专题3.4 机械能守恒定律的理解及应用(解析版)

合集下载

高中物理机械能及守恒定律专题及解析

高中物理机械能及守恒定律专题及解析

高中物理机械能及守恒定律专题及解析高中物理机械能及守恒定律专题及解析一、机械能的概念及计算公式机械能是指一个物体同时具有动能和势能的能量,它是物体运动时的总能量。

机械能可以通过以下公式计算:机械能 = 动能 + 势能其中,动能的公式为:动能 = 1/2 ×质量 ×速度²势能的公式为:势能 = 质量 ×重力加速度 ×高度二、机械能守恒定律的表述及应用机械能守恒定律指的是,在一个封闭系统中,如果只有重力做功,没有其他非保守力做功,那么该系统的机械能守恒,即机械能的总量不会发生变化。

这一定律可以通过以下实验进行验证:将一个小球从一定高度上自由落下,当小球下落到一定高度时,用一个弹性绳接住小球,使其反弹上升,然后再次自由下落。

实验结果表明,当小球反弹的高度恰好等于初始下落高度时,机械能守恒定律成立。

在实际应用中,机械能守恒定律常常用于解决与能量转换和效率有关的问题。

例如,我们可以利用机械能守恒定律计算斜面上物体的滑动速度或滑动距离,来评估机械装置的效率。

此外,机械能守恒定律还可以用于解决弹簧振子、单摆等周期性运动问题。

三、机械能守恒定律的应用实例分析1. 斜面上物体滑动问题假设一个物体从斜面的顶端自由滑下,忽略空气阻力和摩擦力,那么当物体滑到斜面的底端时,动能和势能的变化可以用机械能守恒定律来表达。

设物体的质量为m,斜面的高度差为h,斜面的倾角为θ。

假设物体在斜面上的速度为v,那么动能和势能的变化可以表示为:动能的变化:ΔK = K(终) - K(始) = 1/2 × m × v² - 0 = 1/2 × m ×v²势能的变化:ΔU = U(终) - U(始) = m × g × h × sinθ - 0 = m × g× h × sinθ根据机械能守恒定律,动能的变化等于势能的变化,即:1/2 × m × v² = m × g × h × sinθ通过求解上述方程,可以得到物体在斜面上的滑动速度v的数值。

机械能守恒定律解题的基本思路及在多物体系统、链条、绳、杆中的应用(解析版)

机械能守恒定律解题的基本思路及在多物体系统、链条、绳、杆中的应用(解析版)

机械能守恒定律解题的基本思路及在多物体系统、链条、绳、杆中的应用模型概述1.机械能是否守恒的三种判断方法1)利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功(或做功代数和为0),则机械能守恒.2)利用能量转化判断:若物体或系统与外界没有能量交换,物体或系统也没有机械能与其他形式能的转化,则机械能守恒.3)利用机械能的定义判断:若物体动能、势能之和不变,则机械能守恒.4)对一些绳子突然绷紧,物体间非弹性碰撞等问题,除非题目特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能也不守恒.2.系统机械能守恒的三种表示方式1)守恒角度:系统初状态机械能的总和与末状态机械能的总和相等,即E1=E2说明:选好重力势能的参考平面,且初、末状态必须用同一参考平面计算势能2)转化角度:系统减少(或增加)的重力势能等于系统增加(或减少)的动能,即ΔE k=-ΔE p说明:分清重力势能的增加量或减少量,可不选参考平面而直接计算初、末状态的势能差3)转移角度:系统内A部分物体机械能增加量等于B部分物体机械能减少量,即ΔE A增=ΔE B减说明:常用于解决两个或多个物体组成的系统的机械能守恒问题说明:①解题时究竟选取哪一种表达形式,应根据题意灵活选取;需注意的是:选用1)式时,必须规定零势能参考面,而选用2)式和3)式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量.②单个物体应用机械能守恒定律时选用守恒观点或转化观点进行列式3.机械能守恒定律解题的基本思路1)选取研究对象;2)进行受力分析,明确各力的做功情况,判断机械能是否守恒;3)选取参考平面,确定初、末状态的机械能或确定动能和势能的改变量;4)根据机械能守恒定律列出方程;5)解方程求出结果,并对结果进行必要的讨论和说明.4.多物体系统的机械能守恒问题1)对多个物体组成的系统,要注意判断物体运动过程中系统的机械能是否守恒.一般情况为:不计空气阻力和一切摩擦,系统的机械能守恒.2)注意寻找用绳或杆相连接的物体间的速度关系和位移关系.3)列机械能守恒方程时,先确定系统中哪些能量增加、哪些能量减少,一般选用ΔE k=-ΔE p或ΔE A= -ΔE B的形式解决问题.4)几种典型问题①速率相等情景注意分析各个物体在竖直方向的高度变化.②角速度相等情景Ⅰ、杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.Ⅱ、由v=ωr知,v与r成正比.③某一方向分速度相等情景(关联速度情景)两物体速度的关联实质:沿绳(或沿杆)方向的分速度大小相等.典题攻破1.机械能守恒定律解题的基本思路例1.(2024·四川巴中·一模)滑板是运动员脚踩滑动的器材,在不同地形、地面及特定设施上,完成各种复杂的滑行、跳跃、旋转、翻腾等高难动作的极限运动,2020年12月7日,国际奥委会同意将滑板列为2024年巴黎奥运会正式比赛项目。

2020年高考物理专题精准突破 机械能守恒定律的理解及应用(解析版)

2020年高考物理专题精准突破  机械能守恒定律的理解及应用(解析版)

2020年高考物理专题精准突破专题机械能守恒定律的理解及应用【专题诠释】一、机械能守恒的理解与判断1.利用机械能的定义判断:分析动能和势能的和是否变化.2.利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.利用能量转化来判断:若物体或系统只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.二.机械能守恒定律的表达式三、多个物体的机械能守恒问题,往往涉及“轻绳模型”“轻杆模型”以及“轻弹簧模型”.(1)轻绳模型三点提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等.①用好两物体的位移大小关系或竖直方向高度变化的关系.①对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒.(2)轻杆模型三大特点①平动时两物体线速度相等,转动时两物体角速度相等.①杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.①对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒.(3)轻弹簧模型“四点”注意①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体的动能、重力势能和弹簧的弹性势能之间相互转化,物体和弹簧组成的系统机械能守恒,而单个物体和弹簧机械能都不守恒.①含弹簧的物体系统机械能守恒问题,符合一般的运动学解题规律,同时还要注意弹簧弹力和弹性势能的特点.①弹簧弹力做的功等于弹簧弹性势能的减少量,而弹簧弹力做功与路径无关,只取决于初、末状态弹簧形变量的大小.①由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).【高考领航】【2019·新课标全国Ⅱ卷】从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和。

取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示。

解密06机械能守恒定律(讲义)解析版

解密06机械能守恒定律(讲义)解析版

解密06 机械能守恒定律考点热度★★★★☆内容索引1.机械能守恒的条件及判断方法2.常见功能转化关系及能量守恒定律3.机械能守恒分析多过程、多物体问题机械能守恒定律主要考查的角度有:(1)机械能守恒的条件(2)机械能守恒定律与平抛运动、圆周运动的综合(3)功能关系和机械能守恒分析多过程、多物体问题考点一机械能守恒的理解与判断机械能是否守恒的三种判断方法例一[多选]如图所示,质量为M的物块A放置在光滑水平桌面上,右侧连接一固定于墙面的水平轻绳,左侧通过一倾斜轻绳跨过光滑定滑轮与一竖直轻弹簧相连。

现将质量为m的钩码B挂于弹簧下端,当弹簧处于原长时,将B由静止释放,当B下降到最低点时(未着地),A对水平桌面的压力刚好为零。

轻绳不可伸长,弹簧始终在弹性限度内,物块A始终处于静止状态。

以下判断正确的是()A. M <2mB. 2m <M <3mC. 在B 从释放位置运动到最低点的过程中,所受合力对B 先做正功后做负功D. 在B 从释放位置运动到速度最大的过程中,B 克服弹簧弹力做的功等于B 机械能的减少量【答案】ACD【解析】AB .由题意可知B 物体可以在开始位置到最低点之间做简谐振动,故在最低点时有弹簧弹力T =2mg ;对A 分析,设绳子与桌面间夹角为θ,则依题意有2sin mg Mg θ故有2M m <,故A 正确,B 错误;C .由题意可知B 从释放位置到最低点过程中,开始弹簧弹力小于重力,物体加速,合力做正功;后来弹簧弹力大于重力,物体减速,合力做负功,故C 正确;D .对于B ,在从释放到速度最大过程中,B 机械能的减少量等于弹簧弹力所做的负功,即等于B 克服弹簧弹力所做的功,故D 正确变式一(2021·河南洛阳模拟)(多选)如图所示,有质量为2m 、m 的小滑块P 、Q ,P 套在固定竖直杆上,Q 放在水平地面上。

P 、Q 间通过铰链用长为L 的刚性轻杆连接,一轻弹簧左端与Q 相连,右端固定在竖直杆上,弹簧水平,α=30°时,弹簧处于原长。

高中物理学习细节(人教版)之机械能守恒定律:机械能守恒定律的应用之连接体问题(含解析)

高中物理学习细节(人教版)之机械能守恒定律:机械能守恒定律的应用之连接体问题(含解析)

一、机械能守恒定律在连接体问题中的应用
机械能守恒定律的研究对象是几个相互作用的物体组成的系统时,在应用机械能守恒定律解决系统的运动状态的变化及能量的变化时,经常出现下面三种情况:
1.系统内两个物体直接接触或通过弹簧连接。

这类连接体问题应注意各物体间不同能
量形式的转化关系。

2.系统内两个物体通过轻绳连接。

如果和外界不存在摩擦力做功等问题时,只有机械
能在两物体之间相互转移,两物体组成的系统机械能守恒。

解决此类问题的关键是在绳的方
向上两物体速度大小相等。

3.系统内两个物体通过轻杆连接。

轻杆连接的两物体绕固定转轴转动时,两物体的角
速度相等。

【典例1】如图所示,质量均为m的物体A和B,通过轻绳跨过定滑轮相连.斜面光滑,倾角为θ,不计绳子和滑轮之间的摩擦.开始时A物体离地的高度为h,B物体位于斜面的底端,用手托住A物体,使A、B两物体均静止。

现将手撤去。

(1) 求A 物体将要落地时的速度为多大?
(2) A 物体落地后, B 物体由于惯性将继续沿斜面向上运动,则 B 物体在斜面上到达的最高点离地的高度为多大?。

机械能守恒定律的应用和解题技巧{有详细答案}

机械能守恒定律的应用和解题技巧{有详细答案}

机械能守恒定律的应用和解题技巧{有详细答案}能量转化和守恒定律是自然界四大基本规律之一,机械能守恒定律又是能量守恒定律在机械运动中的具体表现形式,由于机械能守恒定律不涉及运动过程中的加速度和时间,用它来处理动力学问题要远比牛顿运动定律方便。

机械能守恒定律适用的对象可以是单个物体(弹簧)和地球组成的系统,也可以是多个物体(弹簧)和地球组成的系统。

不过,对象不同,在守恒的判断上、运用的方式上略有差异。

机械能包括动能、重力势能和弹性势能三种,由于重力势能属于物体和地球组成的系统,因此,只要涉及重力势能,地球就必定是研究对象的一部分,也正因为如此,在交代研究对象时地球可以不特别指明。

一、单个物体(弹簧)和地球组成的系统机械能守恒条件:(1)只受重力或系统内弹簧弹力;(注意:从研究对象的组成可知,重力也属内力)(2)受其它外力,但其它外力不做功;(3)其它外力做功,但其它外力做功的代数和始终为0。

满足上述三个条件中任何一个,该系统的机械能都守恒。

其中第三个条件需要进行一点补充说明,以沿水平公路匀速直线运动的汽车为例,运行过程中,发动机内部燃烧汽油,一部分化学能转化为机械能,同时,汽车克服阻力做功,一部分机械能又转化为内能,两个转化过程中机械能变化的数值相等,因此汽车机械能的总量保持不变。

正因如此,严格地讲,第三个条件不属于机械能守恒的条件之列,只是研究过程中机械能的数值始终保持不变而已。

例:如图所示,小球从某一高处自由下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的过程中,下列关于机械能的叙述中正确的是()(A)重力势能和动能之和总保持不变(B)重力势能和弹性势能之和总保持不变(C)动能和弹性势能之和总保持不变(D)重力势能、弹性势能和动能之和总保持不变分析:这是一个经典问题,难点在于研究对象的选择。

若以小球、地球组成的系统为对象,弹簧弹力属于外力,系统机械能不守恒;若以小球、弹簧、地球组成的系统为对象,弹簧弹力属于内力,系统机械能守恒。

高中物理《机械能守恒定律》微课精讲+知识点+教案课件+习题

高中物理《机械能守恒定律》微课精讲+知识点+教案课件+习题

知识点:01重力势能与弹性势能1.重力势能(1)定义:物体的重力势能等于它所受重力与所处高度的乘积。

(2)表达式:Ep=mgh。

(3)矢标性:重力势能是标量,但有正负,其意义表示物体的重力势能比它在参考平面大还是小。

(4)重力势能的特点:①系统性:重力势能是物体和地球所共有的。

②相对性:重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关。

(5)重力做功与重力势能变化的关系:WG=-ΔEp。

2.弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用,而具有的势能。

(2)大小:与形变量及劲度系数有关。

(3)弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加。

02机械能守恒定律1.内容在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。

2.机械能守恒的条件只有重力或弹力做功。

3.对守恒条件的理解(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。

(2)受其他力,但其他力不做功,只有重力或系统内的弹力做功。

(3)弹力做功伴随着弹性势能的变化,并且弹力做的功等于弹性势能的减少量。

4.机械能守恒的三种表达式(1)E1=E2(E1、E2分别表示系统初、末状态时的总机械能)。

(2)ΔE(k)=-ΔE(p)或ΔE(k增)=ΔE(p减)(表示系统势能的减少量等于系统动能的增加量)。

(3)ΔE(A)=-ΔE(B)或ΔE(A增)=ΔE(B减)(表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能)。

03机械能守恒的判断机械能是否守恒的几种判断方法(1)利用机械能的定义判断(直接判断):若物体动能、势能均不变,机械能不变。

若一个物体动能不变、重力势能变化,或重力势能不变、动能变化或动能和重力势能同时增加(减小),其机械能一定变化。

(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒。

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。

机械能守恒定律及其应用及实验【讲】解析版

机械能守恒定律及其应用及实验【讲】解析版

专题6.2 机械能守恒定律及其应用及实验【讲】目录一讲核心素养 (1)二讲必备知识 (2)【知识点一】机械能守恒定律的判断 (2)【知识点二】单物体机械能守恒问题 (4)【知识点三】实验:验证机械能守恒定律 (8)三.讲关键能力 (13)【能力点一】.多物体机械能守恒问题 (13)【能力点二】.含“弹簧类”机械能守恒问题 (17)【能力点三】.实验创新 (20)四.讲模型思想---用机械能守恒定律解决非质点问题 (25)一讲核心素养1.物理观念:重力势能、机械能。

(1)理解功和功率。

了解生产生活中常见机械的功率大小及其意义。

(2)理解动能和动能定理。

能用动能定理解释生产生活中的现象。

2.科学思维:机械能守恒定律。

(1)理解重力势能,知道重力势能的变化与重力做功的关系。

定性了解弹性势能。

(2)知道机械能的含义会判断研究对象在某一过程机械能是否守恒.(3).能应用机械能守恒定律解决具体问题.3.科学态度与责任:(1)理解机械能守恒定律,体会守恒观念对认识物理规律的重要性。

(2).能用机械能守恒定律分析生产生活中的有关问题。

4.科学探究:实验:验证机械能守恒定律(1).熟悉“验证机械能守恒定律”的基本实验原理及注意事项.(2).会验证创新实验的机械能守恒.二讲必备知识【知识点一】机械能守恒定律的判断1.利用机械能的定义判断:分析动能和势能的和是否变化.2.利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.利用能量转化来判断:若物体或系统只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.【例1】(2021·福建邵武七中期中)(多选)如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.小球运动到D处时,到达最低点.不计空气阻力,以下描述正确的有()A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少C.小球由B向C运动的过程中,处于超重状态,小球的动能增加D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少【答案】 BD【解析】 小球由A 向B 运动的过程中,做自由落体运动,加速度等于竖直向下的重力加速度g ,处于完全失重状态,此过程中只有重力做功,小球的机械能守恒,A 错误;小球由B 向C 运动的过程中,重力大于弹簧的弹力,加速度向下,小球处于失重状态,小球和弹簧组成的系统机械能守恒,弹簧的弹性势能增加,小球的机械能减少,由于小球向下加速运动,小球的动能还是增大的,B 正确,C 错误;小球由C 向D 运动的过程中,弹簧的弹力大于小球的重力,加速度方向向上,处于超重状态,弹簧继续被压缩,弹性势能继续增大,小球的机械能继续减小,D 正确.【素养升华】本题考察的学科素养主要是物理观念及科学思维。

高中物理机械能守恒定律(解析版)

高中物理机械能守恒定律(解析版)

机械能守恒定律目录一.练经典---落实必备知识与关键能力 (1)二.练新题---品立意深处所蕴含的核心价值 (1)一.练经典---落实必备知识与关键能力1.(2022·山东学考)若忽略空气阻力的影响,下列运动过程中物体机械能守恒的是()A.被掷出后在空中运动的铅球B.沿粗糙斜面减速下滑的木块C.随热气球一起匀速上升的吊篮D.随倾斜传送带加速上行的货物【答案】A【解析】:机械能守恒的条件是只有重力做功,被掷出后在空中运动的铅球只有重力做功,机械能守恒;沿粗糙斜面下滑的木块除重力外还有摩擦力做功,机械能不守恒;随热气球一起匀速上升的吊篮在上升过程中动能不变,重力势能随高度增大而增大,机械能不守恒;随倾斜传送带加速上行的货物在上行过程中动能增大,重力势能增大,机械能不守恒。

故A正确。

2.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计滑轮质量和任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【答案】CD【解析】:甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错误。

乙图中物体B除受重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量特点看A、B组成的系统机械能守恒,B错误。

丙图中A、B组成的系统只有重力做功,动能和势能相互转化,总的机械能守恒,C正确。

丁图中动能不变,势能不变,机械能守恒,D正确。

3.(2022·浙江7月学考)如图所示,质量为m的小球从距桌面h1高处的A点由静止释放,自由下落到地面上的B点,桌面离地高为h2。

选择桌面为参考平面,则小球()A.在A点时的重力势能为-mgh1B .在A 点时的机械能为mg (h 1+h 2)C .在B 点时的重力势能为mgh 2D .在B 点时的机械能为mgh 1 【答案】D【解析】: 选择桌面为参考平面,小球在A 点的重力势能为mgh 1,A 错误;小球在A 点的机械能等于重力势能和动能之和,而动能为零,所以在A 点的机械能为mgh 1,B 错误;小球在B 点的重力势能为-mgh 2,小球在B 点的机械能与在A 点的机械能相同,也是mgh 1,C 错误,D 正确。

验证机械能守恒定律-2024年高考物理一轮复习热点重点难点(解析版)

验证机械能守恒定律-2024年高考物理一轮复习热点重点难点(解析版)

验证机械能守恒定律特训目标特训内容目标1利用打点计时器验证机械能守恒定律(1T -4T )目标2利用光电门验证机械能守恒定律(5T -8T )目标3利用单摆验证机械能守恒定律(9T -12T )目标4利用竖直面内圆周运动验证机械能守恒定律(13T -16T )【特训典例】一、利用打点计时器验证机械能守恒定律1某物理兴趣小组利用如图1所示装置验证机械能守恒定律,该小组让重物带动纸带从静止开始自由下落,按正确操作得到了一条完整的纸带如图2所示(在误差允许范围内,认为释放重锤的同时打出O 点)。

(1)下列关于该实验说法正确的是。

A.实验时应先释放重锤,后接通电源B.实验时应选择体积和密度较小、下端有胶垫的重锤C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上D.为准确测量打点计时器打下某点时重锤的速度v ,可测量该点到O 点的距离h ,利用v =2gh 计算(2)在纸带上选取三个连续打出的点A 、B 、C ,测得它们到起始点O 的距离分别为h A 、h B 、h C 。

已知当地重力加速度为g ,打点计时器所用交流电源的频率为f ,重物的质量为m 。

从打O 点到打B 点的过程中,重物动能变化量DE k =。

(3)该小组通过多次实验发现重力势能的减少量总是略大于动能的增加量,出现这种现象的原因可能是。

A.工作电压偏高B.由于有空气和摩擦阻力的存在C.重物质量测量得不准确D.重物释放时距打点计时器太远【答案】 C m (h C -h A )2f 28B【详解】(1)[1]A .为充分利用纸带,实验时应先接通电源,后释放重锤,故A 错误;B .为减小空气阻力的影响,实验时应选择体积小,密度较大、下端有胶垫的重锤,故B 错误;C.安装实验器材时,必须使打点计时器的两个限位孔在同一竖直线上,故C正确;D.为准确测量打点计时器打下某点时重锤的速度v,不能利用v=2gh计算,应用速度的定义式计算,故D错误。

2024高考物理复习专题06 机械能守恒定律 能量守恒定律(讲义)(解析版)

2024高考物理复习专题06 机械能守恒定律 能量守恒定律(讲义)(解析版)
量转化等问题
知积建构
机械能· 机械能是否守恒的三种判断方法
机械能与图象结合的问题, 应用机械能守恒定律解题的一般步骤
系统机械能守恒的三种表示方式· 多物体系统的机械能守恒问题
机械能及守恒的判断
机械能守恒定律
能量守恒定律
机械能守恒 定律的应用
能量守恒定律
及其应用
涉及弹簧的能量问题 摩擦力做功的能量问题
可知铅球速度变大,则动能越来越大,CD错误。 故选B。
2.(2021·全国·高考真题)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端 与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底 板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()
A.弹性绳刚伸直时,运动员开始减速
B.整个下落过程中,运动员的机械能保持不变 C.整个下落过程中,重力对运动员所做的功大于运动员克服弹性绳弹力所做的功
D.弹性绳从伸直到最低点的过程中,运动员的重力势能与弹性绳的弹性势能之和先减小后增大
【答案】D 【详解】A.弹性绳刚伸直时,此时运动员的重力大于弹性绳的弹力,加速度向下,运动员仍加速运动,故 A错误;B.整个下落过程中,运动员连同弹性绳的机械能总和不变,但是整个下落过程中随着弹性绳的弹 性势能增大,运动员的机械能在减小,故B错误;C.整个下落过程中,初末状态运动员的速度均为零,重
3.板块问题……………………………………20
4.传送带问题……………………………………21 题型特训·命题预测…21 考向一 能量转化及守恒定律的综合应用………21
考向二 涉及弹簧的能量问题……………………22
考向三 涉及板块、传送带的能量问题…………24

动能定理和机械能守恒定律的应用(解析版)

动能定理和机械能守恒定律的应用(解析版)

动能定理和机械能守恒定律的应用目录一.练经典---落实必备知识与关键能力................................................................................... 错误!未定义书签。

二.练新题---品立意深处所蕴含的核心价值 ........................................................................... 错误!未定义书签。

一、选择题1.如图所示,在质量为M 的电梯地板上放置一质量为m 的物体,钢索拉着电梯由静止开始向上做加速运动,当上升高度为H 时,速度达到v ,则( ) A .地板对物体的支持力做的功等于12mv 2B .地板对物体的支持力做的功等于mgHC .钢索的拉力做的功等于12Mv 2+MgHD .合力对电梯做的功等于12Mv 2【答案】D【解析】: 对物体由动能定理得:W F N -mgH =12mv 2,故W F N =mgH +12mv 2,A 、B 均错误;钢索拉力做的功W F 拉=(M +m )gH +12(M +m )v 2,C 错误;由动能定理知,合力对电梯做的功应等于电梯动能的变化12Mv 2,D 正确。

2.(2022·上海交大附中期中)一块木板水平放在某装置底部,装置从地面开始向上运动的速度—时间图像如图所示,g 取10 m/s 2,则下列分析正确的是( )A .0~0.5 s 木板的机械能守恒B .0.5~1.0 s 木板的机械能守恒C .1.0~1.5 s 木板的机械能守恒D .0~1.5 s 木板的机械能一直在增加 【答案】C【解析】: 0~0.5 s 木板加速上升,木板动能和重力势能均增大,木板的机械能不守恒,A 错误; 0.5~1.0 s 木板匀速上升,动能不变,重力势能增大,机械能不守恒,B 错误;1.0~1.5 s 木板的加速度大小为a =5-01.5-1.0m/s 2=10 m/s 2=g ,木板的加速度方向竖直向下,只受重力作用,做自由落体运动,只有重力做功,机械能守恒,C 正确,D 错误。

高考物理第一轮复习限时规范训练:机械能守恒定律及其应用(解析版)

高考物理第一轮复习限时规范训练:机械能守恒定律及其应用(解析版)

一轮复习限时规范训练机械能守恒定律及其应用一、选择题:在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~7题有多项符合题目要求.1、关于机械能守恒,下列说法中正确的是( )A.物体做匀速运动,其机械能肯定守恒B.物体所受合力不为零,其机械能肯定不守恒C.物体所受合力做功不为零,其机械能肯定不守恒D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能削减答案:D解析:物体做匀速运动其动能不变,但机械能可能变,如物体匀速上升或下降,机械能会相应的增加或削减,选项A错误;物体仅受重力作用,只有重力做功,或受其他力但其他力不做功或做功的代数和为零时,物体的机械能守恒,选项B、C错误;物体沿竖直方向向下做加速度为5 m/s2的匀加速运动时,物体肯定受到一个与运动方向相反的力的作用,此力对物体做负功,物体的机械能削减,故选项D正确.2.如图所示,表面光滑的固定斜面顶端安装肯定滑轮,小物块A,B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A,B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块( )A.速率的改变量不同B.机械能的改变量不同C.重力势能的改变量相同D.重力做功的平均功率相同答案:D解析:由题意依据力的平衡有m A g=m B g sin θ,所以m A=m B sin θ.依据机械能守恒定律mgh=12mv2,得v=2gh,所以两物块落地速率相等,选项A错误;因为两物块的机械能守恒,所以两物块的机械能改变量都为零,选项B错误;依据重力做功与重力势能改变的关系,重力势能的改变为ΔE p=-W G=-mgh,所以E p A=m A gh=m B gh sin θ,E p B=m B gh,选项C错误;因为A、B两物块都做匀变速运动,所以A重力的平均功率为P A=m A g·v2,B重力的平均功率P B=m B g·v2sin θ,因为m A=m B sin θ,所以PA=P B,选项D正确.3.静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间改变关系是( )A B C D答案:C解析:物体受恒力加速上升时,恒力做正功,物体的机械能增大,又因为恒力做功为W=F·12at2,与时间成二次函数关系,选项A、B两项错误;撤去恒力后,物体只受重力作用,所以机械能守恒,D项错误,C项正确.4.如图所示,粗细匀称、两端开口的U形管内装有同种液体,起先时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流淌,当两液面高度相等时,右侧液面下降的速度为( )A.18gh B.16ghC.14gh D.12gh答案:A解析:设管子的横截面积为S ,液体的密度为ρ.打开阀门后,液体起先运动,不计液体产生的摩擦阻力,液体机械能守恒,液体削减的重力势能转化为动能,两边液面相平常,相当于右管12h 高的液体移到左管中,重心下降的高度为12h ,由机械能守恒定律得ρ·12hS ·g ·12h =12ρ·4hS ·v 2,解得,v =gh8.选项A 正确.5.如图所示,一质量为m 的小球套在光滑竖直杆上,轻质弹簧一端固定于O 点,另一端与该小球相连.现将小球从A 点由静止释放,沿竖直杆运动到B 点,已知OA 长度小于OB 长度,弹簧处于OA ,OB 两位置时弹力大小相等.在小球由A 到B 的过程中( )A .加速度等于重力加速度g 的位置有两个B .弹簧弹力的功率为零的位置有两个C .弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功D .弹簧弹力做正功过程中小球运动的距离等于小球克服弹簧弹力做功过程中小球运动的距离答案:AC解析:在运动过程中A 点为压缩状态,B 点为伸长状态,则由A 到B 有一状态弹力为0且此时弹力与杆不垂直,加速度为g ;当弹簧与杆垂直时小球加速度为g .则有两处加速度为g ,故A 项正确;在A 点速度为零,弹簧弹力功率为0,弹簧与杆垂直时弹力的功率为0,有一位置的弹力为0,其功率为0,共3处,故B 项错误;因A 点与B 点弹簧的弹性势能相同,则弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功,故C 项正确;因小球对弹簧做负功时弹力大,则弹簧弹力做正功过程中小球运动的距离大于小球克服弹簧弹力做功过程中小球运动的距离,故D 项错误.6.如图所示,滑块A ,B 的质量均为m ,A 套在固定竖直杆上,A ,B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并紧靠竖直杆,A ,B均静止.由于微小扰动,B起先沿水平面对右运动.不计一切摩擦,滑块A,B视为质点.在A下滑的过程中,下列说法中正确的是( ) A.A,B组成的系统机械能守恒B.在A落地之前轻杆对B始终做正功C.A运动到最低点时的速度为2gLD.当A的机械能最小时,B对水平地面的压力大小为2mg答案:AC解析:A,B组成的系统中只有动能和势能相互转化,故A、B组成的系统机械能守恒,选项A正确;分析B的受力状况和运动状况:B先受到竖直杆向右的推力,使其向右做加速运动,当B的速度达到肯定值时,杆对B有向左的拉力作用,使B向右做减速运动,当A落地时,B的速度减小为零,所以杆对B先做正功,后做负功,选项B错误;由于A、B组成的系统机械能守恒,且A到达最低点时B的速度为零,依据机械能守恒定律可知选项C正确;B先做加速运动后做减速运动,当B的速度最大时其加速度为零,此时杆的弹力为零,故B对水平面的压力大小为mg,由于A、B组成的系统机械能守恒,故此时A机械能最小,选项D错误.7.如图所示,A,B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B,C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手限制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直,右侧细线与斜面平行.已知A的质量为4m,B,C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,起先时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C 恰好离开地面.下列说法错误的是( )A.斜面倾角α=60°B.A获得的最大速度为2g m 5kC.C刚离开地面时,B的加速度最大D .从释放A 到C 刚离开地面的过程中,A ,B 两小球组成的系统机械能守恒答案:ACD解析:释放A 后,A 沿斜面下滑至速度最大时C 恰好离开地面,此时细线中拉力等于4mg sin α,弹簧的弹力等于mg ,则有4mg sin α=mg +mg ,解得斜面倾角α=30°,选项A 错误;释放A 前,弹簧的压缩量为x =mg k ,A 沿斜面下滑至速度最大时弹簧的伸长量为x ′=mg k,由机械能守恒定律得4mg ·2x sin α-mg ·2x =12·4mv 2+12mv 2,解得A 获得的最大速度为v =2g m 5k,选项B 正确;C 刚离开地面时,B 的加速度为零,选项C 错误;从释放A 到C 刚离开地面的过程中,A ,B 两小球、地球、弹簧组成的系统机械能守恒,选项D 错误.二、非选择题8.如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h =0.2 m ,起先时让连着A 的细线与水平杆的夹角θ1=37°,由静止释放B ,当细线与水平杆的夹角θ2=53°时,A 的速度为多大?在以后的运动过程中,A 所获得的最大速度为多大?(设B 不会遇到水平杆,sin 37°=0.6,sin 53°=0.8,取g =10 m/s 2) 解:设绳与水平杆夹角θ2=53°时,A 的速度为v A ,B 的速度为v B ,此过程中B 下降的高度为h 1,则有mgh 1=12mv 2A +12mv 2B ,其中h 1=h sin θ1-hsin θ2,v A cos θ2=v B ,代入数据,解以上关系式得v A ≈1.1 m/s.A 沿着杆滑到左侧滑轮正下方的过程,绳子拉力对A 做正功,A 做加速运动,此后绳子拉力对A 做负功,A 做减速运动.故当θ1=90°时,A 的速度最大,设为v A m ,此时B 下降到最低点,B 的速度为零,此过程中B 下降的高度为h 2,则有mgh 2=12mv 2A m ,其中h 2=h sin θ1-h ,代入数据解得v A m =1.63 m/s. 9.如图所示,水平地面与一半径为l 的竖直光滑圆弧轨道相接于B 点,轨道上的C 点位置处于圆心O 的正下方.在距地面高度为l 的水平平台边缘上的A 点,质量为m 的小球以v 0=2gl 的速度水平飞出,小球在空中运动至B 点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g ,试求:(1)B 点与抛出点A 正下方的水平距离x ;(2)圆弧BC 段所对的圆心角θ;(3)小球滑到C 点时,对圆轨道的压力.解:(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得l =12gt 2,x =v 0t 联立解得x =2l .(2)由小球到达B 点时竖直分速度v 2y =2gl ,tan θ=v y v 0,解得θ=45°. (3)小球从A 运动到C 点的过程中机械能守恒,设到达C 点时速度大小为v C ,由机械能守恒定律有mgl ⎝ ⎛⎭⎪⎪⎫1+1-22=12mv 2C -12mv 20 设轨道对小球的支持力为F ,有F -mg =m v 2C l解得F =(7-2)mg由牛顿第三定律可知,小球对圆轨道的压力大小为F ′=(7-2)mg ,方向竖直向下.10.如图所示,在竖直空间有直角坐标系xOy ,其中x 轴水平,一长为2l 的细绳一端系一小球,另一端固定在y 轴上的P 点,P 点坐标为(0,l ),将小球拉至细绳呈水平状态,然后由静止释放小球,若小钉可在x 正半轴上移动,细绳承受的最大拉力为9mg ,为使小球下落后可绕钉子在竖直平面内做圆周运动到最高点,求钉子的坐标范围.解:当小球恰过圆周运动的最高点时,钉子在x 轴正半轴的最左侧,则有mg =m v 21r 1 小球由静止到圆周的最高点这一过程,依据机械能守恒定律有mg (l -r 1)=12mv 21 x 1=2l -r 12-l 2解得x 1=73l 当小球处于圆周的最低点,且细绳张力恰达到最大值时,钉子在x 轴正半轴的最右侧,则有F max -mg =m v 22r 2小球由静止到圆周的最低点这一过程,依据机械能守恒定律有 mg (l +r 2)=12mv 22x 2=2l -r 22-l 2解得x 2=43l 因而钉子在x 轴正半轴上的范围为73l ≤x ≤43l .。

高考物理一轮复习学案 第19讲 机械能 机械能守恒定律(解析版)

高考物理一轮复习学案 第19讲 机械能 机械能守恒定律(解析版)

第19讲机械能机械能守恒定律(解析版)1.理解重力势能的概念,知道重力做功与重力势能变化的关系2.理解弹性势能的概念,知道弹簧的弹力做功与弹性势能变化的关系3.理解机械能守恒定律,并能应用其解决有关问题一、重力势能和弹性势能1.重力做功的特点(1)重力做功与路径无关,只与始、末位置的高度差有关。

(2)重力做功不引起物体机械能的变化。

2.重力势能大小E p=mgh矢标性重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同系统性重力势能是物体和地球共有的相对性重力势能的大小与参考平面的选取有关。

重力势能的变化是绝对的,与参考平面的选取无关与重力做功的关系W G=-(E p2-E p1)=-ΔE p,即重力对物体做的功等于物体重力势能的减少量3.弹性势能(1)大小:弹簧的弹性势能的大小与弹簧的形变量及劲度系数有关。

(2)弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小,弹力做负功,弹性势能增加。

二、机械能守恒定律1.内容在只有重力或弹力做功的物体系统内,动能和势能可以互相转化,而总的机械能保持不变。

2.机械能守恒的条件只有重力或弹力做功。

3.守恒三种表达式(1)E1=E2(E1、E2分别表示系统初、末状态时的总机械能)。

(2)ΔE k=-ΔE p或ΔE k增=ΔE p减(表示系统势能的减少量等于系统动能的增加量)。

(3)ΔE A=-ΔE B或ΔE A增=ΔE B减(表示系统只有A、B两物体时,A增加的机械能等于B 减少的机械能)。

1.[多选]一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。

假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( ) A.运动员到达最低点前重力势能始终减小B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D.蹦极过程中,重力势能的改变与重力势能零点的选取有关【答案】ABC【解析】到达最低点前高度始终在降低,所以重力势能始终减小,A正确;绳张紧后的下落过程,伸长量逐渐增大,弹力做负功,弹性势能增大,B正确;在蹦极过程中,只有重力与系统内弹力做功,故系统机械能守恒,C正确;重力势能的改变与重力做功有关,重力做功只与始、末位置高度差有关,与零势能面的选取无关,D错误。

机械能守恒定律的综合运用(含典型例题和变式练习及详细答案)

机械能守恒定律的综合运用(含典型例题和变式练习及详细答案)

机械能守恒定律的综合运用(含典型例题变式练习题和答案)一.教学内容:机械能守恒定律的综合运用二.学习目标:1、掌握机械能守恒定律的表达式及应用机械能守恒定律解题的一般方法和步骤。

2、深刻掌握关于机械能守恒定律的习题类型及其相关解法。

三•考点地位:机械能守恒定律的综合应用问题是高考考查的重点和难点,题目类型通常为计算题目形式,从出题形式上常与牛顿定律、圆周运动、电磁学、热学等问题进行综合,从习题模型化的角度上来看,常与线、轻杆、弹簧等模型综合,题目灵活性很强,在高考当中常做为压轴题形式出现,2007年天津理综卷第5题,2006年全国H卷理综卷第23题、2006年广东大综合卷第34题、2006年北京理综卷第22题、2005年北京理综卷的第23题均通过大型计算题目形式考查。

知识体系:(一)机械能守恒定律的表达式:当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种:①二打f二-匕,-二,即初状态的动能与势能之和等于末状态的动能与势能之和。

②△ \ =—―耳,或△匕」 - -I-,即动能(或势能)的增加量等于势能(或动能)的减少量。

③△ - - ■二-:•,即卩A物体机械能的增加量等于B物体机械能的减少量。

(二)应用机械能守恒定律解题的步骤及方法:(1)根据题意选取研究对象(物体或系统) 。

(2)明确研究对象的运动过程,分析对象在运动过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒。

(3)恰当地选取零势面,确定研究对象在运动过程中的始态和末态的机械能。

(4)根据机械能守恒定律的不同表达式列方程,并求解结果。

说明:(1)机械能守恒定律只关心运动的初、末状态,而不必考虑这两个状态之间变化过程的细节,因此,如果能恰当地选择研究对象和初、末状态,巧妙地选定势能参考平面,问题就能得到简捷、便利的解决,可避免直接应用牛顿定律可能遇到的困难,机械能守恒定律为解决力学问题提供了一条简捷的途径。

(2)如果物体运动由几个不同的物理过程组成,则应分析每个过程机械能是否守恒,还要分析过程的连接点有无能量损失,只有无机械能损失才能对整体列机械能守恒式,否则只能列出每段相应的守恒关系。

机械能守恒定律

机械能守恒定律

机械能守恒定律机械能守恒定律力学中的重要定律。

物质系统内只有保守内力作功,非保守内力(如摩擦力)和一切外力所作的总功为零时,系统内各物体的动能和势能可以互相转换,但它们的总量保持不变。

说明:(1)根据质点系的动能定理,我们有W外+W内保+W内非=Ek2-Ek1,由于保守内力所作的功可以表示为势能增量的负值,即W内保=-(Ep2-Ep1),这样就可得W外+W内非=(Ek2+Ep2)-(Ek1+Ep1),W外+W内非=E2-E1。

此式表示,质点系在运动过程中,它所受外力的功与系统内非保守力的功之总和,等于它的机械能的增量。

当W外=0、W内非=0时,就有系统机械能保持不变的守恒定律E2=E1=常量。

(2)机械能守恒定律是牛顿运动定律的一个推论,因此只有在惯性系中成立。

当W外=0,W内非=0以及Fi外=0的条件下,系统的机械能守恒在所有惯性系中绝对成立。

而当Fi外≠0,但W外=0,W内非=0时,系统的机械能守恒只对某个特定的惯性系成立。

(3)在中学物理中,保守力遇到最多的是重力和弹力。

因此,如果物体系各物体只有重力和弹力对它们做功,而无其他力做功时,系统机械能守恒。

这一守恒是运动变化中的守恒,是转化中的守恒,总量的守恒,但就系统内各物体而言,其动能和势能各自并不是不变的,而是互相转化的。

机械能守恒定律是对一个过程而言的,在只涉及重力及弹力作功的过程中,机械能守恒定律应用时,只考虑初始状态和终了状态的动能和势能,而不考虑运动的各个过程的详细情况。

因此,如果不要求了解过程的具体情况,用机械能守恒定律来分析某些力学过程,比用其他方法简便得多。

(4)一个不受外界作用的系统叫做封闭系统或孤立系统。

对于封闭系统,外力的功当然为零。

如果系统状态发生变化时,有非保守内力做功,它的机械能就不守恒。

但在这种情况下,对更广泛的物理现象,包括电磁、热、化学以及原子内部的变化等研究表明,如果扩大能量的范围,引入更多的能量概念,如电磁能、内能、化学能或原子核能,即能证明:一个封闭系统经历任何变化时,该系统的所有能量的总和是不改变的,它只是从一种形式的能量转化为另一种形式的能量,或从系统的此一物体传递给彼一物体。

专题16 机械能守恒定律的理解与应用(解析版)-2021届高考物理热点题型归纳与变式演练

专题16 机械能守恒定律的理解与应用(解析版)-2021届高考物理热点题型归纳与变式演练

2021届高考物理一轮复习热点题型归纳与变式演练专题16 机械能守恒定律的理解与应用【专题导航】目录热点题型一机械能守恒的理解与判断 (1)热点题型二单物体的机械能守恒问题 (2)热点题型三连接体的机械能守恒问题 (5)类型一轻绳连接的物体系统 (6)类型二轻杆连接的物体系 (7)类型三轻弹簧连接的物体系 (9)热点题型四用机械能守恒定律解决非质点问题 (11)热点题型五机械能守恒定律的综合应用 (14)【题型归纳】热点题型一机械能守恒的理解与判断【题型要点】1.利用机械能守恒定律判断(直接判断)分析动能和势能的和是否变化。

2.用做功判断若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒。

3.用能量转化来判断若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒。

【例1】(2020·湖南衡阳市第二次联考)2019年春晚在开场舞蹈《春海》中拉开帷幕.如图1所示,五名领舞者在钢丝绳的拉动下以相同速度缓缓升起,若五名领舞者的质量(包括衣服和道具)相等,下面说法中正确的是()A.观众欣赏表演时可把领舞者看做质点B.2号和4号领舞者的重力势能相等C.3号领舞者处于超重状态D.她们在上升过程中机械能守恒【答案】B【解析】观众欣赏表演时要看领舞者的动作,所以不能将领舞者看做质点,故A错误;2号和4号领舞者始终处于同一高度,质量相等,所以重力势能相等,故B正确;五名领舞者在钢丝绳的拉动下以相同速度缓缓升起,所以处于平衡状态,故C错误;上升过程中,钢丝绳对她们做正功,所以机械能增大,故D错误.【变式1】(多选)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是()A.运动员到达最低点前重力势能始终减小B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D.蹦极过程中,重力势能的改变量与重力势能零点的选取有关【答案】ABC【解析】在运动员到达最低点前,运动员一直向下运动,根据重力势能的定义可知重力势能始终减小,故选项A正确;蹦极绳张紧后的下落过程中,弹力方向向上,而运动员向下运动,所以弹力做负功,弹性势能增加,故选项B正确;对于运动员、地球和蹦极绳所组成的系统,蹦极过程中只有重力和弹力做功,所以系统机械能守恒,故选项C正确;重力做功是重力势能转化的量度,即W G=-ΔE p,而蹦极过程中重力做功与重力势能零点的选取无关,所以重力势能的改变量与重力势能零点的选取无关,故选项D错误.【变式2】如图所示,P、Q两球质量相等,开始两球静止,将P上方的细绳烧断,在Q落地之前,下列说法正确的是(不计空气阻力)()A.在任一时刻,两球动能相等B.在任一时刻,两球加速度相等C.在任一时刻,系统动能与重力势能之和保持不变D.在任一时刻,系统机械能是不变的【答案】D【解析】细绳烧断后,由于弹簧处于伸长状态,通过对P、Q两球受力分析可知a P>a Q,在任一时刻,两球的动能不一定相等,选项A、B错误;系统内有弹力做功,弹性势能发生变化,系统的动能与重力势能之和发生变化,选项C错误;Q落地前,两球及弹簧组成的系统只有重力和弹簧的弹力做功,整个系统的机械能守恒,选项D正确.热点题型二单物体的机械能守恒问题【要点诠释】机械能守恒问题的各种表达形式【特别提醒】用“守恒形式”时,需要规定重力势能的参考平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理备考微专题精准突破专题3.4 机械能守恒定律的理解及应用【专题诠释】一、机械能守恒的理解与判断1.利用机械能的定义判断:分析动能和势能的和是否变化.2.利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.利用能量转化来判断:若物体或系统只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.二.机械能守恒定律的表达式三、多个物体的机械能守恒问题,往往涉及“轻绳模型”“轻杆模型”以及“轻弹簧模型”.(1)轻绳模型三点提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等.②用好两物体的位移大小关系或竖直方向高度变化的关系.③对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒.(2)轻杆模型三大特点①平动时两物体线速度相等,转动时两物体角速度相等.②杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.③对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒.(3)轻弹簧模型“四点”注意①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体的动能、重力势能和弹簧的弹性势能之间相互转化,物体和弹簧组成的系统机械能守恒,而单个物体和弹簧机械能都不守恒.②含弹簧的物体系统机械能守恒问题,符合一般的运动学解题规律,同时还要注意弹簧弹力和弹性势能的特点.③弹簧弹力做的功等于弹簧弹性势能的减少量,而弹簧弹力做功与路径无关,只取决于初、末状态弹簧形变量的大小.④由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).【高考领航】【2019·新课标全国Ⅱ卷】从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和。

取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示。

重力加速度取10 m/s2。

由图中数据可得()A .物体的质量为2 kgB .h =0时,物体的速率为20 m/sC .h =2 m 时,物体的动能E k =40 JD .从地面至h =4 m ,物体的动能减少100 J【答案】AD【解析】A .E p –h 图像知其斜率为G ,故G =80J4m=20 N ,解得m =2 kg ,故A 正确B .h =0时,E p =0,E k =E 机–E p =100 J –0=100 J ,故212mv =100 J ,解得:v =10 m/s ,故B 错误;C .h =2 m 时,E p =40 J ,E k =E 机–E p =85 J –40 J=45 J ,故C 错误;D .h =0时,E k =E 机–E p =100 J –0=100 J ,h =4 m 时,E k ′=E 机–E p =80 J –80 J=0 J ,故E k –E k ′=100 J ,故D 正确。

【2017·新课标全国Ⅲ卷】如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂。

用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距。

重力加速度大小为g 。

在此过程中,外力做的功 为( )A .B .C .D .【答案】A【解析】将绳的下端Q 缓慢地竖直向上拉起至M 点,PM 段绳的机械能不变,MQ段绳的机械能的增加量13l 19mgl 16mgl 13mgl 12mgl为,由功能关系可知,在此过程中,外力做的功,故选A 。

【方法技巧】1.守恒表达式的选用技巧(1)在处理单个物体机械能守恒问题时通常应用守恒观点和转化观点,转化观点不用选取零势能面. (2)在处理连接体问题时,通常应用转化观点和转移观点,都不用选取零势能面. 2.多个物体机械能守恒问题的分析方法(1)对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒. (2)注意寻找用绳或杆连接的物体间的速度关系和位移关系. (3)列机械能守恒方程时,一般选用ΔE k =-ΔE p 的形式.【最新考向解码】【例1】(2019·安徽芜湖高三上学期期末)用长为L 的细线系着一个质量为m 的小球(可以看做质点),以细线端点O 为圆心,在竖直平面内做圆周运动。

P 点和Q 点分别为轨迹的最低点和最高点,不考虑空气阻力,小球经过P 点和Q 点时所受细线拉力的差值为( )A .2mgB .4mgC .6mgD .8mg 【答案】 C【解析】 根据牛顿第二定律,在Q 点,有F 1+mg =m v 21L ,在P 点,有F 2-mg =m v 22L,从最高点到最低点过程,根据机械能守恒定律,有mg ·(2L )=12mv 22-12mv 21,联立三式,解得小球经过P 点和Q 点时所受细线拉力的差值为F 2-F 1=6mg ,C 正确。

【例2】(2019·山东日照模拟)蹦极是一项非常刺激的户外休闲活动.北京青龙峡蹦极跳塔高度为68米,身21211()()36339E mg l mg l mgl ∆=---=19W mgl=系弹性蹦极绳的蹦极运动员从高台跳下,下落高度大约为50米.假定空气阻力可忽略,运动员可视为质点.下列说法正确的是()A.运动员到达最低点前加速度先不变后增大B.蹦极过程中,运动员的机械能守恒C.蹦极绳张紧后的下落过程中,动能一直减小D.蹦极绳张紧后的下落过程中,弹力一直增大【答案】:D【解析】:蹦极绳张紧前,运动员只受重力,加速度不变,蹦极绳张紧后,运动员受重力、弹力,开始时重力大于弹力,加速度向下,后来重力小于弹力,加速度向上,则蹦极绳张紧后,运动员加速度先减小为零再反向增大,故A错误;蹦极过程中,运动员和弹性绳的机械能守恒,故B错误;蹦极绳张紧后的下落过程中,运动员加速度先减小为零再反向增大,运动员速度先增大再减小,运动员动能先增大再减小,故C 错误;蹦极绳张紧后的下落过程中,弹性绳的伸长量增大,弹力一直增大,故D正确.【例3】(2019·河北定州中学模拟)如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是()A.斜面倾角α=60°B.A获得的最大速度为2g m 5kC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒【答案】:B【解析】:C刚离开地面时,对C有kx2=mg,此时B有最大速度,即a B=a C=0,则对B有F T-kx2-mg=0,对A 有4mg sin α-F T =0,由以上方程联立可解得sin α=12,α=30°,故A 错误;初始系统静止,且线上无拉力,对B 有kx 1=mg ,可知x 1=x 2=mgk ,则从释放A 至C 刚离开地面时,弹性势能变化量为零,由机械能守恒定律得4mg (x 1+x 2)sin α=mg (x 1+x 2)+12(4m +m )v B m 2,由以上方程联立可解得v B m =2gm5k,所以A 获得的最大速度为2gm5k,故B 正确;对B 球进行受力分析可知,刚释放A 时,B 所受合力最大,此时B 具有最大加速度,故C 错误;从释放A 到C 刚离开地面的过程中,A 、B 、C 及弹簧组成的系统机械能守恒,故D 错误.【微专题精练】1.(2019·哈尔滨六中检测)如图所示,物体A 的质量为M ,圆环B 的质量为m ,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l =4 m ,现从静止释放圆环.不计定滑轮和空气的阻力,g 取10 m/s 2,若圆环下降h =3 m 时的速度v =5 m/s ,则A 和B 的质量关系为( )A .M m =3529B .M m =79C .M m =3925D .M m =1519【答案】A【解析】:圆环下降3 m 后的速度可以按如图所示分解,故可得v A =v cos θ=vhh 2+l 2,A 、B 和绳子看成一个整体,整体只有重力做功,机械能守恒,当圆环下降h =3 m 时,根据机械能守恒可得mgh =Mgh A +12mv 2+12Mv 2A ,其中h A =h 2+l 2-l ,联立可得M m =3529,故A 正确.2.(2019·山东烟台模拟)如图所示,可视为质点的小球A 和B 用一根长为0.2 m 的轻杆相连,两球质量均为1 kg ,开始时两小球置于光滑的水平面上,并给两小球一个大小为2 m/s ,方向水平向左的初速度,经过一段时间,两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,重力加速度g 取10 m/s 2,在两小球的速度减小为零的过程中,下列判断正确的是( )A .杆对小球A 做负功B .小球A 的机械能守恒C .杆对小球B 做正功D .小球B 速度为零时距水平面的高度为0.15 m 【答案】D【解析】:由于两小球组成的系统机械能守恒,设两小球的速度减为零时,B 小球上升的高度为h ,则由机械能守恒定律可得mgh +mg (h +L sin 30°)=12·2mv 20,其中L 为轻杆的长度,v 0为两小球的初速度,代入数据解得h =0.15 m ,选项D 正确;在A 球沿斜面上升过程中,设杆对A 球做的功为W ,则由动能定理可得-mg (h +L sin 30°)+W =0-12mv 20,代入数据解得W =0.5 J ,选项A 、B 错误;设杆对小球B 做的功为W ′,对小球B ,由动能定理可知-mgh +W ′=0-12mv 20,代入数据解得W ′=-0.5 J ,选项C 错误.3.(2019·哈尔滨模拟)将质量分别为m 和2m 的两个小球A 和B ,用长为2L 的轻杆相连,如图所示,在杆的中点O 处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B 球顺时针转动到最低位置的过程中(不计一切摩擦)( )A .A 、B 两球的线速度大小始终不相等B .重力对B 球做功的瞬时功率先增大后减小C .B 球转动到最低位置时的速度大小为 23gL D .杆对B 球做正功,B 球机械能不守恒 【答案】BC【解析】:A 、B 两球用轻杆相连共轴转动,角速度大小始终相等,转动半径相等,所以两球的线速度大小也相等,选项A 错误;杆在水平位置时,重力对B 球做功的瞬时功率为零,杆在竖直位置时,B 球的重力方向和速度方向垂直,重力对B 球做功的瞬时功率也为零,但在其他位置重力对B 球做功的瞬时功率不为零,因此,重力对B 球做功的瞬时功率先增大后减小,选项B 正确;设B 球转动到最低位置时速度为v ,两球线速度大小相等,对A 、B 两球和杆组成的系统,由机械能守恒定律得2mgL -mgL =12(2m )v 2+12mv 2,解得v =23gL ,选项C 正确;B 球的重力势能减少了2mgL ,动能增加了23mgL ,机械能减少了,所以杆对B 球做负功,选项D 错误.4.(2019·北京模拟)将一个物体以初动能E 0竖直向上抛出,落回地面时物体的动能为E 02.设空气阻力恒定,如果将它以初动能4E 0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( ) A .3E 0 B .2E 0 C .1.5E 0 D .E 0【答案】A.【解析】:设动能为E 0,其初速度为v 0,上升高度为h ;当动能为4E 0,则初速度为2v 0,上升高度为h ′.由于在上升过程中加速度相同,根据v 2=2gh 可知,h ′=4h 根据动能定理设摩擦力大小为f ,则f ×2h =E 02,因此f ×4h =E 0.因此在升到最高处其重力势能为3E 0,所以答案为A.5.(2019·无锡模拟)如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )A .斜劈对小球的弹力不做功B .斜劈与小球组成的系统机械能守恒C .斜劈的机械能守恒D .小球重力势能减少量等于斜劈动能的增加量 【答案】B.【解析】:不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,小球重力势能减少量等于斜劈和小球的动能增加量,系统机械能守恒,B 正确,C 、D 错误;斜劈对小球的弹力与小球位移间夹角大于90°,故弹力做负功,A 错误.6.如图所示,有一光滑轨道ABC ,AB 部分为半径为R 的14圆弧,BC 部分水平,质量均为m 的小球a 、b 固定在竖直轻杆的两端,轻杆长为R ,不计小球大小.开始时a 球处在圆弧上端A 点,由静止释放小球和轻杆,使其沿光滑轨道下滑,则下列说法正确的是( )A .a 球下滑过程中机械能保持不变B .b 球下滑过程中机械能保持不变C .a 、b 球滑到水平轨道上时速度大小为2gRD .从释放a 、b 球到a 、b 球滑到水平轨道上,整个过程中轻杆对a 球做的功为mgR2【答案】:D【解析】:a 、b 球和轻杆组成的系统机械能守恒,A 、B 错误;由系统机械能守恒有mgR +2mgR =12×2mv 2,解得a 、b 球滑到水平轨道上时速度大小为v =3gR ,C 错误;从释放a 、b 球到a 、b 球滑到水平轨道上,对a 球,由动能定理有W +mgR =12mv 2,解得轻杆对a 球做的功为W =mgR2,D 正确.7.(2019·甘肃兰州模拟)如图所示,竖直面内光滑的34圆形导轨固定在一水平地面上,半径为R .一个质量为m的小球从距水平地面正上方h 高处的P 点由静止开始自由下落,恰好从N 点沿切线方向进入圆轨道.不考虑空气阻力,则下列说法正确的是( )A .适当调整高度h ,可使小球从轨道最高点M 飞出后,恰好落在轨道右端口N 处B .若h =2R ,则小球在轨道最低点对轨道的压力为5mgC .只有h 大于等于2.5R 时,小球才能到达圆轨道的最高点MD .若h =R ,则小球能上升到圆轨道左侧离地高度为R 的位置,该过程重力做功为mgR 【答案】:BC【解析】:若小球从M 到N 做平抛运动,则有R =v M t ,R =12gt 2,可得v M =gR2,而球到达最高点M 时速度至少应满足mg =m v 02R ,解得v 0=gR ,故A 错误;从P 点到最低点过程由机械能守恒可得2mgR =12mv 2,由向心力公式得F N -mg =m v 2R ,解得F N =5mg ,由牛顿第三定律可知小球对轨道的压力为5mg ,故B 正确;由机械能守恒得mg (h -2R )=12mv 02,代入v 0=gR 解得h =2.5R ,故C 正确;若h =R ,则小球能上升到圆轨道左侧离地高度为R 的位置,该过程重力做功为0,D 错误.8.(2019·浙江舟山模拟)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,小环线速度大小的平方v 2随下滑高度h 的变化图象可能是( )【答案】:AB【解析】:对小环由机械能守恒定律得mgh =12mv 2-12mv 02,则v 2=2gh +v 02,当v 0=0时,B 正确;当v 0≠0时,A 正确.9.(2019·山东潍坊模拟)如图所示,将一质量为m 的小球从A 点以初速度v 斜向上抛出,小球先后经过B 、C 两点.已知B 、C 之间的竖直高度和C 、A 之间的竖直高度都为h ,重力加速度为g ,取A 点所在的平面为参考平面,不考虑空气阻力,则( )A .小球在B 点的机械能是C 点机械能的两倍B .小球在B 点的动能是C 点动能的两倍C .小球在B 点的动能为12mv 2+2mghD .小球在C 点的动能为12mv 2-mgh 【答案】:D【解析】:不计空气阻力,小球在斜上抛运动过程中只受重力作用,运动过程中小球的机械能守恒,则小球在B 点的机械能等于在C 点的机械能,选项A 错误;小球在B 点的重力势能大于在C 点重力势能,根据机械能守恒定律知,小球在B 点的动能小于在C 点的动能,选项B 错误;小球由A 到B 过程中,根据机械能守恒定律有mg ·2h +E k B =12mv 2,解得小球在B 点的动能为E k B =12mv 2-2mgh ,选项C 错误;小球由B 到C 过程中,根据机械能守恒定律有mg ·2h +E k B =mgh +E k C ,解得小球在C 点的动能为E k C =E k B +mgh =12mv 2-mgh ,选项D 正确.10.把质量是0.2 kg 的小球放在竖立的弹簧上,并把球往下按至A 的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C (图丙).途中经过位置B 时弹簧正好处于自由状态(图乙).已知B 、A 的高度差为0.1 m ,C 、B 的高度差为 0.2 m ,弹簧的质量和空气阻力都可以忽略,重力加速度g =10 m/s 2.则下列说法正确的是( )A .小球从A 上升至B 的过程中,弹簧的弹性势能一直减小,小球的动能一直增加B .小球从B 上升到C 的过程中,小球的动能一直减小,势能一直增加C .小球在位置A 时,弹簧的弹性势能为0.6 JD .小球从位置A 上升至C 的过程中,小球的最大动能为 0.4 J【答案】BC.【解析】:小球从A 上升到B 的过程中,弹簧的形变量越来越小,弹簧的弹性势能一直减小,小球在A 、B 之间某处的合力为零,速度最大,对应动能最大,选项A 错误;小球从B 上升到C 的过程中,只有重力做功,机械能守恒,动能减少,势能增加,选项B 正确;根据机械能守恒定律,小球在位置A 时,弹簧的弹性势能为E p =mgh AC =0.2×10×0.3 J =0.6 J ,选项C 正确;小球在B 点时的动能为E k =mgh BC =0.4 J <E km ,选项D 错误.11.(2019·温州高三模拟)如图所示,在竖直平面内半径为R 的四分之一圆弧轨道AB 、水平轨道BC 与斜面CD 平滑连接在一起,斜面足够长.在圆弧轨道上静止着N 个半径为r (r ≪R )的光滑小球(小球无明显形变),小球恰好将圆弧轨道铺满,从最高点A 到最低点B 依次标记为1、2、3…、N .现将圆弧轨道末端B 处的阻挡物拿走,N 个小球由静止开始沿轨道运动,不计摩擦与空气阻力,下列说法正确的是( )A .N 个小球在运动过程中始终不会散开B .第1个小球从A 到B 过程中机械能守恒C .第1个小球到达B 点前第N 个小球做匀加速运动D .第1个小球到达最低点的速度v <gR【答案】AD.【解析】:在下滑的过程中,水平面上的小球要做匀速运动,而曲面上的小球要做加速运动,则后面的小球对前面的小球有向前挤压的作用,所以小球之间始终相互挤压,冲上斜面后后面的小球把前面的小球往上压,所以小球之间始终相互挤压,故N 个小球在运动过程中始终不会散开,故A 正确;第一个小球在下落过程中受到挤压,所以有外力对小球做功,小球的机械能不守恒,故B 错误;由于小球在下落过程中速度发生变化,相互间的挤压力变化,所以第N 个小球不可能做匀加速运动,故C 错误;当重心下降R 2时,根据机械能守恒定律得:12mv 2=mg ·R 2,解得:v =gR ;同样对整体在AB 段时,重心低于R 2,所以第1个小球到达最低点的速度v <gR ,故D 正确.12.如图所示,质量为m =2 kg 的小球以初速度v 0沿光滑的水平面飞出后,恰好无碰撞地从A 点进入竖直平面内的光滑圆弧轨道,其中B 点为圆弧轨道的最低点,C 点为圆弧轨道的最高点,圆弧AB 对应的圆心角θ=53°,圆半径R =0.5 m .若小球离开水平面运动到A 点所用时间t =0.4 s ,求:(sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2)(1)小球沿水平面飞出的初速度v 0的大小.(2)到达B 点时,小球对圆弧轨道的压力大小.(3)小球能否通过圆弧轨道的最高点C ?说明原因.【答案】:(1)3 m/s (2)136 N (3)能,理由见解析【解析】:(1)小球离开水平面运动到A 点的过程中做平抛运动,有v y =gt根据几何关系可得tan θ=v y v 0代入数据,解得v 0=3 m/s(2)由题意可知,小球在A 点的速度v A =v y sin θ小球从A 点运动到B 点的过程,满足机械能守恒定律,有12mv A 2+mgR (1-cos θ)=12mv B 2 设小球运动到B 点时受到圆弧轨道的支持力为F N ,根据牛顿第二定律有F N -mg =m v B 2R 代入数据,解得F N =136 N由牛顿第三定律可知,小球对圆弧轨道的压力F N ′=F N =136 N(3)假设小球能通过最高点C ,则小球从B 点运动到C 点的过程,满足机械能守恒定律,有 12mv B 2=mg ·2R +12mv C 2 在C 点有F 向=m v C 2R代入数据,解得F向=36 N>mg 所以小球能通过最高点C.。

相关文档
最新文档