表面工程-10表面分析技术

合集下载

表面分析技术

表面分析技术

表面分析技术表面分析技术是一项涉及材料和表面特性研究的重要技术手段。

通过对材料表面的分析和测试,可以了解材料的化学成分、结构形态以及物理性质等重要信息。

这些信息对于材料科学、化学工程以及各种工业领域的研究和应用具有重要的指导意义。

本文将介绍常见的表面分析技术及其应用,并探讨其在材料研究领域中的重要性。

一、X射线衍射(XRD)X射线衍射技术是一种分析晶体结构和晶体取向的重要手段。

通过照射材料表面的X射线,利用倒转的原理,可以得到材料中晶体的信息,如晶体晶胞参数、晶面取向和结晶度等。

X射线衍射技术广泛应用于金属材料、无机晶体、聚合物材料以及生物材料等领域的研究中。

二、扫描电子显微镜(SEM)扫描电子显微镜是一种通过扫描材料表面的电子束来获取表面形貌和成分信息的技术。

通过SEM技术可以观察到材料的微观形貌、表面粗糙度以及颗粒分布情况。

此外,SEM还可以结合能谱分析,获取材料的元素成分信息,对于材料表面的成分分析具有重要意义。

扫描电子显微镜的高分辨率、高灵敏度和高成像质量使其成为材料科学研究中不可或缺的工具。

三、原子力显微镜(AFM)原子力显微镜是一种通过探针在材料表面扫描获取高分辨率表面形貌和力学性质的技术。

与扫描电子显微镜类似,原子力显微镜可以获得纳米级别的表面形貌信息。

此外,通过原子力显微镜还可以研究材料的力学性质,如力曲线、硬度和弹性模量等。

原子力显微镜在纳米材料研究、表面重构以及生物医学领域的研究具有重要应用价值。

四、拉曼光谱(Raman)拉曼光谱是一种通过激光照射材料表面,并测量散射光强度的技术。

拉曼光谱的原理是根据材料分子振动产生的震动频率差异来获取材料的化学成分和物理性质信息。

通过拉曼光谱可以研究材料的晶体结构、官能团成分以及分子结构的变化等。

应用于纳米材料、生物医学和化学合成等领域的研究中。

五、表面增强拉曼光谱(SERS)表面增强拉曼光谱是一种通过将材料置于金属纳米颗粒表面,使得拉曼信号得到大幅增强的技术。

现代表面技术-表面

现代表面技术-表面
表面改性
通过表面技术如化学气相沉积、物理气相沉积等, 可对电子元件的表面进行改性处理,提高其性能 和稳定性。
防静电保护
表面技术如导电涂层可用于电子元件的防静电保 护,防止静电对电子设备造成损害。
05 未来表面技术的发展趋势 与挑战
总结词
新材料表面技术的研发是未来表面 技术发展的关键,将推动表面技术 的不断创新和应用领域的拓展。
详细描述
随着环保意识的日益增强,表面技术的环保与可持续发展已成 为行业关注的焦点。表面处理过程中产生的废液、废气和废渣 等污染物对环境造成了严重的影响。因此,研发环保型的表面 技术,如水基表面处理技术、无铬表面处理技术等,能够有效 减少环境污染和资源消耗,同时降低生产成本,提高经济效益。
总结词
表面技术的智能化与自动化是未来发展的重要趋势,将提高表面处理的效率和质量,降低人工成本和操作风险。
02 现代表面技术简介
物理表面技术
离子束刻蚀
利用离子束轰击材料表面,通过 物理撞击和能量沉积改变表面形 貌和性质,实现表面纳米级加工。
激光表面处理
利用高能激光束对材料表面进行快 速加热和冷却,实现表面熔化、凝 固、相变等,改变表面结构和性能。
电子束蒸发镀膜
利用电子束蒸发源产生的高能电子 束将材料加热至熔融状态,并快速 冷却形成薄膜,实现表面镀膜和涂 层。
表面技术在环境能源领域的应用,如高效 催化剂、太阳能电池和燃料电池等方面, 为解决能源和环境问题提供了有效途径。
表面技术未来的发展前景
新材料和新技术的研发
随着科技的不断进步,表面技术将不断涌现出新的材料和 技术,如纳米材料、生物材料和复合材料等,为表面技术 的应用和发展提供更多可能性。
绿色环保
随着环保意识的不断提高,表面技术将更加注重绿色环保 ,发展低污染、低能耗的表面处理技术和绿色材料,减少 对环境的负面影响。

表面工程技术

表面工程技术

电子束产生及工作示意图
1-工作台 2-加工室 3-电磁透镜 4-阳极 5-栅极 6-灯丝 7-电源 8-电子束 9 偏转线圈 10-工件 4
3、离子注入表面改性 •可注入任何元素,不受固溶 度和扩散系数影响; •离子注入温度易控制; •不氧化、不变形、不软化, 可作最终处理工艺。 •可控性、重复性好。 •可获得两层以上复合材料, 复合层不易脱落。 离子注入装置示意图
表面工程技术
机械0821 机械0821
1
表面工程技术
1.表面改性技术 1.表面改性技术 2.表面覆层技术 2.表面覆层技术 3.复合表面处理技术 3.复合表面处理技术
2
一. 表面改性技术
1、激光表面改性 是以高能量的激光 束快速扫描工件表面 , 升 温 速 度 可 达 105106ºC/s , 冷 却 速 度 104ºC/s,快速自冷淬火, 比常规淬火硬度高1520%,淬火变形非常小 ,表面无须保护。
7
三.
复合表面处理技术
1. 复合热处理技术 •渗钛与离子渗氮复合热处理; •渗碳、渗氮、碳氮共渗; •液体碳氮共渗与高频感应加热表面淬火的复合强化; •激光与离子渗氮复合处理; 2. 表面覆层技术与其他表面处理技术的复合; 3. 离子辅助涂覆; 4. 离子注入与气相沉积复合表面改性。
8
谢谢
9
1-离子源 2-质量分析器 3-高压电极 4-加速管 5-聚焦电极 6-X扫描电极 7-Y扫描电极 8-中性束 9-式样室
5
二. 表面覆层技术
1. 热ห้องสมุดไป่ตู้涂技术
粉末火焰喷涂
大气等离子喷涂
爆炸喷涂
6
2. 气相沉积技术 物理气相沉积PVD 将镀料气化成原子、分子或离子, 直接沉积到基体表面。 •真空蒸镀 将工件放入真空室内加热,使镀膜材料 蒸发或升华,飞至工件表面凝聚成膜; •溅射镀膜 用荷能粒子轰击材料表面,使其获得足 够能量,飞溅变为气相,在基体表面上沉积; •离子镀膜 利用气体放电使物质离子化,在气体离 子轰击下把蒸发物沉积在基体上成膜。 •化学气相沉积CVD 借助气相作用和在基体表面上的 化学反应生成所要求的薄膜。

表面工程文档

表面工程文档

表面工程1. 简介表面工程是一种应用于工业生产中的技术,通过对材料表面进行改性或处理,可以改变材料的性质和表面特征,从而提供更好的耐磨、耐腐蚀、耐高温等性能,并增加材料的美观度和装饰性。

表面工程广泛应用于汽车工业、航空航天、电子设备制造、医疗器械、建筑等领域。

2. 表面工程的分类2.1 表面涂覆表面涂覆是将一层或多层涂料、漆膜、涂层等材料均匀地涂覆在材料表面上,形成一层保护层或功能层的处理方法。

常见的表面涂覆技术包括电镀、喷涂、浸镀等。

表面涂覆可以提高材料的耐腐蚀性能、抗磨损性能等,同时也能增加材料的装饰性。

2.2 表面喷涂表面喷涂是将材料的颗粒或粉末喷射到待处理表面上,通过热熔或化学反应使其附着在表面上形成涂层。

表面喷涂常用于金属表面的防护和保护,可以防止氧化、腐蚀和高温等影响。

2.3 表面改性表面改性是通过物理或化学方法对材料表面进行处理,从而改变其物理、化学或机械性能。

常见的表面改性方法包括阳极氧化、磨削、抛光等。

表面改性可以提高材料的硬度、耐磨性、耐腐蚀性等性能。

2.4 表面涂覆与改性的比较表面涂覆和表面改性是表面工程的两种主要方法,它们有各自的特点和适用范围。

表面涂覆主要应用于需要增加防护和装饰性的场合,例如汽车的喷漆,可以保护车身免受腐蚀和刮擦;而表面改性主要应用于需要改变材料性质和提升机械性能的场合,例如通过磨削和抛光改善金属表面的光洁度和平整度。

3. 表面工程的应用3.1 汽车工业在汽车制造过程中,表面工程技术可以使车身更加耐腐蚀、耐磨损,同时也增加了车身的装饰性。

例如,汽车车身经过喷漆和镀膜等表面涂覆技术可以防止腐蚀和刮擦,并提供车身的颜色和亮度;汽车发动机的表面经过热喷涂技术可以提高其耐磨损性和耐高温性能。

3.2 航空航天在航空航天领域,材料的轻量化和高强度是目前的发展趋势。

通过表面涂覆和改性可以增加材料的耐腐蚀性和抗磨损性,从而提高飞机和航天器材料的使用寿命和安全性。

3.3 电子设备制造表面工程在电子设备制造中起着至关重要的作用。

表面技术

表面技术

1.3 表面技术的分类材料表面工程是一门新兴学科,或者说是正在形成的一门学科,是一门多学科的边缘学科。

该学科中应该包括哪些内容,如何分类,国内外都无公认的说法。

从不同的角度进行归纳,就会有不同的分类。

如:按作用原理可分为:<1>原子沉积:沉积物以原子、离子、分子和粒子集团等原子尺度的粒子形态在材料表面上形成覆盖层,如电镀、化学镀、物理气相沉积、化学气相沉积等。

<2>颗粒沉积:沉积物以宏观尺度的颗粒形态在材料表面上形成覆盖层,如热喷涂、搪瓷涂覆等。

<3>整体覆盖:它是将涂覆材料于同一时间施加于材料表面,如包箔、贴片、热浸镀、涂刷、堆焊等。

<4>表面改性:用各种物理、化学等方法处理表面,使之组成、结构发生变化,从而改变性能,如表面处理、化学热处理、电子束表面处理、离子注入等。

按表面强化层材料可分为:<1>金属材料层;<2>陶瓷材料层;<3>高分子材料层。

按工艺特点可分为:<1>电镀,<2>化学镀,<3>热渗镀,<4>热喷涂,<5>堆焊,<6>化学转化膜,<7>涂装,<8>表面彩色,<9>气相沉积,<10>“三束”改性,<11>表面热处理,<12>形变强化,<13>衬里等,每一类又可分为一些更细的工艺项目。

图1-1 材料表面工程技术的分类该分类方法比较清晰地体现了工程技术的特点,而且与工程技术上的名称基本一致,容易记忆。

但缺乏学术上的逻辑性,因为有些技术尽管工艺不一样,但基本的改质机理是相同或相似的。

按工艺特点分类方法示意图如图1-1所示。

按表面改质的目的或性质可分为:<1>表面耐磨和减磨技术,<2>表面耐蚀抗氧化技术,<3>表面强化(提高疲劳强度)技术,<4>表面装饰技术,<5>功能表面技术,<6>表面修复技术。

表面工程技术及其应用

表面工程技术及其应用
削刀具:CVD镀TiN、TiC薄膜。 5. 良好的节能、节材效果。如:发热元件表面的远红外辐射涂层,
能提高热效率;汽车发动机全铝化、铝合金气缸套的耐磨涂层 使用。
a
35
表面工程的意义
6. 促进了新兴工业的发展。
1) 热障涂层:ZrO2·Y2O3、ZrO2·MgO、ZrO2·CeO2等。 2) 烧蚀涂层:有机材料加石英纤维、陶瓷纤维或碳纤维。
➢ 2002年我国因腐蚀所造成的经济损失达6000 亿元,占国民生产总值(GDP)的5%。
➢ 2006年我国因磨损所造成的经济损失达9500 亿元,占国民生产总值(GDP)的4.5%。
➢ 国外腐蚀和磨损造成损失占国民生产总值 (GDP)的4.5%。
a
4
轴流式引风机叶片磨损后的形貌
a
5
油缸拉伤表面(H=3.3m,d=1.12m ,W=18t)
a
25
船舶螺旋桨
a
26
锅炉水冷壁现场喷涂NiCr合金防腐耐磨涂层
a
27
喷涂防腐耐磨涂层后的水冷壁管
a
28
超音速火焰喷涂制备纳米WC-12Co防腐耐磨涂层
a
29
HVOF制备纳米WC-12Co涂层后的浆液循环泵叶轮
a
30
防腐处理后的浆液循环泵叶轮
a
31
表面工程的概念
1. 表面工程的概念: 它是指将固体材料表面预处理后,通过表面涂覆、 表面改性或多种表面技术复合处理,改变固体材料表面的形态、化 学成分和组织结构,以获得所需要的表面性能的系统工程。
3) 超大规模集成电路中的金刚石薄膜(CVD技术)、绝 缘膜、导电涂层等。
4) 非晶态薄膜:气相沉积、电镀、刷镀、激光、电子束 等方法制造。

表面工程

表面工程

1.表面工程:经表面与处理后,通过表面涂覆,表面改性,表面加工或几种表面工程技术复合处理,改变固体材料表面的形态,化学成分,组织结构,应力状态等,以获得所需要各类表面性能的系统工程。

2.表面技术主要途径:1)表面覆盖:电镀,电镀刷,化学镀,涂装,粘贴,堆焊和熔结,热喷涂,塑料粉末涂敷,电火花涂敷,热浸镀,搪瓷和陶瓷涂敷,真空蒸镀,溅射镀,离子镀,化学气相沉积,分子束外延,离子束合成薄膜技术,化学转化度,热烫印,暂时性覆盖处理;2)表面改性:喷丸强化,表面热处理,化学热处理,等离子扩散处理,高能束表面处理,粒子注入表面改性;3)表面加工技术:电铸,包覆,抛光,蚀刻等。

3.表面防护:材料表面防止化学腐蚀和电化学腐蚀等能力。

4.耐磨:指材料在一定摩擦条件下抗磨损(磨料磨损,粘着磨损,疲劳腐蚀,冲蚀,气蚀等)的能力。

5.强化:通过各种表面强化处理来提高材料表面抵御除腐蚀和磨损之外的环境作用的能力。

6.表面装饰:主要包括光亮,色泽,花纹,仿照等多方面特性。

7.表面技术在环境方面的应用:1)净化大气;2)净化水质;3)抗菌灭菌;4)吸附杂质;5)去除藻类污垢;6)活化功能;7)生物医学;8)治疗疾病;9)绿色能源;10)优化环境。

8.表面技术的分类:1)原子沉积;2)颗粒沉积;3)整体覆盖;4)表面改性。

9.现代表面技术:表面清洗;预处理,表面功能化后处理。

包括表面分析技术,表面物理,表面化学。

10.电刷度:在阳极表面裹上棉花和面絮等吸水材料,使其吸饱镀液,然后在作为阴极的零件上往复运动,使镀层牢固沉积在工件表面上。

工件→机械处理→化学处理→电化学精处理→预镀→电镀→镀后处理。

11.化学镀:在无外电流通过的情况下,利用还原剂将电解质溶液中的金属离子化学还原在呈活性催化的工件表面,沉积出与基件牢固结合的镀覆层。

12.涂装:用一定的方法将图料涂覆于工件表面而形成涂膜的全过程。

13.粘结:用粘结剂将各种材料或制件连接成为一个牢固整体的方法。

表面技术

表面技术

1.3 表面技术的分类材料表面工程是一门新兴学科,或者说是正在形成的一门学科,是一门多学科的边缘学科。

该学科中应该包括哪些内容,如何分类,国内外都无公认的说法。

从不同的角度进行归纳,就会有不同的分类。

如:按作用原理可分为:<1>原子沉积:沉积物以原子、离子、分子和粒子集团等原子尺度的粒子形态在材料表面上形成覆盖层,如电镀、化学镀、物理气相沉积、化学气相沉积等。

<2>颗粒沉积:沉积物以宏观尺度的颗粒形态在材料表面上形成覆盖层,如热喷涂、搪瓷涂覆等。

<3>整体覆盖:它是将涂覆材料于同一时间施加于材料表面,如包箔、贴片、热浸镀、涂刷、堆焊等。

<4>表面改性:用各种物理、化学等方法处理表面,使之组成、结构发生变化,从而改变性能,如表面处理、化学热处理、电子束表面处理、离子注入等。

按表面强化层材料可分为:<1>金属材料层;<2>陶瓷材料层;<3>高分子材料层。

按工艺特点可分为:<1>电镀,<2>化学镀,<3>热渗镀,<4>热喷涂,<5>堆焊,<6>化学转化膜,<7>涂装,<8>表面彩色,<9>气相沉积,<10>“三束”改性,<11>表面热处理,<12>形变强化,<13>衬里等,每一类又可分为一些更细的工艺项目。

图1-1 材料表面工程技术的分类该分类方法比较清晰地体现了工程技术的特点,而且与工程技术上的名称基本一致,容易记忆。

但缺乏学术上的逻辑性,因为有些技术尽管工艺不一样,但基本的改质机理是相同或相似的。

按工艺特点分类方法示意图如图1-1所示。

按表面改质的目的或性质可分为:<1>表面耐磨和减磨技术,<2>表面耐蚀抗氧化技术,<3>表面强化(提高疲劳强度)技术,<4>表面装饰技术,<5>功能表面技术,<6>表面修复技术。

表面工程-10 表面分析技术

表面工程-10 表面分析技术

TiC颗粒TEM形貌
透射电镜下观察到的双相钢中的位错线
三、物理及力学性能检测
1.厚度的测定
局部厚度和平均厚度检测 非破坏性检测(无损检测):厚度测试仪 破坏性检测方法:金相显微镜
厚度测试仪
金相显微镜法
过程:制备涂层断面试样,用带有测微目镜的金相显
微镜观察
特点:准确度高,判别直观
样逐一对比,从而判断其相组成。
X射线衍射分析的应用 物相定性分析 物相定量分析 点阵常数测定 应力测定 晶体取向测定
XRD物相定性分析的过程
获得衍射花样 计算面间距d 值和测定相对强度Ⅰ/Ⅰ1
检索PDF卡片和核对PDF卡片
分析判定
XRD定量分析 常用的物相定量分析分析方法有三种:
涂层表面缺陷(surface defects )检测
表面缺陷的种类及特点: 不平整、针孔、氧化、脱皮、飞溅、表面裂纹、 剥落、麻点、鼓泡、缩孔、疏松、斑点、毛刺、擦 伤等
二、表面结构的表征
表面成分分析
X射线光电子能谱、俄歇电子能谱、低能离子衍射谱仪
表面结构测定
X射线衍射、电子衍射、中子衍射等
射吸式喷砂枪,喷砂角 及距离固定 刚玉砂,喷砂速度恒定 时间1min 用试样失重评价涂层的 耐磨性
1
外标法(单线条法)
它是用分析相的纯样品的某一衍射线为标准
2
内标法
用掺入试样内的某已知物相的衍射线为标准
3
直接对比法
用试样中另一相的衍射线为标准
TiC涂层的XRD的谱线
俄歇电子能谱分析(AES, Auger Electron Spectrum)
俄歇电子能谱(AES)是用具有一定能量 的电子束(或X射线)激发样品俄歇效应,通 过检测俄歇电子的能量和强度,从而获得 有关材料表面化学成分和结构的信息的方 法。

表面工程学---教学大纲

表面工程学---教学大纲

《表面工程学》课程教学大纲课程代码:050241025课程英文名称:Surface engineering课程总学时:40 讲课:40 实验:0 上机:0适用专业:金属材料工程大纲编写(修订)时间:2017.11一、大纲使用说明(一)课程的地位及教学目标1.课程地位:表面工程学是必修、专业学位课。

2.教学目标:通过本课程的学习使学生了解现代表面技术基本知识。

掌握有关材料表面的基本概念和某些重要理论,对现代表面技术的形成、分类、涵义和内容有一定深度的了解。

通过一些典型的表面技术来掌握其主要设备、技术路线、工艺实施、分析检验和具体应用等,从而使学生对现代表面技术的形成、现状和发展有基本的了解。

积极培养学生理论联系实际以及开拓创新的能力,为学习其它有关专业课程和将来从事生产技术工作奠定必要的理论基础。

(二)知识、能力及技能方面的基本要求1.知识方面的基本要求:掌握表面工程学的定义和内涵、表面工程技术的特点与意义、表面工程技术的分类。

掌握典型固体表面与界面;掌握金属腐蚀原理和防护技术,材料磨损原理及其耐磨性。

掌握表面工程技术的预处理工艺。

掌握表面淬火技术的原理与特点;掌握感应加热淬火技术、火焰加热表面淬火技术、激光淬火、电阻加热表面淬火技术、表面形变强化技术的原理。

掌握热扩渗技术的基本原理;掌握热扩渗工艺的分类、等离子体热扩渗。

掌握电镀、化学镀的基本原理与工艺;掌握常用单金属电镀、合金电镀、复合镀技术。

掌握磷化、铬酸盐钝化膜;掌握转化膜的基本特性及用途、化学氧化、草酸盐钝化、电化学氧化、着色技术。

掌握涂料的基本组成及其作用、涂料成膜机理、涂装材料;掌握涂装工艺。

掌握物理气相沉积方法中蒸发镀、溅射镀和离子镀的原理及特点;掌握各类化学气相沉积方法的原理及特点,分子束外延制膜方法。

了解常用工业激光器及激光加工系统,掌握激光表面改性技术;掌握离子束表面改性技术、电子束表面改性技术的特点及应用。

掌握常用微细加工技术、纳米工艺、生物芯片技术。

表面工程

表面工程

一、名词解释1表面工程(定义):经表面预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变材料表面的形态、化学成分和组织状态,在保证材料整体强度水平不降低的基础上,以获得所需表面性能的系统工程2表面定义:金属或合金与周维环境(气相、液相和真空)间的过渡区称为金属的表面。

因环境不同,过渡区的组成和深度不同。

3表面自由能:产生原因:液体(熔体金属)的表面原子受到向内的吸引力的作用。

欲使其内部原子转变为表面原子,即增大表面积,需要环境对体系作功,从而形成表面能。

定义增大(液体)表面积所需要的功(能量)就是(液体)表面自由能。

4纯净表面(洁净表面):大块晶体的三维周期结构与真空间的过渡区域称为纯净表面5清洁表面:不存在有表面化合物,仅有气体和洗涤物的残留吸附层的金属表面称为清洁表面,也称为工业纯净表面。

6粗糙度:加工表面所具有的微小凹凸和微小峰谷所组成的微观几何形状就构成了其特征,粗糙度的波距与波深之比常常为150:1~5。

7莱宾杰尔效应:活性介质与金属接触后,使金属的表面自由能下降,导致金属材料强度和塑性发生变化的效应称为莱宾杰尔效应。

如Cu表面覆盖熔融薄膜后,使其高塑性丧失。

8磨损:相对运动的物质摩擦过程中不断产生损失或残余变形的现象按磨损机理分为磨料磨损、冲蚀磨损、粘着磨损和疲劳磨损等七大类9腐蚀:腐蚀就是材料与环境介质作用而引起的恶化变质或破坏。

10钝化:由于金属表面状态的改变引起金属表面活性的突然变化,使表面反应速度急剧降低的现象。

(阳极反应受阻的现象) 。

钝化大大降低了金属的腐蚀速度,是提高金属耐蚀能力的主要方法。

11表面淬火:用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上(奥氏体化),然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程。

12喷丸强化:是利用高速喷射的细小弹丸在室温下撞击受喷工件的表面,使表层材料在再结晶温度之下产生弹、塑性变形,并呈现较大的残余压应力,从而提高工件表面强度、疲劳强度和抗应力腐蚀能力的表面工程技术。

表面工程 考点汇总

表面工程 考点汇总

表面工程葵花宝典第一章:表面工程技术概论考点1:表面工程的概念:从材料的表面特性出发,利用表面改性技术、涂镀层技术和薄膜技术,使材料表面获得原来没有的新性能的系统工程。

考点2:润湿:固体表面与液体接触时原来的固相-气相界面消失,形成新的固相-液相界面的现象。

润湿是液体与固体表面接触时产生的一种表面现象,液体对固体表面的润湿程度可以用液滴在固体表面的散开程度来说明考点3:表面技术按作用原理分类:原子沉积、颗粒沉积、整体覆盖、表面改性。

第二章:材料表面工程技术基本理论考点4:在几个原子范围内的清洁表面其偏离三维周期性结构的主要特征是表面弛豫、表面重构和表面台阶结构、表面偏析、化合物、化学吸附考点5:表面粗糙度是指加工表面上具有的较小间距的峰和谷所组成的微观几何形状误差,也称微观粗糙度考点6:吸附、吸收和化学反应是固体与气体发生作用的三种表现考点7:按几何特征,晶体表面缺陷分为点缺陷、线缺陷和面缺陷三类考点8:表面平整一般采用磨光、滚光、抛光及刷光和振动磨光(1)磨光是借助粘有磨料的特制磨光轮(或带)的旋转,以磨削金属零件表面的过程(2)滚光是将成批零件与磨削介质一起在滚筒中作低速旋转,靠零件和磨料的相对运动进行光饰处理的过程(3)抛光是用抛光轮和抛光膏或抛光液对零件表面进一步轻微磨削以降低粗糙度,也可用于镀后的精加工(4)刷光是把刷光轮装在抛光机上,用刷光轮上的金属丝(钢丝、黄铜丝等)刷,同时用水或含某种盐类,表面活性剂的水溶液连续冲洗去除零件表面锈斑、毛刺、氧化皮及其他杂物(5)振动磨光是将零件与大量磨料和适量抛磨液置入容器中,在容器振动过程中使零件表面平整光洁考点9:基体表面清洁的目的是:(1)作为前序处理工艺的一部分,为下一涂装或其他表面加工(如电镀、热喷涂等)打基础(2)作为一项单独表面处理技术,可提高工件寿命或恢复工件原状态或节能需要(锅炉清除水垢,提高热效率);(3)消除工件(设备)隐患,提高安全性(如传热设备局部过热可通过清洗来解决),消毒、灭菌,除放射性污染,有利于人体健康考点10:喷砂是用机械或净化的压缩空气,将砂流强烈地喷向金属制品表面,利用磨料强力的撞击作用,打掉其上的污垢物,达到清理或修饰目的的过程考点11:喷丸的原理和设备与喷砂相似,只是采用的磨料不同。

表面科学和工程技术介绍

表面科学和工程技术介绍

考试
表面科学与工程学科的重要性
1. 表面科学的进步是国家繁荣的象征 2. 表面工程的发展促进了产品质量的提高 3. 表面技术是高附加值的技术,能够产生巨大的经济效益 4. 表面技术的发展能够带动相关行业的技术进步
3
第一章 表面科学与工程概论
§1.1 表面科学与工程的涵义 §1.2 表面科学与工程的发展历程 §1.3 表面工程迅速发展的原因 §1.4 表面工程技术的分类与简介 §1.5 表面工程的应用领域 §1.6 表面科学与工程的发展动向
15
16
表面工程的技术特点
▪ 表面工程技术既可对材料表面改性,制备多功能的涂、镀、渗、覆 层,成倍延长机件的寿命:
▪ 又可对产品进行装饰; ▪ 还可对废旧机件进行修复, ▪ 归纳起来,表面工程技术具有如下的技术特点:
17
特点一:
▪ 在廉价的基体材料上,对表面施以各种处理,使其获得多功能性(防腐、 耐磨、耐热、耐高温、耐疲劳、耐辐射、抗氧化以及光、热、磁、电等特 殊功能)、装饰性表面。
▪ 作为机件、构件的预保护,使之能承受腐蚀与磨损;并使高温机件、 构件的耐热性大大提高,延长了使用寿命;
▪ 作为废旧机件的修复,可使机件的寿命成倍延长。例如电站的空气 预热钢管不经处理,寿命仅有数月,经渗铝处理后寿命至少达10年, 产生很大的经济效益。
20
总之,表面工程技术是一种内涵深、外延广、渗 透力强、影响面宽的综合而通用性的工程技术,
▪ 现代表面工程技术的基础理论是表面科学, ▪ 它包括:
表面分析技术、 表面物理、 表面化学三个分支。
6
表面分析
▪ 基础方面有: 1. 表面的原子排列结构、 2. 原子类型、 3. 电子能态结构等,
表面分析是揭示表面现象的微观实质 和

表面工程技术及其应用 ppt课件

表面工程技术及其应用 ppt课件
缘膜、导电涂层等。 4) 非晶态薄膜:气相沉积、电镀、刷镀、激光、电子束
等方法制造。 5) 原子核反应器中的高温抗氧化涂层。 6) 纳米涂层:纳米结构ZrO2•Y2O3涂层、Al2O3涂层及
WC-Co涂层。
37
表面工程的意义
7. 表面工程促进了机械维修创新-再制造
1) 1984年美国“技术评论”提倡旧品翻新或再生并称为“重新 制造”, 2005年美国再制造产值已超过1000亿美元,100万 人就业。
3. 表面工程技术是传统技术和高新技术的结合和贯通。如:化学热处理、 热喷涂技术、“三束”表面强化。
4. 表面工程技术的特色是多种表面技术的复合和综合。如:热喷涂与激 光重熔的复合、化学处理与电镀的复合、表面强化与固体润滑膜的复 合,金属材料基体与非金属材料涂层的复合等。
5. 表面工程具有学科的综合性、广泛的功能性、手段的多样性、潜在的 创新性、环境的保护性、很强的实用性、巨大的增效性等。
表面工程技术及其应用
表面工程技术及其应用
丁彰雄
2013年4月
2
表面工程技术及其应用
1. 表面工程概述
➢ 机械设备的失效方式 ➢ 表面工程的概念 ➢ 表面工程的特点 ➢ 表面工程的意义 ➢ 表面工程技术的发展 ➢ 表面工程技术的分类
2. 表面工程技术的应用
3
作用使零部件表面 产生腐蚀。
30
HVOF制备纳米WC-12Co涂层后的浆液循环泵叶轮
31
防腐处理后的浆液循环泵叶轮
32
表面工程的概念
1. 表面工程的概念: 它是指将固体材料表面预处理后,通过表面涂覆、 表面改性或多种表面技术复合处理,改变固体材料表面的形态、化 学成分和组织结构,以获得所需要的表面性能的系统工程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逐一对比,从射线衍射分析的应用
➢物相定性分析 ➢物相定量分析 ➢点阵常数测定 ➢应力测定 ➢晶体取向测定
建筑精选课件
6
XRD物相定性分析的过程
➢获得衍射花样 ➢计算面间距d 值和测定相对强度Ⅰ/Ⅰ1 ➢检索PDF卡片和核对PDF卡片 ➢分析判定
建筑精选课件
7
XRD定量分析
建筑精选课件
22
硅晶体表面薄膜的物相分析
对薄膜全扫描分析得下图,含有Zn和S元素但 化学态未知。
建筑精选课件
23
为得知Zn和S的存在形态,对Zn的最强峰进行窄扫描,其峰位 1022eV比纯Zn峰1021.4eV更高,说明Zn内层电子的结合能 增加了,即Zn的价态变正,根据含有S元素并查文献中Zn的 标准谱图,确定薄膜中Zn是以ZnS的形式存在的。
材料表面分析技术
➢外观检测 ➢成分及组织结构分析 ➢物理及力学性能检测 ➢耐蚀性检测 ➢耐磨性检测
建筑精选课件
1
一、外观检测(visual examination )
含义:肉眼、样板或放大镜 涂层外观检测要求:
➢ 涂层表面保持干净; ➢ 检测要全面、细致; ➢ 依据相关标准(QJ 990.2-1986 )或技术要求。
建筑精选课件
21
X射线光电子能谱定性、定量分析 ➢ 定性分析
不同元素的原子,其电子结合能不同,电子结合能是特征性 的。因此,我们可以根据电子的结合能对物质的元素种类进 行定性分析。 ➢ 半定量分析 经X射线照射后,从样品表面某原子出射的光电子的强度是 与样品中该原子的浓度有线性关系,因此,可以利用它进行 元素的半定量分析。
俄歇跃迁几率及荧光几率与原子序数的关系
▪ 对于Z≤14的元素,采用KLL俄歇电子分析;
▪ 14<Z<42的元素,采用LMM俄歇电子较合适;

Z>42时,以采用MNN和MNO俄歇电子为佳。 建筑精选课件
11
建筑精选课件
12
▪ 主要组成部分:电子枪、能量分析器、二次电 子探测器、(样品)分析室、溅射离子枪和信 号处理与记录系统等。
建筑精选课件
13
俄歇谱仪示意图
直接谱与微分谱
▪ 直接谱:俄歇电子强度 [密度(电子数)]N(E)对其 能量E的分布[N(E)~E]。
▪ 微分谱:由直接谱微分 而来,是dN(E)/dE对E的 分布[dN(E)/dE~E]。
俄歇电子能谱示例(银原子的 俄歇能谱)
建筑精选课件
14
AES定性分析 ▪ 实际分析的俄歇电子谱图是样品中各种元素俄歇电子
建筑精选课件
18
XPS图谱
➢ 如图以Mg 为激发源得到 的Ag片的XPS 谱图。图中有 Ag3d3/2和Ag 3d5/2光电子两 个强特征峰。 用于鉴别银。
建筑精选课件
19
X射线光电子能谱仪
XPS仪由X射线激发源、样品台、电子能量分析器、 检测器系统、超高真空系统等部分组成。
建筑精选课件
20
X射线光电子能谱仪
建筑精选课件
24
宏观形貌:体视显微镜、(数码)照相机
建筑精选课件
25
显微组织结构分析
➢ 手段:光学显微镜、电子显微镜(SEM、TEM) ➢ 目的:涂层微观组织结构 ➢ 过程:取样→镶嵌→磨制→抛光→腐蚀→金相试样→
观察(OM、SEM或TEM)
建筑精选课件
26
SEM(Scanning electron microscope )
▪ 俄歇电子能谱(AES)是用具有一定能量 的电子束(或X射线)激发样品俄歇效应,通 过检测俄歇电子的能量和强度,从而获得 有关材料表面化学成分和结构的信息的方 法。
建筑精选课件
10
俄歇分析的选择
Z<15的轻元素的K系俄 歇电子以及所有元素的L 系和M系俄歇电子产额都 很高。由此可见,俄歇电 子能谱对轻元素的检测特 别敏感和有效。
➢ SEM成像原理:
利用扫描电子束从样品表面激发出各种物理信号来调制成象的。 ➢ 物理信号:二次电子、背散射电子、俄歇电子、特征X射线等 ➢ SEM的特点
分辨本领高、放大倍率可连续变化、景深长、视野大、成像富 有立体感、试样制备简单
建筑精选课件
27
扫描电镜的构造
➢ 电子光学系统 ➢ 信号的收集和图像显示系
镀铜钢深度分析建曲筑线精选课件
16
微区分析
▪ 微区分析也是俄歇电子能谱分析的一个重要功能, 可以分为选点分析,线扫描分析和面扫描分析三个 方面。
建筑精选课件
17
X射线光电子能谱(XPS, X-ray Photoelectron Spectrum)
▪ X射线光电子能谱(XPS):激发源为X射 线,用X射线作用于样品表面,产生光电子。 通过分析光电子的能量分布得到光电子能 谱。用于研究样品表面组成和结构。
谱的组合,定性分析的方法是将测得的俄歇电子谱与 纯元素的标准谱图比较,通过对比峰的位置和形状来 识别元素的种类。 AES定量分析 ▪ 俄歇电子强度与样品中对应原子的浓度有线性关系, 据此可以进行元素的半定量分析。
建筑精选课件
15
成分深度分析
▪ AES的深度分析功能是AES最有用的分析功能,主要分析元素及 含量随样品表面深度的变化。
常用的物相定量分析分析方法有三种: 1 外标法(单线条法)
它是用分析相的纯样品的某一衍射线为标准 2 内标法
用掺入试样内的某已知物相的衍射线为标准 3 直接对比法
用试样中另一相的衍射线为标准
建筑精选课件
8
TiC涂层的XRD的谱线
建筑精选课件
9
俄歇电子能谱分析(AES, Auger Electron Spectrum)
建筑精选课件
2
涂层表面缺陷(surface defects )检测
表面缺陷的种类及特点: 不平整、针孔、氧化、脱皮、飞溅、表面裂纹、 剥落、麻点、鼓泡、缩孔、疏松、斑点、毛刺、擦 伤等
建筑精选课件
3
二、表面结构的表征
➢表面成分分析
X射线光电子能谱、俄歇电子能谱、低能离子衍射谱仪
➢表面结构测定
X射线衍射、电子衍射、中子衍射等
➢表面形貌观察
光学显微镜、扫描电子显微镜、透射电子显微镜等
建筑精选课件
4
X射线衍射(XRD, X-ray Diffraction)
各相物质均具有其独具的晶体结构。 在给定波长的X射线照射下,每种晶体物质都形成自己特
定的衍射花样。 对于复相物质,其衍射花样是各相物质衍射花样的机械叠
加。
将被测试样的衍射花样与一组标准单相物质的衍射花样
相关文档
最新文档