6ax40.)(x+2)(x-3)+(x+2)(x+4)41.)2ax²-3x+2ax-342.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+2546.)-20x²+9x+2047.)12x²-29x+1548.)36x²+39x+949.)21x²-31x-2250.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3)52.)2ax²-3x+2ax-353.)x(y+2)-x-y-154.) (x²-3x)+(x-3) ²55.) 9x²-66x+12156.) 8-2x²57.) x4-158.) x²+4x-xy-2y+459.) 4x²-12x+560.) 21x²-31x-2261.) 4x²+4xy+y²-4x-2y-362.) 9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )64.) 若9x²−12xy+m是两数和的平方式,那么m的值是( )65) 把多项式a4− 2a²b²+b4因式分解的结果为( )66.) 把(a+b) ²−4(a²−b²)+4(a−b)²分解因式为( )67.) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-68) 已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N 的大小关系为( )69) 对于任何整数m ,多项式( 4m+5) ²−9都能( )A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.) 将−3x ²n −6x n 分解因式,结果是( )71.) 多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )72.) 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
`
一、填空:
1. 若16)3(22
+-+x m x 是完全平方式,则m 的值等于_____。
2. 22)(n x m x x -=++则m =____ n =____
3.
若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。
4. _____))(2(2(_____)2++=++x x x x
5. 若442-+x x 的值为0,则51232-+x x 的值是________。
6.
若6,422=+=+y x y x 则=xy ___ 。
二、选择题:
…
1、多项式))(())((x b x a ab b x x a a --+---的公因式是( )
A 、-a 、
B 、))((b x x a a ---
C 、)(x a a -
D 、)(a x a --
2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( )
A 、m=—2,k=6,
B 、m=2,k=12,
C 、m=—4,k=—12、
D m=4,k=-12、
3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公
式分解因式的有( )
A 、1个
B 、2个
C 、3个
D 、4个
4、计算)1011)(911()311)(211(2232----
的值是( ) —
A 、21,
B 、2011.,101.,201D C
三、分解因式:
1 、234352x x x --
2 、 2
633x x -
3 、2
2414y xy x +-- 4、13-x
5、2ax a b ax bx bx 222-++--
6、81182
4+-x x
'
四、代数式求值
1、 已知312=-y x ,2=xy ,求 43342y x y x -的值。
2、
若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值
3、
< 4、 已知2=+b a ,求)(8)(22222b a b a +--的值
五、计算:
(1)2244222568562⨯+⨯⨯+⨯ (2) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-
六、试说明:
1、对于任意自然数n ,2
2)5()7(--+n n 都能被24整除。
,
2、两个连续奇数的积加上其中较大的数,所得的数就是夹在这两个连续奇数之间的偶数与较大奇数的积。
补充习题
1、a2+b2+c2+2ab+2bc+2ca(公式法)
2、x9+x6+x3-3(拆分法)
,
3、a3+b3+c3-3abc (公式法)
4、x3-9x+8(拆分法)
5、(x2+3x+2)(4x2+8x+3)-90
6、x3+3x2-4
、
7、(x2+x+1)(x2+x+2)-12 8、(2x2-3x+1)2-22x2+33x-1(换元法)
9、6x4+7x3-36x2-7x+6 10、(x+3)(x2-1)(x+5)-20 (换元法)
11、(x+y)3+2xy(1-x-y)-1 12、 15x2-42x+24。