数值分析复习题要答案

合集下载

数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案1.已知都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=62分2分2.已知求(6分)解:1分1分1分= 2分1分3.设(6分)①写出f(x)=0解的Newton迭代格式②当a为何值时,(k=0,1……)产生的序列收敛于解:①Newton迭代格式为: 3分② 3分4.给定线性方程组Ax=b,其中:,用迭代公式(k=0,1……)求解Ax=b,问取什么实数,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为2分其特征方程为2分即,解得2分要使其满足题意,须使,当且仅当2分5.设方程Ax=b,其中,试讨论解此方程的Jacobi迭代法的收敛性,并建立Gauss—Seidel迭代格式(9分)解:3分2分即,由此可知Jacobi迭代收敛1分Gauss-Seidel迭代格式:(k=0,1,2,3 (3)6.用Doolittle分解计算下列3个线性代数方程组:(i=1,2,3)其中,(12分)解:①A= =LU 3分由Ly=b1,即y= 得y= 1分由Ux1=y,即x1= 得x1= 2分②x2=由Ly=b2=x1,即y= 得y= 1分由Ux2=y,即x2= 得x2= 2分③x3=由Ly=b3=x2,即y= 得y= 1分由Ux3=y,即x3= 得x3= 2分7.已知函数y=f(x)有关数据如下:要求一次数不超过3的H插值多项式,使(6分)解:作重点的差分表,如下:3分=-1+(x+1)-x(x+1)+2x。

x(x+1)= 3分8.有如下函数表:试计算此列表函数的差分表,并利用Newton前插公式给出它的插值多项式(7分)解:由已知条件可作差分表,3分(i=0,1,2,3)为等距插值节点,则Newton向前插值公式为:=4+5x+x(x—1)= 4分9.求f(x)=x在[—1,1]上的二次最佳平方逼近多项式,并求出平方误差(8分)解:令2分取m=1,n=x,k=,计算得:(m,m)==0 (m,n)= =1 (m,k)= =0(n,k)= =0。

数值分析复习试题及参考答案

数值分析复习试题及参考答案

1、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x 的绝对误差限。

解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε()07057.00005.0115.80005.01025.621=⨯+⨯≈x x ε2、设430.56,1021.12≈≈x x均具有5位有效数字,试估计由这些数据计算21x x +的绝对误差限。

解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε0055.0)()()(2121=+=+x x x x εεε3、简答题 (1)已知12622)(256+-+-=x xxxx f ,求]1,0[f 及]6,5,4,3,2,1,0[f 。

解:由f(0)=1,f(1)=5得 []()()41011,0=-=f f f因为最高阶差商只出现在最高次,所以[]26,5,4,3,2,1,0=f(2)求积公式[])1()0(121)]1()0([21)(1f f f f dx x f '-'++≈⎰的代数精度为多少? 解:令()xx f =,则()21211021==⎰xdx x f ,右边=21,左边=右边同理令()2xx f =,()3xx f =均准确成立,()4xx f =时,左边≠右边所以,上式具有3阶精度4、求满足下表条件的Hermit 插值多项式。

x0 1)(x f -1 0 )(x f '-210解:使用重节点差商表法x y 一阶二阶 三阶 0 -1 0 -1 -2 1 0 1 3 1 010 9 6()()1236163212322---=-++--=x x x x xx x x H5、已知函数)(x f y =的数据如下:x1 2 4 -5 )(x f3 4 1 0(1)求3次Lagrange 插值多项式; (2)求3次Newton 插值多项式; (3)写出插值余项。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。

2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。

b) 二分法是一种______法则。

c) 梯形法则是一种______型的数值积分方法。

3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。

b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。

c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。

试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。

b) 请解释牛顿插值多项式的概念及其应用。

2. 填空题(共10分)a) 数值稳定性通过______号检查。

b) 龙格-库塔法是一种______计算方法。

c) 零点的迭代法在本质上是将方程______转化为______方程。

3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。

b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。

c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。

答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。

它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。

b) 迭代法和直接法是数值计算中常用的两种方法。

迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。

(完整)数值分析试题库与答案解析,推荐文档

(完整)数值分析试题库与答案解析,推荐文档

模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

数值分析期末复习题答案

数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。

例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。

2. 说明数值微分与数值积分的区别。

答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。

数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。

三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。

答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。

具体计算过程略。

2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。

答案:首先确定区间划分,然后应用辛普森积分公式进行计算。

具体计算过程略。

四、论述题1. 论述数值分析中误差的来源及其控制方法。

答案:误差主要来源于舍入误差和截断误差。

舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。

控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。

五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。

数值分析期末考试题及答案

数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。

答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。

它包括三个基本操作:行交换、行乘以非零常数、行相加。

2. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。

例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。

三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。

答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。

2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。

数值分析练习题附答案

数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。

数值分析复习题答案

数值分析复习题答案
四、给定求积公式 ,试决定 使它的代数精度尽可能得高。
解:
1、由于该求积公式有三个未知系数可以确定,根据代数精度的定义,可知,该求积公式至少是2次精度,则将 分别取 代入该求积公式可得三个等式,从而确定系数A、B、C,具体过程如下:
2、将 代入求得的积分公式进行验证,若 成立而 不成立,则该公式为m次代数精度,具体过程如下:
解:同题三!
Chapter8非线性方程的数值解法
一、在求非线性f(x)=0根的近似值时,论证简单迭代法一般为线性收敛,而牛顿迭代法为平方收敛。P200
证明:??????
1、一般迭代法: ,
由于 , ,
所以, ,因而
若 ,且 ,则简单迭代法为线性收敛!
2、牛顿法,迭代格式为: ,对 求导,得:
上式中 ,所以当 时, ,牛顿法为平方收敛。
当 很大时,为防止损失有效数字,应该使 。
Chapter2插值方法
设 ,则 3。
若 则 0。对 ,差商来自0。设 ,则差商 1。
已知y=f(x)的均差 , , f[x4, x3, x2]=14,f[x0, x3, x2]=8 ,.那么均差f[x4, x2, x0]=9。(交换不变性)
设有数据 则其2次Lagrange插值多项式为 ,2次拟合多项式为(最佳平方逼近可求)。???
解:
二、求 上的一次最佳平方逼近多项式及平方误差。
解:取 ; ;
分别计算:
根据 代入求解得:
即得: 为 在多项式集合 的最佳平方逼近。
平方误差:
三、设 ,试求 的一次最佳平方逼近多项式,并估计误差。
解:方法同上
四、设 ,试求 的一次最佳平方逼近多项式,并估计误差。
解:方法同上
五、设 试在 中求 在区间 上的最佳平方逼近元。

数值分析复习题答案

数值分析复习题答案

数值分析复习题答案数值分析复习题答案数值分析是一门研究数值计算方法和数值计算误差的学科。

在实际问题中,我们经常需要通过数值计算方法来求解数学模型,这就需要我们掌握数值分析的基本概念和方法。

下面是一些数值分析复习题的答案,希望能对你的复习有所帮助。

一、差分法与数值微分1. 差分法是一种数值计算方法,通过计算函数在一点的导数来近似计算函数在该点的值。

常用的差分法有前向差分法、后向差分法和中心差分法。

2. 前向差分法的近似公式为:f'(x) ≈ (f(x+h) - f(x))/h,其中h为步长。

3. 后向差分法的近似公式为:f'(x) ≈ (f(x) - f(x-h))/h,其中h为步长。

4. 中心差分法的近似公式为:f'(x) ≈ (f(x+h) - f(x-h))/(2h),其中h为步长。

5. 数值微分是使用差分法来近似计算函数的导数。

通过选取合适的步长,可以使数值微分的误差最小化。

二、插值法与数值积分1. 插值法是一种通过已知数据点来估计未知数据点的方法。

常用的插值方法有拉格朗日插值法和牛顿插值法。

2. 拉格朗日插值法通过构造一个多项式来逼近已知数据点,然后利用该多项式来估计未知数据点的值。

3. 牛顿插值法是利用差商的概念来构造一个多项式,然后利用该多项式来估计未知数据点的值。

4. 数值积分是一种通过数值计算来近似计算函数的定积分。

常用的数值积分方法有梯形法则和辛普森法则。

5. 梯形法则通过将积分区间划分为若干个小区间,然后在每个小区间上使用梯形面积来近似计算积分。

6. 辛普森法则是在梯形法则的基础上进一步改进的方法,它使用抛物线来逼近函数的曲线,从而提高了积分的精度。

三、数值方程求解1. 数值方程求解是通过数值计算方法来求解非线性方程或线性方程组的方法。

2. 常用的数值方程求解方法有二分法、牛顿法和高斯消元法。

3. 二分法是一种通过不断缩小区间范围来逼近方程的根的方法。

数值分析详细答案(全)

数值分析详细答案(全)

第二章 插值法习题参考答案2.)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0)(2+-+-⋅+------⋅-+-+-+⋅=x x x x x x x L3723652-+=x x . 3. 线性插值:取510826.0,693147.0,6.0,5.01010-=-===y y x x ,则620219.0)54.0()54.0(54.0ln 0010101-=-⋅--+=≈x x x y y y L ;二次插值:取510826.0,693147.0,916291.0,6.0,5.0,4.0210210-=-=-====y y y x x x ,则)54.0(54.0ln 2L ≈))(()54.0)(54.0())(()54.0)(54.0())(()54.0)(54.0(120210221012012010210x x x x x x y x x x x x x y x x x x x x y ----⋅+----⋅+----⋅==-0.616707 .6. i) 对),,1,0(,)(n k x x f k==在n x x x ,,,10 处进行n 次拉格朗日插值,则有)()(x R x P x n n k +=)())(()!1(1)(0)1(0n n ni k j j x x x x f n x x l --++=+=∑ ξ由于0)()1(=+ξn f,故有kni k j jxx x l≡∑=0)(.ii) 构造函数,)()(kt x x g -=在n x x x ,,,10 处进行n 次拉格朗日插值,有∑=-=ni j k j n x l t x x L 0)()()(.插值余项为 ∏=+-+=--nj j n n kx x n g x L t x 0)1()()!1()()()(ξ, 由于).,,2,1(,0)()1(n k g n ==+ξ故有 .)()()()(0∑=-==-ni j k j n kx l t x x L t x令,x t =即得 ∑==-ni j k jx l t x)()(.8. 截断误差].4,4[),)()((61)(2102-∈---=ξξx x x x x x e x R其中 ,,1210h x x h x x +=-= 则hx x 331+=时取得最大值321044392|))()((|max h x x x x x x x ⋅=---≤≤- .由题意, ,10)392(61|)(|6342-=⋅⋅≤h e x R所以,.006.0≤h16. ;1!7!7!7)(]2,,2,2[)7(71===ξf f .0!7)(]2,,2,2[)8(810==ξf f19. 采用牛顿插值,作均差表:i x)(i x f一阶均差 二阶均差0 1 20 1 11 0-1/2],,[))((],[)()()(210101000x x x f x x x x x x f x x x p x p --+-+=))()()((210x x x x x x Bx A ---++)2)(1()()2/1)(1(0--++--++=x x x Bx A x x x又由 ,1)1(,0)0(='='p p 得,41,43=-=B A 所以 .)3(4)(22-=x x x p第三章 函数逼近与计算习题参考答案4.设所求为()g x c =,(,)max(,),max (),min ()a x ba x bf g M c m c M f x m f x ≤≤≤≤∆=--==,由47页定理4可知()g x 在[],a b 上至少有两个正负交错的偏差点,恰好分别为()f x 的最大值和最小值处,故由1(),()2M c m c c M m -=--=+可以解得1()()2g x M m =+即为所求。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

(完整word版)数值分析复习题及答案

(完整word版)数值分析复习题及答案

数值分析复习题一、选择题1.3.142和3.141分别作为二的近似数具有()和()位有效数字A . 4 和 3B . 3 和 2C . 3 和 4D . 4 和 421 r 「2 11 f xdx『1 A f (-)-f (2) 2.已知求积公式6 3 6,则 A =() 11 1 2A .6B .32D . 33•通过点X 0,y 。

,x 1,y 1的拉格朗日插值基函数l ox ,h x 满足()4.设求方程f X =o的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次X j 2x 2 x 3 = o “ 2% +2x 2 +3x 3 =35.用列主元消元法解线性方程组 厂X | — 3x 2 = 2 作第一次消元后得到的第3个方程 -X 2 X 3 =2 -2X 2 1.5X 3 二 3.5 C .—2x 2 x 3 = 3x 2 - o.5x 3 二、填空1.设-2.3149541...,取5位有效数字,则所得的近似值 x=f X 1,X 2 =2.设一阶差商 f X 2 - f X x 2 一為 1 -4 2-1 f X 1,X 2,X 3= ___________f X 2,X 3=f X 3 - f X 2X 3 -X 2().=-1.56-1 _ 5 4-2 2I 。

* )= 0, h(X 1 )=0Io (X 。

)= 0,)=1C . I o (X o )= 1 h (X 1 ) = 1Io(Xo ) = 1 h(X 1)=18、若线性代数方程组 AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯 9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为y=10 +丄 + 2 310、为了使计算 x-1 (x-1) (x-1)的乘除法运算次数尽量的少,应将表达式改写12•—阶均差f x ),x1-13.已知n =3时,科茨系数=8,C/心=8,那么C 33 =18.设 X=(2,一3,7)T,则 ||X|1 厂3•设 X =(2, -3,-1),则 ||X ||2 二,l|X Id4 •求方程x 2-X-仁5" 的近似根,用迭代公式 x 「x425,取初始值x=1 ,那么x1二5 •解初始值问题 y 、f(x,y)y (x0)= y °近似解的梯形公式是yk 16、 一5 1丿,则A 的谱半径Q(A)= 7、设f(x) =3x +5, X k=kh, k =0,1,2,...,则f 1人,焉 1,X n.2】 =-塞德尔迭代都11•设 X=(2,3T T ,则 ||X|"l|X||2 =14.因为方程f x =^4 2 =0在区间1,2I 上满足,所以f x =0在区间内有根。

数值分析习题与答案

数值分析习题与答案

第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知的相对误差满足,而,故即2.有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

1. 给定的数值表解:计(误差限,因误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知由式由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里8.使,显然,再令由9. 令称为第二类的表达式,并证明是[]上带权解:因10. 用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.解:本题给出拟合曲线,即,故法方程系数解得最小二乘拟合曲线为11.满足条件的插值多项式(2) ,).设为互异节点,=( ),=( ).(4) 设是区间[0,1]上权函数为ρ(x)=x的最高项系数为1的正交多项式序列,其中,则=( ),=( )答:(1)(2)(3)(4)习题1.解 6.13)对)求出,按式()求得2. 用由(6.8)式估计误差,因,故3. 确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.(1)(2)(3)解:本题直接利用求积公式精确度定义,则可突出求积公式的参数。

数值分析试题及答案.

数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D . ()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+= C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B得分 评卷人二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。

5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩L得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=⨯+⨯=---%[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--%所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩%()1.50.80.3 1.50.35L =-⨯=%2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()0,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案3. 解()331f x x x=--,()130f=-<,()210f=>()233f x x'=-,()12f x x''=,()2240f=>,故取2x=作初始值迭代公式为()()3111112113133n n nn n nn nf x x xx x xf x x---------=-=-'-()312121()31nnxx--+-或,1,2,...n= 02x=,()3122311.88889321x⨯+==⨯-,()3222 1.8888911.879453 1.888891x⨯+==⨯-210.009440.0001x x-=>()3322 1.8794511.879393 1.879451x⨯+==⨯-,320.000060.0001x x-=<方程的根 1.87939x*≈4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.计算题4.答案4 解梯形公式()()()2bab af x dx f a f b-≈⎡+⎤⎣⎦⎰应用梯形公式得11111[]0.75 121011dxx≈+=+++⎰辛卜生公式为()()()[4()]62bab a a bf x dx f a f f b-+≈++⎰应用辛卜生公式得()() 111010[04()1] 162dx f f fx-+≈++ +⎰1111[4]16101112=+⨯++++25 36 =得 分 评卷人四、证明题(本题10分)确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求积公式,并令其左右相等,得1011123112()02()3A A A h h A A h A A h ---⎧⎪++=⎪--=⎨⎪⎪+=⎩得1113A A h -==,043hA =。

数值分析复习题及答案

数值分析复习题及答案

数值分析复习题P56 16.1716.试就f (x )=2x^3+5求商f (1,2,3,4),f (1,2,3,4,5)的值 解:根据n 阶差商定义递推展开式01102110),...,,(),...,,(),...,,(x x x x x f x x x f x x x f n n n n --=-原函数f (x )=2x^3+5,;令0x =1,1x =2,2x =3,...3)3,2,1()4,3,2()4,3,2,1(x x f f f --==2(n=3)同理对f (12345)进行递推可计算得出等于017.给定函数f (x )x^3—4x ,试建立关于节点Xi=i+1(i=0,1……,5)的差商表,并列出关于节点x0,x1,x2,x3的插值多项式p (x ) 解:因为x x x f i i x i 4)()5...,1,0(13-==+= 列出差商表如下: i x i y 一阶差商 二阶差商 三阶差商 四阶差商 五阶差商 1 -3 2 0 3 3 15 15 6 4 48 33 9 1 5 105 57 12 1 0 619287151插值多项式:p(x)=-3+3(x-1)+6(x-1)(x-2)+(x-1)(x-2)(x-3) P94 2.3.42.试判断下列求积公式的代数进度:)(41)31(43)(1x f f dx x f +≈⎰解:当f (x )=1时,左边=1,右边3/4+1/4=1,左边=右边当f (x )=x 时,左边=1/2,右边3/4X1/3+1/4X1=1/2,左边=右边 当f (x )=x^2时,左边=1/3,右边3/4x1/9+1/4x1=1/3,右边=右边当f (x )=x^3时,左边=1/6,右边3/4x1/27+1/4x1=5/18,左边于右边不相等根据代数精度定义求积公式对于mx 次多项式成立,对1+m x不成立则该求积公式具有m次代数精度,所以该求积公式的代数精度为2 次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、ln2=0.69314718…,精确到 10-3 的近似值是多少? 解 精确到 10-3=0.001,即绝对误差限是 e =0.05%,故至少要保留小数点后三位才可以。

ln2≈0.693。

2、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x ,21x x +的绝对误差限解:记126.1025, 80.115x x == 则有1123241110, | 102|||2x x x x --≤⨯-≤⨯-所以 121212121212211122||||||||||||x x x x x x x x x x x x x x x x x x -=-+-+≤--341180.11610 6.101025220.007057-==⨯⨯+≤⨯⨯1212112243|()|||11|10100.0005522|x x x x x x x x --≤≤⨯+⨯=+-+-+-3、一个园柱体的工件,直径d 为10.250.25mm,高h 为40.00 1.00mm,则它的体积V 的近似值、误差和相对误差为多少。

解:()()22222222431421025400000033006422102540000251025100243644433006243624360073873833006,.....;()()()......,..().()..%.r d hV d h V mm d h V dh d d h V mm V V V πππππεεεεε=≈=⨯⨯===+=⨯⨯⨯+⨯==±====第二章:1、分别利用下面四个点的Lagrange 插值多项式和Newton 插值多项式N 3(x ),计算L 3(0.5)及N 3(-0.5)x -2 -1 0 1 f (x )-112解:(1)先求Lagrange 插值多项式332211003)()()()()(y x l y x l y x l y x l x L +++= (1分)=----+---+=------=)12)(02)(12()1)(0)(1())()(())()(()(3020103210x x x x x x x x x x x x x x x x l x x x )1)(1(61-+-, (2分)=----+---+=------=)11)(01)(21()1)(0)(2())()(())()(()(3121013201x x x x x x x x x x x x x x x x l x x x )1)(2(21-+ (2分)=-++-++=------=)10)(10)(20()1)(1)(2())()(())()(()(3212023102x x x x x x x x x x x x x x x x l )1)(1)(2(21-++-x x x (2分)=-++-++=------=)01)(11)(21()0)(1)(2())()(())()(()(2313032103x x x x x x x x x x x x x x x x l x x x )1)(2(61++ (2分)x x x x x x x x x x L )1)(2(31)1)(2(21)1)(1(61)(3+++-++-+=x x x 212323-+= (1分)所以 41)5.0(3=L (1分)(2)再求Newton 插值多项式 列均差表如下:)(123221)(23100)(211)(12],,,[],,[],[222232103210分分分分x x x x x x x x f x x x f x x f y x k j i j i -----所以x x x x x x x N )1)(2()1)(2(23)2(21)(3+++++-++-=x x x 212323-+= (2分) 21)5.0(3=-N(1分)2、求过下面四个点的Lagrange 插值多项式L 3(x )和Newton 插值多项式N 3(x )。

)解:(1)L 3(x )=l o (x )y o +l 1(x )y 1+l 2(x )y 2+l 3(x )y 3(1分))())(())(()())(()1)(()(1110110n i i i i i i i n i i i x x x x x x x x x x x x x x x x x x x x l ---------+=+-+-得出)1)(1(61)(-+-=x x x x l o(2分))1)(2(21)(1-+=x x x x l(2分))1)(1)(2(21)(2-++-=x x x x x l (2分))1)(2(61)(3++=x x x x l (2分)∴)1)(2(61)1)(1)(2(21)1)(2(21)1)(1(31)(3++--++--++-+=x x x x x x x x x x x x x L(1分)(2)))()(())(()()(21031020103x x x x x x a x x x x a x x a a x N ---+--+-+=(1分)2)(00-==x f a (2分) 3)()(10101=--=x x x f x f a(2分)23)()()()(20212110102-=------=x x x x x f x f x x x f x f a (2分),613=a (2分)∴x x x x x x x N )1)(2(61)1)(2(23)2(32)(3+++++-++-=(1分)第三章 1、令1x 1,e )x (f x≤≤-=,且设x a a )x (p 1+=,求1a,a 使得)x (p 为)x (f 在[-1,1]上的最佳平方逼近多项式。

2.已知数据对(7,3.1),(8,4.9),(9,5.3),(10,5.8),(11,6.1), (12,6.4),(13,5.9)。

试用二次多项式拟合这组数据。

解:y =-0.145x 2+3.324x -12.794第四章:1.数据如下表用中心差分公式,分别取h = 0.01、0.02计算)02.1(f '.解:中心差分公式为 hh x f h x f x f 2)()()(--+≈'(2分)1)取h =0.01时, 302.012.318.302.0)01.1()03.1()02.1(=-=-≈'f f f (4分)2)取h =0.02时, 5.304.010.324.304.0)00.1()04.1()02.1(=-=-≈'f f f (4分)2.(10分)根据如下函数表用中心差分公式,分别取h =0.3,0.1计算)3.1(f '解:中心差分公式hh x f h x f x f 2)()()(--+=' (2分)取h =0.3时,7233.16.0)3.03.1()3.03.1()(=--+≈'f f x f(4分)取h =0.1时,7000.12.0)1.03.1()1.03.1()(=--+≈'f f x f(4分)3.分别用复合梯形公式T 6和复合辛普森公式S 3计算定积分⎰+6.00d 11x x的值.解:)2)()0((2116∑-=++-=n i i n y x f f n ab T (2分))])5.0()4.0()3.0()2.0()1.0([2)6.0()0((6206.0f f f f f f f ++++++⨯-=470510739.0=(3分))]}]4.0()2.0([2)]5.0()3.0()1.0([4)6.0()0({63f f f f f f f nab S ++++++-=470006382.0=(3分)f (0)=1,f (0.1)=0.9090,f (0.2)=.08333,f (0.3)=0.7692,f (0.4)=0.7142, f (0.5)=0.6667,f (0.6)=0.625(7分)4、利用复合Simpson 公式S 4计算积分⎰+102d 11x x (取小数点后4位)。

解:)]24()2()0([611212∑∑==-+++⨯-=n i ni i i n y y n f f n ab S (2分) 00000.4)0(=f ,93846.381=⎪⎭⎫ ⎝⎛f ,76470.382=⎪⎭⎫⎝⎛f ,50685.383=⎪⎭⎫ ⎝⎛f ,20000.384=⎪⎭⎫ ⎝⎛f ,87640.285=⎪⎭⎫ ⎝⎛f ,56000.286=⎪⎭⎫⎝⎛f ,26000.287=⎪⎭⎫ ⎝⎛f ,00000.2)1(=f(9分) ⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⨯-=8)684822878583814)1()0(46014f f f f f f f f f S 1416.3=(4分)第五章:1、利用列主元消去法求解线性方程组⎪⎩⎪⎨⎧=+-=-=++-6557710462332121321x x x x x x x x (计算过程保留到小数点后四位).解:216515707104623r r ↔⎪⎪⎪⎭⎫ ⎝⎛---(1分)⎪⎪⎪⎭⎫⎝⎛---6515462370710(2分)⎪⎪⎪⎭⎫⎝⎛--+-5.255.201.661.0070710103132112r r r r (2分)⎪⎪⎪⎭⎫ ⎝⎛-↔+2.62.6005.255.2070710235.21.032r r r r (2分) 回代解得 13=x ,12-=x ,03=x (1分)2、用矩阵的LU分解法解方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛---43221412212321xxx解:设⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛==332221131211323121111uuuuuulllLUA(1分)⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫⎝⎛-=11112112111LU(4分)LUX=b其中设UX=y,则Ly=b⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-432112111321yyy(2分)∴y=(2,-1,1)T UX=y⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-11211112321xxx(2分)∴x=(0,-2,1)T(1分)5. 用追赶法解三对角方程组Ax=b,其中解:用解对三角方程组的追赶法公式计算得6. 用平方根法解方程组解:用分解直接算得由及求得第六章:1、用Gauss-Seidel 迭代法求解方程组⎪⎩⎪⎨⎧=+-=++=++301532128243220321321321x x x x x x x x x ,取初值T)0()0,0,0(=x ,写出Gauss-Seidel 迭代格式,求出)1(x ,)2(x,计算∞-)2()1(x x,并根据原方程组的系数矩阵说明该迭代格式是否收敛.2、对方程组⎪⎩⎪⎨⎧=+--=-+-=--1052151023210321321321x x x x x x x x x (1)写出其Jacobi 迭代格式,并据迭代矩阵的范数,说明该迭代格式收敛。

相关文档
最新文档