线段的垂直平分线课后作业

合集下载

垂直平分线的性质习题

垂直平分线的性质习题

垂直平分线的性质习题1.画图解释垂直平分线的定义和性质,写出符号语言2.有垂直平分线时,可以推理出哪些结论,可能产生哪些图形3.作一条常4厘米的线段AB,画出这条线段的垂直平分线4.在△ABC中,∠B=90°,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当∠BAC=50°时,则∠AED=°;(2)当∠BAC=60°时,①如图2,连接AD,判断△AED的形状,并证明;②如图3,直线CF与ED交于点F,满足∠CFD=∠CAE.P为直线CF上一动点.当PE﹣PD的值最大时,用等式表示PE,PD与AB之间的数量关系为,并证明.5.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC的大小为.6.(改编自2021东城初二上期末)如图,在△ABC中,∠C=90°,AC>BC,D为AB的中点,E为CA延长线上一点,连接DE,过点D作DF⊥DE,交BC的延长线于点F,连接EF.作点B关于直线DF的对称点G,连接DG.(1)依题意补全图形;(2)若∠ADF =α.①求∠EDG 的度数(用含α的式子表示);②请找出线段AE ,BF ,EF 的关系并证明.7. 如图,在△ABC 中,AB >AC >BC ,P 为BC 上一点(不与B ,C 重合).在AB 上找一点M ,在AC 上找一点N ,使得△AMN 与△PMN 全等,以下是甲、乙两位同学的作法.甲:连接AP ,作线段AP 的垂直平分线,分别交AB ,AC 于M ,N 两点,则M ,N 两点即为所求;乙:过点P 作PM ∥AC ,交AB 于点M ,过点P 作PN ∥AB ,交AC 于点N ,则M ,N 两点即为所求.(1)对于甲、乙两人的作法,下列判断正确的是 ;A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,补全图形并证明.B A8.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为A. 9B. 10C. 11D. 12△是等边三角形,点D在射线BC上(与点B,C不9.(2021海淀初二上期末)已知ABC重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:ADE△是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.10.(2021年初二上期末朝阳)在△ABC中,∠C=90°,AC=BC=2,直线BC上有一点P,M、N分别为点P关于直线AB、AC的对称点,连接AM,AN,BM.(1)如图1,当点P在线段BC上时,求∠MAN和∠MBC的度数;(2)如图2,当点P 在线段BC 的延长线上时,①依题意补全图2;②探究是否存在点P,使得3BM BN ,若存在,直接写出满足条件时CP 的长度;若不存在,说明理由.11. 如图,在△ABC 中,∠ABC =50°,∠BAC =20°,D 为线段AB 的垂直平分线与直线BC 的交点,连结AD ,则∠CAD =( )A .40°B .30°C .20°D .10°12. 如图,在△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于D 点.若BD 平分∠ABC ,则∠A= °.图1 图2。

线段的垂直平分线经典习题及答(精.选)

线段的垂直平分线经典习题及答(精.选)

线段的垂直平分线一、选择题(共8小题)1、如图,在△ABC 中,分别以点A 和点B 为圆心,大于的21AB 的长为半径画孤,两弧相交于点M ,N ,作直线MN , 交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( ) A 、7 B 、 14 C 、17 D 、20第1题 第2题 第3题2、如图,在Rt △ACB 中,∠C=90°,BE 平分∠ABC ,ED 垂直平分AB 于D .若AC=9,则AE 的值是( )A 、6B 、4C 、6D 、43、如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A 、6B 、5C 、4D 、34、如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A 、80°B 、70°C 、60°D 、50°第4题 第 5题 第6题 5、如图,直线CP 是AB 的中垂线且交AB 于P ,其中AP=2CP .甲、乙两人想在AB 上取两点D 、E ,使得AD=DC=CE=EB ,其作法如下:(甲)作∠ACP 、∠BCP 之角平分线,分别交AB 于D 、E ,则D 、E 即为所求;(乙)作AC 、BC 之中垂线,分别交AB 于D 、E ,则D 、E 即为所求.对于甲、乙两人的作法,下列判断何者正确( )A 、两人都正确B 、两人都错误C 、甲正确,乙错误D 、甲错误,乙正确6、如图,在Rt △ABC 中,∠C=90°,∠B=30°.AB 的垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结论不正确的是( )A 、AE=BEB 、AC=BEC 、CE=DED 、∠CAE=∠B7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A 、△ABC 的三条中线的交点B 、△ABC 三边的中垂线的交点 C 、△ABC 三条角平分线的交点D 、△ABC 三条高所在直线的交点第7题 第8题8、如图,AC=AD ,BC=BD ,则有( ) A 、AB 垂直平分CD B 、CD 垂直平分AB C 、AB 与CD 互相垂直平分 D 、CD 平分∠ACB二、填空题(共12小题)9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________.第9题第10题第11题10、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.11如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_________°.12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC 的周长之差为12,则线段DE的长为_________.第12题第13题第14题第15题13、如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.14、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.15、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.16、如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_________个不同的四边形.第16题第17题第18题17已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.18、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=1/2∠DAC;④△ABC是正三角形.请写出正确结论的序号_________(把你认为正确结论的序号都填上)19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________°.三、解答题(共6小题)21、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.1、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20考点:线段垂直平分线的性质。

线段的垂直平分线练习题

线段的垂直平分线练习题

(第2题)E DCBA一、基础知识:1符号表示:∵ ,∴AB =AC.2.线段垂直平分线的判定 符号表示: ∵ ,∴点A 在线段BC 的中垂线上.3.如图,△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________.(第1题) (第3题) 2.如图,在△ABC 中,AB 的中垂线交BC 于点E ,若BE=2则A 、E 两点的距离是 . 3.如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD 的周长是 。

4.下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ,PA =PB ;②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB 的垂直平分线上的点;④若EA =EB ,则过点E 的直线垂直平分线段AB .其中正确的是 。

5.在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( ) A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点; C 、三角形三条中线的交点;D 、三角形三条高的交点。

二、解答题:(第1题)(第8题)E DCBA1、有特大城市A 及两个小城市B 、C ,这三个城市共建一个污水处理厂,使得该厂到B 、C 两城市的距离相等,且使A 市到厂的管线最短,试确定污水处理厂的位置。

2.如下图,在直线AB 上找一点P ,使PC =PD .BD8.如右图,△ABC 中,AB=AC=16cm ,AB 的垂直平分线ED 交AC 于D 点. (1)当AE=13cm 时,BE= cm ;(2)当△BEC 的周长为26cm 时,则BC= cm ; (3)当BC=15cm ,则△BEC 的周长是 cm.。

§1.3 线段的垂直平分线(习题课)

§1.3 线段的垂直平分线(习题课)

16.如图,BC是等腰△ABC和等腰 如图, 是等腰 是等腰△ 如图 和等腰 的公共底, △DBC的公共底,则直线 必是 的公共底 则直线AD必是 __________的垂直平分线 的垂直平分线. 的垂直平分线
17.下列命题的逆命题是什么,判 下列命题的逆命题是什么, 下列命题的逆命题是什么 断它是否正确. 断它是否正确 等腰三角形的两底角相等; ①等腰三角形的两底角相等; 三角形的三内角之比为1:1:2, ②三角形的三内角之比为 , 则三角形为等腰直角三角形; 则三角形为等腰直角三角形; 三内角之比为1:2:3的三角形为 ③三内角之比为 的三角形为 直角三角形; 直角三角形; 矩形的两组对边相等. ④矩形的两组对边相等
4. 如图 为BC边上一点 且BC=BD+AD, 如图,D为 边上一点 边上一点,且 则AD_____DC, 点D在______的垂直平分 在 的垂直平分 线上. 线上
5.如图 在△ABC中,DE、FG分别是边 、 如图,在 分别是边AB、 如图 中 、 分别是边 AC的垂直平分线,则∠B______∠1, 的垂直平分线, ∠ , 的垂直平分线 ∠C____∠2;若∠BAC=126°,则 ∠ ; ° 72 ∠EAG=__________度. 度
1.填空: 填空: 填空 ①线段垂直平分线上的点_________. 线段垂直平分线上的点 的点在线段垂直平分线上. ②_______的点在线段垂直平分线上 的点在线段垂直平分线上 ③三角形三条边的中垂线交点到三角形 __________的距离相等 的距离相等. 的距离相等
2.判断题 判断题 ①三角形三条边的垂直平分线必交于一 ). 点( ②以三角形两边的垂直平分线的交点为 圆心, 圆心,以该点到三角形三个顶点中的任 意一点的距离为半径作圆, 意一点的距离为半径作圆,必经过另外 两个顶点( ). 两个顶点 ③平面上只存在一点到已知三角形三个 顶点距离相等( ). 顶点距离相等 ④三角形关于任一边上的垂直平分线成 轴对称( ). 轴对称

线段的垂直平分线(习题课)

线段的垂直平分线(习题课)
§1.2 线段的垂直平分线
习题课
1.线段的垂直平分线的性质(重点、考点)
线段垂直平分线上的点到这条线段 两个端点距离相等. 2.线段的垂直平分线的判定(重点、考点)
到一条线段两个端点距离相等的点,
在这条线段的垂直平分线上.
1.如图,在锐角三角形ABC中,∠BAC=50°, AC、BC的垂直平分线交于点O,求∠BOC 的度数 。分析:∠1_____∠2, ∠3______∠4, ∠5_____∠6, ∠2+∠3=_____度, ∠1+∠4=_____度, ∠5+∠6=____度, ∠BOC=______度.
2. 如图,D为BC边上一点,且BC=BD+AD, 则AD_____DC, 点D在______的垂直平分 线上.
3.如_∠1, ∠C____∠2;若∠BAC=126°,则 ∠EAG=__________度. 72
4.如图,直线 l上一点Q满足QA=QB,
则Q点是直线l与_________的交点.
6.如图,P是∠AOB的平分线OM上任意 一点,PE⊥CA于E,PF⊥OB于F,连结 EF.求证:OP垂直平分EF.
5.△ABC中,∠C=90°,AB 的中垂线交直线BC于D,若 ∠BAD-∠DAC=22.5°,则 ∠B等于( B ) A. 37.5° B. 37.5°或67.5° C. 67.5° D. 无法确定
7.已知,如图,△ABC中,∠A=90o, AB=AC,D是BC边上的中点,E、F分别是 AB、AC上的点,且BE=AF. 求证:ED⊥FD
A F
E
B D C
作业:
8.如图,∠B=∠C=90°,M是BC的中点,DM平分 ∠ADC,求证:AM平分∠DAB.

线段的垂直平分线的性质和判定练习题

线段的垂直平分线的性质和判定练习题

△ ABD≌△ACD , ∴ AB = AC = 5 cm.∵点 C 在 AE 的垂直平分线上 ,
∴CE=AC=5 cm,∴BE=BC+CE=11 cm
知识点2:线段的垂直平分线的判定 6.如图,AC=AD,BC=BD,则有( A.AB垂直平分CD A)
B.CD垂直平分AB
C.AB与CD互相垂直平分
D.CD平分∠ACB
7.在锐角△ABC内有一点P,满足PA=PB=PC,则点P是△ABC( A.三边垂直平分线的交点 B.三条角平分线的交点
)A
C.三条高的交点
D.三边中线的交点
8 . 如图 , 点 D 在三角形 ABC 的 BC 边上 , 且 BC = BD + AD , 则点 D 在 AC 的垂直平分线上. _______
分线,即点D在线段AB的垂直平分线上
16.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于 点P,过点P分别作PN⊥AB于点N,PM⊥AC于点M.求证:BN=CM. 解:连接PB,PC,由角的平分线的性质证PN=PM,由线段垂直平分线 的性质证PB=PC,从而由HL证Rt△PNB≌Rt△PMC,∴BN=CM
即DG⊥EF,∴DG垂直平分EF
方法技能: 1.利用线段的垂直平分线的性质可证明两线段相等 ,应用时要注意:一是 点必须在垂直平分线上,二是距离指的是点到线段两端点的距离. 2.利用线段的垂直平分线的判定可证明垂直关系和线段相等关系.
易错提示:
对线段的垂直平分线的判定理解不透彻而出错.
Hale Waihona Puke 解:BH即为所求,如图:11.如图,在四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不
一定成立的是(
C)
A.AB=AD B.CA平分∠BCD

线段的垂直平分线练习题

线段的垂直平分线练习题

(第2题)EDCBA线段的垂直平分线一、基础知识:1、线段垂直平分线的性质因为,所以AB=AC.理由:2、线段垂直平分线的判定因为,所以点A在线段BC的中垂线上.理由:1、如图,△ABC中,AD垂直平分边BC,AB=5,那么AC=_________.(第1题)(第3题)(第4题)2、如图,在△ABC中,AB的中垂线交BC于点E,若BE=2则A、E两点的距离是().A.4B.2C.3D.123、如图,AB垂直平分CD,若AC=1.6cm,BC=2.3cm,则四边形ABCD的周长是()cm.A.3.9B.7.8C.4D.4.64、如图,NM是线段AB的中垂线,下列说法正确的有:.①AB⊥MN,②AD=DB,③MN⊥AB,④MD=DN,⑤AB是MN的垂直平分线.5、下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,P A=PB;②若P A=PB,EA=EB,则直线PE垂直平分线段AB;③若P A=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有()A.1个B.2个C.3个D.4个1、已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=300,求∠C的度数。

2、如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E求证:(1)∠EAD=∠EDA ;(2)DF∥AC(3)∠EAC=∠B(第1题)C DABlCBA二.解答:1、有特大城市A及两个小城市B、C,这三个城市共建一个污水处理厂,使得该厂到B、C两城市的距离相等,且使A市到厂的管线最短,试确定污水处理厂的位置。

2.如下图,在直线AB上找一点P,使PC =PD.3.如右图,△ABC中,AB=AC=16cm,AB的垂直平分线ED交AC于D点.(1)当AE=13cm时,BE= cm;(2)当△BEC的周长为26cm时,则BC= cm;(3)当BC=15cm,则△BEC的周长是cm.角平分线练习题1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.2、∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________.3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.4、如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.5、三角形的三条角平分线相交于一点,并且这一点到________________相等。

线段的垂直平分线习题

线段的垂直平分线习题

例 已知:如图ABC中,边AB、BC的 A 垂直平分线相交于点P. M 求证:PA=PB=PC. /
M B
P N N/ C
问题:如图,A、B、C三个村庄合建一 所学校,要求校址P点距离三个村庄 都相等.请你帮助确定校址. C

A


B
作图题:如图,在直线 l 上求一点P,使PA=PB
A

B l
习题课


已知:如图,AB=AC,DB=DC. 求证:AD所在直线是BC的垂直平分线.
A
D B C
已知:在Δ ABC中,ON是AB的垂直平分 线,OA=OC。 求证:点O在BC的垂直平分线上。
A NLeabharlann O CB如右图,P是∠AOB的平分线OM上任意一 点,PE⊥CA于E,PF⊥OB于F,连结EF. 求证:OP垂直平分EF.
如图,已知:AOB,点M、N. 求作:一点P,使点P到AOB两边的 距离相等,并且满足PM=PN.
A
.
O
M
.
N
B
填空: 1.已知:如图,AD是ABC的高,E为AD上一点, 且BE=CE,则ABC为 三角形.
A
1题图 B

E C
D
2.已知:如图,AB=AC,A=30o,AB的垂 直平分线MN交AC于D,则 1= , A 2= .
30o
M 1
D N
30o
B 2 75o C
填空: 3.已知:如图,在ABC中,DE是AC的垂直平分线, AE=3cm, ABD的周长为13cm,则ABC 的周长 为 cm A
E 13cm
B
D
C

线段的垂直平分线(有答案)

线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为_________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是_________ cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于_________.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为_________.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=_________.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为18 cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是14cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于9.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为23.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=4.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.BD×13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.,,18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.ADAD=8cm27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.21。

线段的垂直平分线(有答案)

线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.263.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.145.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 _________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 _________ cm .8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 _________ . 9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 _________ .10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= _________ .三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC. 线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质即可得出答案.解答:解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC的垂直平分线上,故选B.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.26考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AB=2AE=8,AD=BD,求出△ABC的周长为:AB+AD+DC+AC,求出AD+DC+AC=18,即可求出答案.解答:解:∵DE是AB的垂直平分线,AE=4,∴AB=2AE=8,AD=BD,∵△ACD的周长为18,∴AD+DC+AC=18,∴△ABC的周长为:AB+BC+AC=8+BD+DC+AC=8+AD+DC+AC=8+18=26,故选D.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC考点:线段垂直平分线的性质.专题:数形结合.分析:由∠ACB=90°,∠B=22.5°,根据三角形的内角和定理求出∠BAC的度数,然后根据线段的垂直平分线的性质得到DB与DA相等,利用等边对等角得到∠BAD与∠B相等,求出∠BAD的度数,由∠BAC的度数减去∠BAD 的度数,求出∠DAC的度数,又因为∠ADC是三角形ADB的外角,由三角形的外角性质得到∠ADC等于2∠B ,求出∠ADC的度数,从而得到选项A,B,C的结论正确,在直角三角形ACD中,根据斜边总大于直角边,判定得到AD大于CD,而AD与BD相等,等量代换得到BD大于CD,选项D的结论错误.解答:解:∵∠ACB=90°,∠B=22.5,∴∠BAC=180°﹣90°﹣22.5°=67.5°,又AB的垂直平分线交BC于D,∴DB=DA,故选项C正确;∴∠BAD=∠B=22.5°,∴∠DAC=67.5°﹣22.5°=45°,选项A正确,∠ADC=22.5°+22.5°=45°,选项B正确,在直角三角形ACD中,∵AD>CD,又AD=BD,∴BD>CD,选项D错误,则不正确的选项为D.故选D.点评:此题考查了线段垂直平分线的性质,外角性质及直角三角形的边角关系.遇到线段垂直平分线,往往根据垂直平分线上的点到线段两端点的距离相等,构造出等腰三角形,从而利用等腰三角形的有关知识解决问题.4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.14考点:线段垂直平分线的性质.专题:计算题.分析:先根据线段垂直平分线的性质得到AD=CD,即BD+CD+BC=12,再根据CE=4得到AC=8即可进行解答.解答:解:∵ED是线段AC的垂直平分线,∴AD=CD,∵△BCD的周长等于12,∴△BCD的周长=BC+BD+CD=AB+BC=12,∵CE=4,∴AC=8.∴△ABC的周长=AB+BC+AC=12+8=20.故选A.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.解答:解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选A.点评:本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 18 cm.考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质得出AE=BE=5cm,代入AB+AE+BE求出即可.解答:解:∵DE是线段AB的垂直平分线,BE=5cm,∴AE=BE=5cm,∵AB=8cm,∴△ABE的周长是AB+AE+BE=8cm+5cm+5cm=18cm,故答案为:18.点评:本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两端点的距离相等.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 14 cm.考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线得出CE=AE=2,AD=DC,根据已知得出AB+BD+AD=AB+BD+DC=AB+BC=10,即可求出答案.解答:解:∵DE是AC的中垂线,∴AE=CE=2,AD=DC,∵△ABD的周长是10cm,∴AB+BD+AD=10,∴AB+BD+DC=AB+BC=10,∴△ABC的周长是AB+BC+AC=10+2+2=14,故答案为14.点评:本题考查了线段的垂直平分线性质的应用,关键是求出AB+BC=10,题目比较典型,难度适中.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 9 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,求出△BCD的周长=AB+BC,代入求出即可.解答:解:∵DE是AC的垂直平分线,∴AD=DC,∴△BCD的周长是BD+DC+BC=BD+AD+BC=AB+BC=5+4=9,故答案为:9.点评:本题考查了线段垂直平分线的应用,关键是求出△BCD的周长等于AB+BC.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 23 .考点:线段垂直平分线的性质.分析:由已知条件,根据垂直平分线的性质得到线段相等,由△BCE的周长=EC+BE+BC得到答案.解答:解:AB的垂直平分线交AB于点D,所以EA=BE.∵AC=13,BC=10,∴△BCE的周长是EC+BE+BC=BC+CE+EA=AC+BC=13+10=23,故答案为23.点评:本题考查了垂直平分线的性质;由于已知三角形的两条边长,根据垂直平分线的性质,求出另一条的长,相加即可.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= 4 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,根据BC长求出AD+BD=8,代入AB+AD+BD=12即可求出答案.解答:解:∵MN垂直平分AC,∴AD=DC,∵BC=8,∴BD+DC=8=AD+BD,∵△ABD的周长为12,∴AB+AD+BD=12,∴AB=12﹣8=4,故答案为:4.点评:本题考查了线段的垂直平分线性质,注意:线段垂直平分线上的点到线段两端点的距离相等.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.考点:线段垂直平分线的性质.专题:计算题.分析:(1)根据线段的垂直平分线性质求出AC即可;(2)根据线段的垂直平分线性质求出AD=DC,AC=2AE=6,根据△ABD的周长为13求出AB+BC的值即可求出答案.解答:解:(1)∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,∴AC=BC=6,答:BC的长是6.(2)∵DE是AC的垂直平分线,AE=3,∴AD=DC,AC=2AE=6,∵△ABD的周长为13,∴AB+AD+BD=13,∴AB+CD+BD=13,即AB+BC=13,∴△ABC的周长是AB+BC+AC=13+6=19.答:△ABC的周长是19.点评:本题主要考查对线段的垂直平分线性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.考点:线段垂直平分线的性质;全等三角形的判定与性质.分析:(1)根据SSS证△ABC≌△ADC,推出∠BAC=∠DAC,根据等腰三角形的三线合一定理推出即可;(2)求出四边形ABCD的面积为S=S△ABD+S△CBD=BD×AC,代入求出即可.解答:解:(1)∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,BE=DE(三线合一定理);(2)∵AC=a,BD=b,∴四边形ABCD的面积S=S△ABD+S△CBD=×BD×AE+×BD×CE=×BD×(AE+CE)=BD×AC=ab.点评:本题考查了等腰三角形的性质和线段垂直平分线性质,三角形的面积等知识点的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,等腰三角形的顶角的平分线垂直于底边,且平分底边.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可.解答:解:∵MN是边AB的中垂线,∴AM=BM,∴∠BAM=∠B,设∠B=x,则∠BAM=x,∵∠C=3∠B,∴∠C=3x,在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,∴x=26°,即∠B=26°.点评:本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,关键是求出关于x的方程,注意:线段垂直平分线上的点到线段两端点的距离相等,等边对等角.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:过D作DN⊥AC,垂足为N,连接DB、DC,推出DN=DF,DB=DC,根据HL证Rt△DBF≌Rt△DCN,推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.解答:证明:过D作DN⊥AC,垂足为N,连接DB、DC,则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),又∵DF⊥AB,DN⊥AC,∴∠DFB=∠DNC=90°,在Rt△DBF和Rt△DCN中∵,∴Rt△DBF≌Rt△DCN(HL)∴BF=CN,在Rt△DFA和Rt△DNA中∵,∴Rt△DFA≌Rt△DNA(HL)∴AN=AF,∴BF=AC+AN=AC+AF,即BF=AF+AC.点评:本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线性质求出CE长,代入BE+CE+BC=18求出BC即可.解答:解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是8.点评:本题考查了线段垂直平分线的应用,关键是求出CE长,题目较好,难度不大.16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.考点:线段垂直平分线的性质.专题:证明题.分析:根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.解答:证明:∵AD是高,∴AD⊥BC,又BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.点评:本题考查了线段的垂直平分线的应用,解此题的关键是熟练地运用性质进行推理,培养了学生分析问题和解决问题的能力.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题.专题:综合题.分析:(1)连接AB,作出线段AB的垂直平分线,与x轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,﹣2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:根据线段垂直平分线得出AC=BC,BD=AD,推出∠CBE=∠CAF,证△BCE≌△ACF,推出BE=AF,即可得出答案.解答:证明:∵线段CD垂直平分AB,∴AC=BC,AD=BD,∴∠CAB=∠CBA,∠BAD=∠ABD,∴∠CAB+∠BAD=∠CBA+∠ABD,即∠CBE=∠CAF,在△BCE和△ACF中∵,∴△BCE≌△ACF(ASA),∴BE=AF,∵BD=AD,∴BE﹣BD=AF﹣AD,即DE=DF.点评:本题考查了等腰三角形的性质和判定,线段垂直平分线性质,全等三角形的性质和判定等知识点的综合运用.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:连接AC、AD,根据线段垂直平分线定理求出AC=AD,根据全等三角形的判定SSS证△ABC≌△AED即可.解答:证明:连接AC,AD,∵AF⊥CD,F为CD的中点,∴AC=AD,在△ABC和△AED中,∴△ABC≌△AED,∴∠B=∠E.点评:本题考查了对线段的垂直平分线定理和全等三角形的性质和判定的应用,关键是构造三角形ABC和三角形AED,并推出两三角形全等,题目比较典型,难度适中.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)根据全等三角形的判定SSS证出△ABC和△ADC即可;(2)根据线段垂直平分线定理得出点A,C都在线段BD的垂直平分线上即可.解答:证明:(1)在△ABC和△ADC中∴△ABC≌△ADC,∴∠ABC=∠ADC.(2)∵AB=AD,CB=CD,∴点A,C都在线段BD的垂直平分线上,∴AC⊥BD.点评:本题综合运用全等三角形的性质和判定和线段的垂直平分线定理,难度适中,题型较好.通过作题培养了学生分析问题和解决问题的能力.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.考点:线段垂直平分线的性质.专题:探究型.分析:(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE ,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE ,同理可得出DE=2EF即可得出结论.解答:解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.考点:线段垂直平分线的性质;角平分线的定义;三角形内角和定理.专题:证明题.分析:根据线段垂直平分线得出AF=DF,推出∠FAD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.解答:证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B.点评:本题考查了三角形的外角性质,角平分线定义,线段垂直平分线性质等知识点的运用,关键是推出∠FAD=∠FDA,培养了学生综合运用性质进行推理的能力.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?考点:线段垂直平分线的性质.专题:计算题.分析:利用线段的垂直平分线的性质得到:AD=BD,AF=CF,就可以将△ADF的周长转化为线段BC的长.解答:解:∵DE,FG分别是△ABC的边AB、AC的垂直平分线∴AD=BD,AF=CF∴△ADF的周长=AD+DF+AF=BD+DF+CF=BC=10∴△ADF的周长是10.点评:本题考查了线段的垂直平分线的性质以及转化思想的应用.24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.考点:线段垂直平分线的性质;三角形三边关系.专题:数形结合.分析:PA大于PB,理由是:如图连接PA,与直线l交于C,连接PB,BC,因为直线l为线段AB的垂直平分线,根据线段垂直平分线的定理得直线l上的点C到线段两端点的距离相等,即AC=BC,在三角形PBC中,根据三角形的两边之和大于第三边得到PC+BC大于PB,然后利用等量代换把其中的BC换为AC,根据图形可得证.解答:解:PA>PB.理由如下:(3分)如图,连接PA,与直线l交于点C;连接PB、BC.(2分)因为直线l是线段AB的垂直平分线,所以CA=AB;(2分)因为三角形任意两边之和大于第三边,所以PC+CB>PB;(2分)所以PC+CA>PB,即PA>PB.(1分)点评:此题考查了线段垂直平分线的定理,以及三角形的三边关系.遇到线段垂直平分线,常常连接垂直平分线上的点与线段的两端点,构造等腰三角形.同时注意运用在三角形中,任意两边之和大于第三边,两边之差小于第三边.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)由已知和BC=BC,根据SSS即可推出两三角形全等;(2)由全等得出∠DBC=∠ACB,推出MB=MC,根据线段垂直平分线定理得出即可.解答:(1)证明:∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS).(2)证明:∵由(1)知:△ABC≌△DCB,∴∠ACB=∠DBC,∴MB=MC,∴点M在BC的垂直平分线上.点评:本题考查了全等三角形的性质和判定和线段垂直平分线定理的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出BD=AD=16cm,推出∠B=∠BAD=15°,根据三角形的外角性质求出∠ADC=30°,根据含30度角的直角三角形性质得出AC=AD,代入求出即可.解答:解:∵DE垂直平分AB,∴BD=AD=16cm,∴∠B=∠BAD=15°,∴∠ADC=15°+15°=30°,∵∠C=90°,∴AC=AD=8cm,点评:本题考查了三角形的外角性质,线段垂直平分线性质,等腰三角形性质,含30度角的直角三角形性质等知识点的综合运用,题目比较典型,是一道比较好的题目.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.考点:三角形的五心;线段垂直平分线的性质.专题:作图题.分析:首先根据线段的垂直平分线的性质,推出垂心H关于三边的对称点,均在△ABC的外接圆上,作△H1H2H3的外接圆O,根据线段的垂直平分线的性质作出弧H1H2、弧H2H3、弧H1H3的中点即可得到答案.解答:作法:1、作△H1H2H3的外接圆O,2、连接H1H2,作H1H2的垂直平分线EF交圆O于A,同法可作H2H3和H1H3的垂直平分线,分别交圆于B、C,3、连接AB、BC、AC,则△ABC为所求.点评:本题主要考查了三角形的五心,线段的垂直平分线的性质等知识点,解此题的关键是理解△ABC的垂心H 关于三边的对称点,均在△ABC的外接圆上.题型较好,但有一定的难度.21。

线段垂直平分线和角平分线的性质(习题课)

线段垂直平分线和角平分线的性质(习题课)

变式:如图,在△ABC中,BD平分∠ABC, ∠A=90°, DA=6cm,BC=10cm,求△BDC的面积.
E

性质重现
(一)线段垂直平分线的性质 线段垂直平分线上的点到这条线段两端 点的距离相等。
(二)角平分线的性质:
角平分线上的点到角两边的距离相等
生活中的应用
例3、如图,初一(3)班与初一(4)班两个班的学 生分别在M、N两处参加植树劳动,现要在道路AB、AC 的交叉区域内设一个茶水供应点P,使P到两条道路的 距离相等,且使PM=PN,请你找出P点。
10.1线段垂直平分线
线和段角和平角(分习平线题分性课质线)的性应质用的 应用
性质再现
一、线段垂直平分线的性质
线段垂直平分线上的点到这条线段 两端点的距离相等。
几何语言:∵OB,AO=OB)
∴AC=BC
A
O
B
几何中的应用
例1:在△ABC中,边BC的垂直平分线分别交AB、BC 于点E、D;BE=6, BC=10,求△BCE的周长。
B
P .N
.M
A
C
作法:∠BAC的平分线与线段NM中垂线的交点 P就是所求的点。
作业:
课后习题
图9
变式练习
1、在△ABC中, 边BC的垂直平分线分别交AB、BC 于点E、D, AB=10,AC=6,△ACE的周长为 16 。
2、在△ABC中,边BC的垂直平分线分别交AB、图 B9 C于点
E 、D,△ACE的周长为16cm, ⊿ABC的周长为24cm则
BD长为
4 cm。
图9
3、如图,在△ABC中,AB的垂直平分线分别交AB、 BC于点D、E,AC的垂直平分线分别交AC、BC于点F、 G,若BC=20,则△AEG的周长为多少?

10.4 线段的垂直平分线

10.4 线段的垂直平分线

∴BO=CO=12BC=3,∠AOB=∠COD=90°. 在 Rt△ ABO 中,由勾股定理得
AO= AB2-OB2= 3 52-3==6. 在 Rt△ CDO 中,CD=5,由勾股定理得 DO= CD2-OC2= 52-32=4, ∴AD=AO+DO=6+4=10. 【答案】 A
11 如图,在△ABC中,∠ACB=90°,∠A=30°,AB 的垂直平分线分别交AB和AC于点D,E. (1)求证:AE=2CE.
(4)通过以上的探索过程,直接写出∠EAN与∠B,∠C的 数量关系. 解:当90°<∠BAC<180°时, ∠EAN=180°-2(∠B+∠C); 当0°<∠BAC<90°时, ∠EAN=2(∠B+∠C)-180°.
12 如图,四边形ABCD的对角线AC,BD相交于点E,若 △ABC为等边三角形,∠BAD=90°,AD=DC=2.
(1)求证:BD垂直平分AC.
证明:∵AD=DC, ∴点D在线段AC的垂直平分线上. ∵△ABC是等边三角形,∴BA=BC. ∴点B在线段AC的垂直平分线上. ∴BD是线段AC的垂直平分线. ∴BD垂直平分AC.
【点拨】 ∵∠ACB=90°,AC=BC, ∴∠CAB=∠CBA=45°,∠ACM=90°,∠CBD+ ∠CDB=90°. ∵AH⊥BD,∴∠AHD=90°. ∴∠CAM+∠ADH=90°. 又∵∠ADH=∠CDB,∴∠CAM=∠CBD.
∠ACM=∠BCD, 在△ ACM 和△ BCD 中,AC=BC,
【答案】 A
3 【2023·丽水】如图,在△ABC中,AC的垂直平分线
交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,
则DC的长是 4 .
【点拨】
∵∠B=∠ADB,AB=4,∴AD=AB=4. ∵DE是AC的垂直平分线,∴DC=AD=4.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.2线段的垂直平分线
专题一线段的垂直平分线的性质定理及其逆定理的应用
1.撑伞时,把伞“两侧的伞骨”和支架分别看作AB,AC和DB,DC,始终有AB=AC,DB=DC,则伞杆AD与B,C的连线BC的位置关系为 _________.
2.如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于D,E,若∠DAE=50°,则∠BAC= _____度,若△ADE的周长为19 cm,则BC=__________cm.
3.如图,△ABC与△ADC关于直线AC对称,连接BD,若已知四边形ABCD的面积是125,AC=25,则BD的长为 ________.
4.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.
专题二线段垂直平分线与轴对称的综合应用
5.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()
6.如图,四边形ABCD是一个长方形的台球桌,台球桌上还剩一个黑球没有被打进球袋,在点P的位置,现在轮到你打,你应该把在点Q位置的白球打到AB边上的哪一点,才能反弹回来撞到黑球?
7.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()
A.30° B.45° C.60° D.90°
专题三作图题
8.如图所示,靠近河边有一块三角形菜地,要分给张、王、李、赵四家,为了分配合理,要求面积相同,为了便于浇地,每家都有靠河边的菜地,你能想办法将菜地合理分配吗?(尺规作图,保留作图痕迹)。

相关文档
最新文档