创新设计(全国通用)2018版高考数学一轮复习 第三章 导数及其应用 第2讲 导数的应用 第1课时

合集下载

全国通用2018版高考数学一轮复习第三章导数及其应用3.2.3导数与函数的综合应用课件文北师大版

全国通用2018版高考数学一轮复习第三章导数及其应用3.2.3导数与函数的综合应用课件文北师大版

当 x 变化时,f(x)与 f′(x)的变化情况如下:
x
(-∞,-2) -2 -2,-23 -23 -23,+∞
f′(x)

0

0

f(x)
c
c-3227
所以,当 c>0 且 c-3227<0,存在 x1∈(-4,-2),x2∈-2,-23, x3∈-23,0,使得 f(x1)=f(x2)=f(x3)=0.由 f(x)的单调性知,当且仅 当 c∈0,3227时, 函数 f(x)=x3+4x2+4x+c 有三个不同零点.
解 (1)因为 x=5 时,y=11,所以a2+10=11,a=2. (2)由(1)可知,该商品每日的销售量为 y=x-2 3+10(x-6)2, 所以商场每日销售该商品所获得的利润为 f(x)=(x-3)x-2 3+10x-62 =2+10(x-3)(x-6)2,3<x<6. 从而,f′(x)=10[(x-6)2+2(x-3)(x-6)] =30(x-4)·(x-6),
(2)因 V(r)=5π(300r-4r3)(0<r<5 3), 故 V′(r)=π5(300-12r2), 故 V′(r)=0,解得 r=5 或-5(因 r=-5 不在定义域内,舍去). 当 r∈(0,5)时,V′(r)>0,故 V(r)在(0,5)上为增函数; 当 r∈(5,5 3)时,V′(r)<0,故 V(r)在(5,5 3)上为减函数. 由此可知,V(r)在 r=5 处取得最大值,此时 h=8. 所以当 r=5,h=8 时,该蓄水池的体积最大.
于是,当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(3,4)
4
(4,6)
f′(x) +

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

2018高考数学(理)大一轮复习课件:第三章 导数及其应用 第二节 导数与函数的单调性

1 由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x, 3 5 知f′(1)=-4-a=-2,解得a=4.
x2-4x-5 x 5 3 所以f(x)=4+4x-ln x-2,则f′(x)= , 4x2 令f′(x)=0,解得x=-1或x=5, 因x=-1不在f(x)的定义域(0,+∞)内,故舍去. 当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数; 当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增 函数. 所以函数f(x)的单调递增区间为(5,+∞),单调递减区 间为(0,5).
值对不等式解集的影响进行分类讨论.
求函数的单调区间
[例2] x a 3 已知函数f(x)= 4 + x -ln x- 2 ,其中a∈R,且曲
1 线y=f(x)在点(1,f(1))处的切线垂直于直线y= 2 x,求函数f(x) 的单调区间.
[解]
1 a 1 对f(x)求导得f′(x)=4-x2-x,
第二节 导数与 函数的 单调性
本节主要包括2个知识点: 1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.
突破点(一)
基础联通
利用导数讨论函数的单调性或求函数的单调区间
抓主干知识的“源”与“流”
1.函数的单调性与导数的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
考点贯通
抓高考命题的“形”与“神”
证明或讨论函数的单调性
判断函数单调性的三种方法

2018版高考数学人教A版(全国)一轮复习课件 第三章 导数及其应用 第2讲 第2课时

2018版高考数学人教A版(全国)一轮复习课件 第三章 导数及其应用 第2讲 第2课时
解 (1)当 a=-4 时,由 f′(x)=2(5x-2)x(x-2)=0 得 x= 25或 x=2,由 f′(x)>0 得 x∈0,25或 x∈(2,+∞), 故函数 f(x)的单调递增区间为0,25和(2,+∞).
考点突第破十一页,编辑于星期课六:堂二总十二结点 三十分。
(2)因为 f′(x)=(10x+a2)(x 2x+a),a<0,由 f′(x)=0 得 x= -1a0或 x=-a2. 当 x∈0,-1a0时,f(x)单调递增. 当 x∈-1a0,-a2时,f(x)单调递减; 当 x∈-a2,+∞时,f(x)单调递增. 易知 f(x)=(2x+a)2 x≥0,且 f-a2=0.
考点突第破五页,编辑于星期六课:二堂十总二点结三十分。
规律方法 函数极值的两类热点问题 (1)求函数f(x)极值这类问题的一般解题步骤为: ①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数 定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的 符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正, 那么f(x)在x0处取极小值.
一般根据区间与极值点的位置关系来分类讨论.
考点突第破十五页,编辑于星期课六:堂二总十二结点 三十分。
【训练2】 已知函数f(x)=(ax-2)ex在x=1处取得极值. (1)求a的值; (2)求函数在区间[m,m+1]上的最小值. 解 (1)f′(x)=(ax+a-2)ex, 由已知得 f′(1)=(a+a-2)e=0, 解得 a=1,经检验 a=1 符合题意, 所以 a 的值为 1. (2)由(1)得 f(x)=(x-2)ex,f′(x)=(x-1)ex. 令 f′(x)>0 得 x>1,令 f′(x)<0 得 x<1. 所以函数 f(x)在(-∞,1)上递减,在(1,+∞)上递增.

2018-2019学年高中新创新一轮复习理数通用版:第三章 导数及其应用

2018-2019学年高中新创新一轮复习理数通用版:第三章 导数及其应用

第三章⎪⎪⎪导数及其应用第一节 导数的概念及运算本节主要包括2个知识点: 1.导数的运算; 2.导数的几何意义.突破点(一) 导数的运算[基本知识]1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. 2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.3.基本初等函数的导数公式4.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[基本能力]1.判断题(1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)若(ln x )′=1x ,则⎝⎛⎭⎫1x ′=ln x .( )(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) (7)y =cos 3x 由函数y =cos u ,u =3x 复合而成.( ) 答案:(1)× (2)× (3)√ (4)× (5)× (6)× (7)√ 2.填空题(1)已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x ,∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3(2)函数y =ln xe x 的导函数为________________.答案:y ′=1-x ln xx e x(3)已知f (x )=2sin x +x ,则f ′⎝⎛⎭⎫π4=________.解析:∵f (x )=2sin x +x ,∴f ′(x )=2cos x +1,则f ′⎝⎛⎭⎫π4=2cos π4+1=2+1. 答案:2+1[全析考法][典例] (1)函数f (x )=(x +1)2(x -3),则其导函数f ′(x )=( ) A .3x 2-2x B .3x 2-2x -5 C .3x 2-xD .3x 2-x -5(2)(2018·钦州模拟)已知函数f (x )=x ln x ,则f ′(1)+f (4)的值为( )A .1-8ln 2B .1+8ln 2C .8ln 2-1D .-8ln 2-1(3)已知函数f (x )=sin x cos φ-cos x sin φ-1(0<φ<π2),若f ′⎝⎛⎭⎫π3=1,则φ的值为( ) A.π3B.π6C.π4D.5π12[解析] (1)法一:因为f (x )=(x +1)2(x -3)=(x +1)(x +1)(x -3),所以f ′(x )=[(x +1)(x +1)]′(x -3)+(x +1)(x +1)(x -3)′=2(x +1)(x -3)+(x +1)2=3x 2-2x -5.法二:f (x )=(x +1)2(x -3)=x 3-x 2-5x -3,则f ′(x )=3x 2-2x -5.(2)因为f ′(x )=ln x +1,所以f ′(1)=0+1=1,所以f ′(1)+f (4)=1+4ln 4=1+8ln 2.故选B.(3)因为f (x )=sin x cos φ-cos x sin φ-1⎝⎛⎭⎫0<φ<π2,所以f ′(x )=cos x cos φ+sin x sin φ=cos(x -φ),因为f ′⎝⎛⎭⎫π3=1,所以cos ⎝⎛⎭⎫π3-φ=1,因为0<φ<π2,所以φ=π3,故选A. [答案] (1)B (2)B (3)A[方法技巧] 导数运算的常见形式及其求解方法[全练题点]1.下列函数中满足f (x )=f ′(x )的是( ) A .f (x )=3+x B .f (x )=-x C .f (x )=ln xD .f (x )=0解析:选D 若f (x )=0,则f ′(x )=0,从而有f (x )=f ′(x ).故选D. 2.(2018·延安模拟)设函数f (x )=ax +3,若f ′(1)=3,则a =( ) A .2 B .-2 C .3D .-3解析:选C 由题意得,f ′(x )=a ,因为f ′(1)=3,所以a =3,故选C.3.(2018·南宁模拟)设f (x )在x =x 0处可导,且li m Δx →f (x 0+3Δx )-f (x 0)Δx=1,则f ′(x 0)=( )A .1B .0C .3 D.13解析:选D 因为lim Δx →0f (x 0+3Δx )-f (x 0)Δx =1,所以lim Δx →0 ⎣⎡⎦⎤3×f (x 0+3Δx )-f (x 0)3Δx =1,即3f ′(x 0)=1,所以f ′(x 0)=13.故选D.4.(2018·桂林模拟)已知函数y =x cos x -sin x ,则其导函数y ′=( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B 函数y =x cos x -sin x 的导函数y ′=cos x -x sin x -cos x =-x sin x ,故选B.5.(2018·九江一模)已知f (x )是(0,+∞)上的可导函数,且f (x )=x 3+x 2f ′(2)+2ln x ,则函数f (x )的解析式为( )A .f (x )=x 3-32x 2+2ln xB .f (x )=x 3-133x 2+2ln x C .f (x )=x 3-3x 2+2ln x D .f (x )=x 3+3x 2+2ln x解析:选B ∵f (x )=x 3+x 2f ′(2)+2ln x ,∴f ′(x )=3x 2+2xf ′(2)+2x ,令x =2,得f ′(2)=12+4f ′(2)+1,∴f ′(2)=-133,∴f (x )=x 3-133x 2+2ln x ,故选B.突破点(二) 导数的几何意义[基本知识]函数f (x )在点x 0处 的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[基本能力]1.判断题(1)曲线的切线与曲线不一定只有一个公共点.( ) (2)求曲线过点P 的切线时P 点一定是切点.( ) 答案:(1)√ (2)× 2.填空题(1)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=0(2)已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________. 解析:设切点为(x 0,y 0),则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a ·e x 0=-x 0+1,∴x 0=2,a =e 2. 答案:e 2(3)曲线f (x )=x ln x 在点M (1,f (1))处的切线方程为________.解析:由题意,得f ′(x )=ln x +1,所以f ′(1)=ln 1+1=1,即切线的斜率为1.因为f (1)=0,所以所求切线方程为y -0=x -1,即x -y -1=0.答案:x -y -1=0[全析考法]“过点A A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1),求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.求切点坐标[例2] (2018·32P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)[解析] ∵f (x )=x 3+ax 2,∴f ′(x )=3x 2+2ax ,∵曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,∴3x 20+2ax 0=-1,∵x 0+x 30+ax 20=0,解得x 0=±1,∴当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1.故选D.[答案] D求参数值或范围[例3] (1)(2018·长沙一模)若曲线y =12e x 2与曲线y =a ln x 在它们的公共点P (s ,t )处具有公共切线,则实数a =( )A .-2 B.12 C .1D .2(2)(2018·南京调研)若函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,则实数a 的取值范围是________.[解析] (1)y =12e x 2的导数为y ′=x e ,在点P (s ,t )处的切线斜率为s e ,y =a ln x 的导数为y ′=a x ,在点P (s ,t )处的切线斜率为a s ,由题意知,s e =a s ,且12e s 2=a ln s ,解得ln s =12,s 2=e ,故a =1.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,故1x +a =2,即a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).[答案] (1)C (2)(-∞,2)[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.[全练题点]1.[考点一]曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.2.[考点一]曲线y =x e x +2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x +x e x +2,所以曲线y =x e x +2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.3.[考点二]已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.4.[考点三](2018·东城期末)若直线y =-x +2与曲线y =-e x+a相切,则a 的值为( )A .-3B .-2C .-1D .-4解析:选A 由于y ′=(-e x +a )′=-e x +a ,令-e x +a =-1,得切点的横坐标为x =-a ,所以切点为(-a ,-1),进而有-(-a )+2=-1,故a =-3.5.[考点三](2018·西安一模)若曲线y =e x -ae x (a >0)上任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,则a =( )A.112 B.13 C.34D .3解析:选C y ′=e x +a e x ,∵y =e x -aex 在任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,∴e x +a e x ≥3,由a >0知,e x +a ex ≥2a ⎝⎛⎭⎫当且仅当e x =a e x 时等号成立,故2a =3,故a =34,故选C.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 2.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+ 1)-x 2x 2+1.根据题意,有⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f(x)为偶函数,所以当x>0时,f(x)=f(-x)=ln x-3x,所以当x>0时,f′(x)=1x-3,则f′(1)=-2.所以y=f(x)在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.答案:y=-2x-1[课时达标检测][小题对点练——点点落实]对点练(一)导数的运算1.(2018·泉州质检)设函数f(x)=x(x+k)(x+2k),则f′(x)=()A.3x2+3kx+k2B.x2+2kx+2k2C.3x2+6kx+2k2D.3x2+6kx+k2解析:选C法一:f(x)=x(x+k)(x+2k),f′(x)=(x+k)(x+2k)+x[(x+k)(x+2k)]′=(x+k)·(x+2k)+x(x+2k)+x(x+k)=3x2+6kx+2k2,故选C.法二:因为f(x)=x(x+k)(x+2k)=x3+3kx2+2k2x,所以f′(x)=3x2+6kx+2k2,故选C.2.(2018·泰安一模)给出下列结论:①若y=log2x,则y′=1x ln 2;②若y=-1x,则y′=12x x;③若f(x)=1x2,则f′(3)=-227;④若y=ax(a>0),则y′=a x ln a.其中正确的个数是()A.1 B.2 C.3 D.4解析:选D根据求导公式可知①正确;若y=-1x=-x-12,则y′=12x-32=12x x,所以②正确;若f(x)=1x2,则f′(x)=-2x-3,所以f′(3)=-227,所以③正确;若y=ax(a>0),则y′=a x ln a,所以④正确.因此正确的结论个数是4,故选D.3.若函数y=x m的导函数为y′=6x5,则m=()A.4 B.5C.6 D.7解析:选C因为y=x m,所以y′=mx m-1,与y′=6x5相比较,可得m=6.4.已知函数f(x)=xe x(e是自然对数的底数),则其导函数f′(x)=()A.1+x e xB.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e x e 2x =1-x e x ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞) B .(0,2) C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x =2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B. 6.(2018·信阳模拟)已知函数f (x )=a e x +x ,若1<f ′(0)<2,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x +x ,则f ′(x )=(a e x )′+x ′=a e x +1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018·安徽八校联考)函数f (x )=tan x 2在⎣⎡⎦⎤π2,f ⎝⎛⎭⎫π2处的切线的倾斜角α为( ) A.π6 B.π4 C.π3D.π2解析:选B f ′(x )=⎝ ⎛⎭⎪⎫sin x2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝⎛⎭⎫π2=1,故α=π4,选B.2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018·福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( )A .0条B .1条C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2=(a 3-a 2-2a +1)-1a -(-1),所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018·重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8.5.(2018·临川一模)函数f (x )=x +ln xx的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln xx ,f ′(x )=1+1-ln x x 2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12×1×12=14,故选B.6.(2018·成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x ≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017·柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x ,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧ F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min=0.8.(2018·唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( ) A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a =1,a =12,故b =⎝⎛⎭⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝⎛⎭⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018·包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018·兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2.∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得, 而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎤-∞,-53. 2.(2018·青岛期末)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x-4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +bx2,所以⎩⎨⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝⎛⎭⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝⎛⎭⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝⎛⎭⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)·(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)×4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.第二节 导数与函数的单调性本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间;2.利用导数解决函数单调性的应用问题.突破点(一)利用导数讨论函数的单调性或求函数的单调区间[基本知识]1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.由函数的单调性与导数的关系可得的结论(1)函数f(x)在(a,b)内可导,且f′(x)在(a,b)任意子区间内都不恒等于0.当x∈(a,b)时,f′(x)≥0⇔函数f(x)在(a,b)上单调递增;f′(x)≤0⇔函数f(x)在(a,b)上单调递减.(2)f′(x)>0(<0)在(a,b)上成立是f(x)在(a,b)上单调递增(减)的充分条件.[基本能力]1.判断题(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.()(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.()(3)f′(x)>0是f(x)为增函数的充要条件.()答案:(1)×(2)√(3)×2.填空题(1)函数f(x)=e x-x的减区间为________.答案:(-∞,0)(2)函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.答案:单调递增(3)已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是________.答案:3[全析考法][例1] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时, f ′(x )>0,f (x )单调递增; x ∈(1,+∞)时, f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x - 2a ⎝⎛⎭⎫x + 2a . ①若0<a <2,则 2a >1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时, f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②若a =2,则2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0< 2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫ 2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫ 2a ,1内单调递减,在(1,+∞)内单调递增.[方法技巧]导数法研究函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] (2018·山东德州期中)已知函数f (x )=13x 3-(2m +1)x 2+3m (m +2)x +1,其中m为实数.(1)当m =-1时,求函数f (x )在[-4,4]上的最大值和最小值; (2)求函数f (x )的单调递增区间.[解] (1)当m =-1时,f (x )=13x 3+x 2-3x +1,f ′(x )=x 2+2x -3=(x +3)(x -1).当x <-3或x >1时,f ′(x )>0,f (x )单调递增; 当-3<x <1时,f ′(x )<0,f (x )单调递减. ∴当x =-3时,f (x )极大值=10; 当x =1时,f (x )极小值=-23.又∵f (-4)=233,f (4)=793,∴函数f (x )在[-4,4]上的最大值为793,最小值为-23.(2)f ′(x )=x 2-2(2m +1)x +3m (m +2) =(x -3m )(x -m -2).当3m =m +2,即m =1时,f ′(x )=(x -3)2≥0, ∴f (x )单调递增,即f (x )的单调递增区间为(-∞,+∞).当3m >m +2,即m >1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <m +2或x >3m , 此时f (x )的单调递增区间为(-∞,m +2),(3m ,+∞).当3m <m +2,即m <1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <3m 或x >m +2, 此时f (x )的单调递增区间为(-∞,3m ),(m +2,+∞). 综上所述:当m =1时,f (x )的单调递增区间为(-∞,+∞); 当m >1时,f (x )的单调递增区间为(-∞,m +2),(3m ,+∞); 当m <1时,f (x )的单调递增区间为(-∞,3m ),(m +2,+∞).[方法技巧] 用导数求函数单调区间的三种类型及方法[全练题点]1.[考点二](2018·江西金溪一中等校联考)已知函数f (x )与f ′(x )的图象如图所示,则函数g (x )=f (x )ex 的单调递减区间为( )A .(0,4)B .(-∞,1),⎝⎛⎭⎫43,4C.⎝⎛⎭⎫0,43 D .(0,1),(4,+∞)解析:选D g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,令g ′(x )<0,即f ′(x )-f (x )<0,由题图可得x ∈(0,1)∪(4,+∞).故函数g (x )的单调递减区间为(0,1),(4,+∞).故选D.2.[考点二](2018·芜湖一模)函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 3.[考点一]已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f (x )在 ⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.4.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得⎩⎪⎨⎪⎧f (1)=a +1=c ,g (1)=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝⎛⎭⎫-∞,-a 2,⎝⎛⎭⎫-a6,+∞;单调递减区间为⎝⎛⎭⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.[全析考法]已知函数的单调性求参数的取值范围[例1] (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)上恒成立, 即3x 2-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2在(1,+∞)上恒成立, 所以a ≤3,即a 的取值范围为(-∞,3]. (2)因为f (x )在区间(-1,1)上为减函数, 所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3. 即a 的取值范围为[3,+∞). (3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3.[方法技巧]由函数的单调性求参数取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围,注意检验等号成立时导数是否在(a ,b )上恒为0.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.比较大小或解不等式[例2] (1)(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1) 的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定(2)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)设g (x )=f (x )ex ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意得g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2, 所以e x 1f (x 2)>e x 2f (x 1).(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)A (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎡⎦⎤f (x )x ′;(4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→⎣⎡⎦⎤f (x )e x ′.[全练题点]1.[考点一]若函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,则( ) A .a ≥3 B .a =3 C .a ≤3D .0<a <3解析:选A 因为函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,所以f ′(x )=3x 2-2ax ≤0在[0,2]上恒成立.当x =0时,显然成立,当x ≠0时,a ≥32x 在(0,2]上恒成立.因为32x ≤3,所以a ≥3.综上,a ≥3. 2.[考点一]已知函数f (x )=12x 2-t cos x ,若其导函数f ′(x )在R 上单调递增,则实数t 的取值范围为( )A.⎣⎡⎦⎤-1,-13 B.⎣⎡⎦⎤-13,13 C .[-1,1]D.⎣⎡⎦⎤-1,13 解析:选C 因为f (x )=12x 2-t cos x ,所以f ′(x )=x +t sin x .令g (x )=f ′(x ),因为f ′(x )在R 上单调递增,所以g ′(x )=1+t cos x ≥0恒成立,所以t cos x ≥-1恒成立,因为cos x∈[-1,1],所以⎩⎪⎨⎪⎧-t ≥-1,t ≥-1,所以-1≤t ≤1,即实数t 的取值范围为[-1,1].3.[考点二]对于R 上可导的任意函数f (x ),若满足1-xf ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.[考点二](2018·江西赣州联考)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)解析:选A 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x .由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e x f (x )>e x -1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).5.[考点一](2018·四川成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3. 答案:(0,1)∪(2,3)6.[考点一](2018·辽宁大连双基测试)已知函数f (x )=ln x +axx +1(a ∈R ).(1)若函数f (x )在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f (x )的图象与直线y =2x 相切,求a 的值.解:(1)f ′(x )=1x +a (x +1)-ax (x +1)2=(x +1)2+axx (x +1)2.∵函数f (x )在区间(0,4)上单调递增,∴f ′(x )≥0在(0,4)上恒成立,∴(x +1)2+ax ≥0, 即a ≥-x 2+2x +1x =-⎝⎛⎭⎫x +1x -2在(0,4)上恒成立. ∵x +1x ≥2,当且仅当x =1时取等号,∴a ∈[-4,+∞).(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=ln x 0+ax 0x 0+1,∴1x 0+a (x 0+1)2=2,①且2x 0=ln x 0+ax 0x 0+1.② 由①得a =⎝⎛⎭⎫2-1x 0(x 0+1)2,③ 代入②,得2x 0=ln x 0+(2x 0-1)(x 0+1), 即ln x 0+2x 20-x 0-1=0.令F (x )=ln x +2x 2-x -1,x >0,则 F ′(x )=1x +4x -1=4x 2-x +1x >0, ∴F (x )在(0,+∞)上单调递增. ∵F (1)=0,∴x 0=1,代入③式得a =4.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x . 因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x ≥0恒成立, 即k ≥1x 在区间(1,+∞)上恒成立. 因为x >1,所以0<1x <1,所以k ≥1.故选D.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C.3.(2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞) 解析:选A 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.4.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a . 当x ∈(-∞,-ln a )时,f ′(x )<0;当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a . ①当a =1时,由于f (-ln a )=0, 故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0, 即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0. 又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ⎝⎛⎭⎫3a -1>-ln a , 因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).[课时达标检测][小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018·福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( ) A .(-∞,-2) B .[3,+∞) C .[-2,3]D.⎣⎡⎭⎫12,+∞解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017·焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x -2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧ 4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,故选B. 3.(2018·湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.解析:函数f (x )的定义域为(0,+∞),再由f ′(x )=1x -x -1>0可解得0<x <5-12.答案:⎝ ⎛⎭⎪⎫0,5-12 对点练(二) 利用导数解决函数单调性的应用问题1.(2018·河南洛阳模拟)已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选B f ′(x )=-3x 2+2ax -1,由题意知,f ′(x )≤0在R 上恒成立,则Δ=(2a )2-4×(-1)×(-3)≤0恒成立,解得-3≤a ≤ 3.2.(2018·河北正定中学月考)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)·f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a解析:选B 由f (x )=f (2-x )可知,f (x )的图象关于直线x =1对称.根据题意知当x ∈(-∞,1)时,f ′(x )>0,f (x )为增函数,当x ∈(1,+∞)时,f ′(x )<0,f (x )为减函数,所以f (3)=f (-1)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .故选B.3.(2018·河北唐山期末)已知函数f (x )=ln(e x +e -x )+x 2,则使得f (2x )>f (x +3)成立的x的取值范围是( )A .(-1,3)B .(-∞,-3)∪(3,+∞)C .(-3,3)D .(-∞,-1)∪(3,+∞)解析:选D 因为f (-x )=ln(e -x +e x )+(-x )2=ln(e x +e -x )+x 2=f (x ),所以函数f (x )是偶函数.通过导函数可知函数y =e x +e-x在(0,+∞)上是增函数,所以函数f (x )=ln(e x +e-x)+x 2在(0,+∞)上也是增函数,所以不等式f (2x )>f (x +3)等价于|2x |>|x +3|,解得x <-1或x >3.故选D.4.(2018·云南大理州统测)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 017为奇函数,则不等式f (x )+2 017e x <0的解集是( )A .(-∞,0)B .(0,+∞) C.⎝⎛⎭⎫-∞,1e D.⎝⎛⎭⎫1e ,+∞ 解析:选B 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 017为奇函数,所以f (0)=-2 017,h (0)=-2 017.因为f (x )+2 017e x <0,所以f (x )e x <-2 017,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 017e x <0的解集是(0,+∞).故选B.5.若函数f (x )=x +4mx-m ln x 在[1,2]上为减函数,则m 的最小值为( ) A.32 B.34 C.23D.43解析:选C 因为f (x )=x +4m x -m ln x 在[1,2]上为减函数,所以f ′(x )=1-4m x 2-mx =x 2-mx -4mx2≤0在[1,2]上恒成立,所以x 2-mx -4m ≤0在[1,2]上恒成立.令g (x )=x 2-mx -4m ,所以⎩⎪⎨⎪⎧g (1)=1-m -4m ≤0,g (2)=4-2m -4m ≤0,所以m ≥23,故m 的最小值为23,故选C.6.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),因而f (x )为偶函数,∴当f (x 1)<f (x 2)时有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.。

高考数学一轮复习 第三章 导数及其应用 第2讲 导数的应用(一) 理(2021年最新整理)

高考数学一轮复习 第三章 导数及其应用 第2讲 导数的应用(一) 理(2021年最新整理)

2018版高考数学一轮复习第三章导数及其应用第2讲导数的应用(一) 理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第三章导数及其应用第2讲导数的应用(一) 理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第三章导数及其应用第2讲导数的应用(一) 理的全部内容。

第2讲导数的应用(一)一、选择题1.与直线2x-y+4=0平行的抛物线y=x2的切线方程是( ).A.2x-y+3=0 B.2x-y-3=0C.2x-y+1=0 D.2x-y-1=0解析设切点坐标为(x0,x20),则切线斜率为2x0,由2x0=2得x0=1,故切线方程为y-1=2(x-1),即2x-y-1=0。

答案D2.若函数h(x)=2x-错误!+错误!在(1,+∞)上是增函数,则实数k的取值范围是().A.(-2,+∞)B.(2,+∞)C.(-∞,-2) D.(-∞,2)解析由条件得h′(x)=2+kx2=错误!≥0在(1,+∞)上恒成立,即k≥-2x2在(1,+∞)上恒成立,所以k∈(-2,+∞).答案A3.函数f(x)=(4-x)e x的单调递减区间是 ( ).A.(-∞,4)B.(-∞,3)C.(4,+∞)D.(3,+∞)解析f′(x)=e x+(4-x)·e x=e x(3-x),令f′(x)〈0,由于e x>0,∴3-x〈0,解得x>3.答案D4.函数f(x)=ax3+bx在x=1a处有极值,则ab的值为()A.2 B.-2 C.3 D.-3解析f′(x)=3ax2+b,由f′错误!=3a错误!2+b=0,可得ab=-3。

创新设计 2018版高考数学(人教)大一轮复习配套课件:第三章 导数及其应用第2讲 第3课时

创新设计 2018版高考数学(人教)大一轮复习配套课件:第三章 导数及其应用第2讲 第3课时
数的最值,从而求出参数的取值范围.
考点突破第十四页,编辑于星期课日堂:六总点结四十四分。
【训练 2】 (2017·福建四地六校联考)已知 a 为实数,函数 f(x) =aln x+x2-4x. (1)是否存在实数 a,使得 f(x)在 x=1 处取得极值?证明你 的结论; (2)设 g(x)=(a-2)x,若∃x0∈1e,e,使得 f(x0)≤g(x0)成立, 求实数 a 的取值范围.
考点突破第九页,编辑于星期日课:堂六点总四结十四分。
考点二 由不等式恒(能)成立求参数的范围 【例2】 已知函数f(x)=ax+ln x,x∈[1,e].
(1)若a=1,求f(x)的最大值; (2)若f(x)≤0恒成立,求实数a的取值范围. 解 (1)若 a=1,则 f(x)=x+ln x, f′(x)=1+1x=x+x 1.∵x∈[1,e], ∴f′(x)>0,∴f(x)在[1,e]上为增函数, ∴f(x)max=f(e)=e+1.
考点突破第十八页,编辑于星期课日堂:六总点结四十四分。
考点三 函数的零点问题 【例 3】 (2015·北京卷)设函数 f(x)=x22-kln x,k>0.
(1)求 f(x)的单调区间和极值; (2)证明:若 f(x)存在零点,则 f(x)在区间(1, e]上仅有一个 零点. (1)解 由 f(x)=x22-kln x(k>0),得 x>0 且 f′(x)=x-kx=x2-x k. 由 f′(x)=0,解得 x= k(负值舍去). f(x)与 f′(x)在区间(0,+∞)上的变化情况如下表:
第3课时 导数与函数的综合问题
考点突破第一页,编辑于星期日课:堂六点总四结十四分。
考点一 证明不等式
【例 1】 (2017·青岛模拟)已知函数 f(x)=axx2++1b在点(-1,f(-1))

创新设计(全国通用)2018版高考数学一轮温习 第三章节 导数及其应用 3.2.2 导数与函数的极值、最值讲义 文

创新设计(全国通用)2018版高考数学一轮温习 第三章节 导数及其应用 3.2.2 导数与函数的极值、最值讲义 文

C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
解析 由题图可知,当x<-2时,1-x>3,此时f′(x)>0;当- 2<x<1时,0<1-x<3,此时f′(x)<0;当1<x<2时,-1<1-x<0, 此时f′(x)<0;当x>2时,1-x<-1,此时f′(x)>0,由此可以得 到函数f(x)在x=-2处取得极大值,在x=2处取得极小值. 答案 D
规律方法 求函数f(x)在[a,b]上的最大值和最小值的步骤: (1)求函数在(a,b)内的极值; (2)求函数在区间端点的函数值f(a),f(b); (3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为 最大值,最小的一个为最小值.
【训练 2】 设函数 f(x)=aln x-bx2(x>0),若函数 f(x)在 x=1 处与直 线 y=-12相切, (1)求实数 a,b 的值; (2)求函数 f(x)在1e,e上的最大值.
内绝不是单调函数,即在某区间上单调函数没有极值.
[易错防范] 1.求函数单调区间与函数极值时要养成列表的习惯,可使
问题直观且有条理,减少失分的可能. 2.求函数最值时,不可想当然地认为极值点就是最值点,
要通过认真比较才能下结论. 3.解题时要注意区分求单调性和已知单调性的问题,处理
好f′(x)=0时的情况;区分极值点和导数为0的点.
解 (1)由 f(x)=aln x-bx2,得 f′(x)=ax-2bx(x>0).
∵函数 f(x)在 x=1 处与直线 y=-12相切.
f′1=a-2b=0,
a=1,

高考数学大一轮复习 第三章 三角函数、解三角形 3.2 导数的应用 第2课时 导数与函数的极值、最值

高考数学大一轮复习 第三章 三角函数、解三角形 3.2 导数的应用 第2课时 导数与函数的极值、最值

(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书的全部内容。

第2课时导数与函数的极值、最值题型一用导数解决函数极值问题命题点1 根据函数图象判断极值例1 (1)(2016·绍兴模拟)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是()(2)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)答案(1)C (2)D解析(1)由f′(x)图象可知,x=0是函数f(x)的极大值点,x=2是f(x)的极小值点,故选C。

(2)由题图可知,当x〈-2时,f′(x)〉0;当-2〈x〈1时,f′(x)<0;当1<x〈2时,f′(x)〈0;当x〉2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.命题点2 求函数的极值例2 (2016·台州模拟)已知函数f(x)=x-1+错误!(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)由f(x)=x-1+错误!,得f′(x)=1-错误!。

创新设计(全国通用)2018版高考数学一轮复习 第三章 导数及其应用 3.2.3 导数与函数的综合应用 文 北师大

创新设计(全国通用)2018版高考数学一轮复习 第三章 导数及其应用 3.2.3 导数与函数的综合应用 文 北师大

考点三 导数在不等式中的应用(多维探究) 命题角度一 不等式恒成立问题 【例 3-1】 已知函数 f(x)=ln x-ax,若 f(x)<x2 在(1,+∞)上恒成
立,求 a 的取值范围.
解 ∵ln x-ax<x2,又 x>0,∴a>xln x-x3, 令 g(x)=xln x-x3,则 h(x)=g′(x)=1+ln x-3x2, h′(x)=1x-6x=1-x6x2. ∵当 x∈(1,+∞)时,h′(x)<0, ∴h(x)在(1,+∞)上是减函数, ∴h(x)<h(1)=-2<0,即 g′(x)<0. ∴g(x)在(1,+∞)上也是减函数,∴g(x)<g(1)=-1, ∴当 a≥-1 时,f(x)<x2 在(1,+∞)上恒成立.
解 (1)由 f(x)=x3+ax2+bx+c,得 f′(x)=3x2+2ax+b.因为 f(0)= c,f′(0)=b, 所以曲线 y=f(x)在点(0,f(0))处的切线方程为 y=bx+c. (2)当 a=b=4 时,f(x)=x3+4x2+4x+c, 所以 f′(x)=3x2+8x+4. 令 f′(x)=0,得 3x2+8x+4=0,解得 x=-2 或 x=-23.
因此
x-1 1< ln x <x.
(3)证明 由题设 c>1,设 g(x)=1+(c-1)x-cx, 则 g′(x)=c-1-cxln c.
c-1 令 g′(x)=0,解得 x0=lnlnlncc . 当 x<x0 时,g′(x)>0,g(x)单调递增; 当 x>x0 时,g′(x)<0,g(x)单调递减. 由(2)知 1<cl-n c1<c,故 0<x0<1. 又 g(0)=g(1)=0,故当 0<x<1 时,g(x)>0. 所以当 x∈(0,1)时,1+(c-1)x>cx.

创新设计(全国通用)2018版高考数学一轮复习第三章导数及其应用第2讲导数的应用第3课时

创新设计(全国通用)2018版高考数学一轮复习第三章导数及其应用第2讲导数的应用第3课时

第三章导数及其应用第2讲导数的应用第3课时导数与函数的综合问题练习理新人教A版基础巩固题组(建议用时:40分钟)一、选择题1. 方程x3—6x2+ 9x —10= 0的实根个数是()A.3B.2C.1D.0解析设f(x) = x3—6x2+ 9x —10,f ' (x) = 3x2—12x + 9= 3( x—1)( x —3),由此可知函数的极大值为f(1) = —6v 0,极小值为f(3) =—10v 0,所以方程x3—6x2+ 9x —10= 0的实根个数为1.答案C2. 若存在正数x使2x(x—a) v 1成立,则实数a的取值范围是()A.( —m,+m )B.( —2,+口C.(0 ,+8)D.( —1,+^)1解析'^2x(x —a) v 1 ,.•• a>x —尹人 1 , —x令f (x) = x—2^,- f ' (x) = 1 + 2 In 2 >0.••• f(x)在(0,+s)上单调递增,••• f(x) >f(0) = 0—1 = —1,•实数a的取值范围为(一1,+^).答案D3. (2017 •山东省实验中学诊断)若函数f (x)在R上可导,且满足 f (x) —xf '(x)>0,贝U ( )A.3f (1)< f(3)B.3f (1)> f (3)C.3f (1) = f(3)D.f(1) = f (3)解析由于f(x)>xf'(x),则F x)]'= xf」X)-f(x) <0恒成立,因此今在f ( 3) f ( 1)R上是单调递减函数,•3—< 1 ,即3f (1)> f (3).答案B4. (2017 •德阳模拟)方程f(x) = f '(X)的实数根X。

叫作函数f(x)的“新驻点”,如果函A. a= 1B.0<a<1数g( x) = In x的“新驻点”为a,那么a满足()11 解析 T g '(x ) = -,A in x =-.z\. z\.、九 1 设 h (x ) = In x ——,x则h (x )在(0,+m)上为增函数.又I h (1) =— 1<0, h (2) = In 2 — 2 = In 2 — In e>0,••• h(x )在(1 , 2)上有零点,••• 1<a <2.解析 根据导函数图象,知 2是函数的极小值点,函数 y = f (x )的大致图象如图所示由于f (0) = f (3) = 2, 1<a <2,所以y = f (x ) — a 的零点个数为4.答案 D二、填空题36.已知函数y = x — 3x + c 的图象与x 轴恰有两个公共点,则 c = _____________ . 解析 设 f (x ) = x 3— 3x + c ,对 f (x )求导可得,f ' (x ) = 3x 2— 3,令 f '(x ) = 0,可得 x =± 1,易知f (x )在(—8, — 1) , (1 , +8)上单调递增,在(—1,1)上单调递减,若f (1)A.1B.2D.4f (x )的导函数y = f '(x )的图象如图所示.当1<a <2时,函数y = f (x ) — a 的零点的个数为=1 —3+ c= 0,可得c= 2;若f( —1) =— 1 + 3 + c= 0,可得c = — 2.答案—2或2令f '(x ) = 0,得x = 1,当x €( 1, 2)时,f ' (x )>0,函数f (x )在(1 , 2)上单调递增,当x € (0 , 1)时,f ' (x )<0,函数 f (x )在(0 , 1)上单调递减,所以 k <f (x )min = f (1) = e — 1, 故实数k的取值范围是[0 , e — 1). 答案[0 , e — 1) 三、解答题9. 设函数f (x ) = (x + 1)l n( x +1),若对所有的x > 0,都有f (x ) > ax 成立,求实数a 的取 值范围. 解令 g (x ) = (x + 1)ln( x + 1) — ax ,则 g '(x ) = ln( x + 1) + 1 — a .(1) 当 a wl 时,1 — a >0,v x >0,「.|n( x +1) >0,••• g ' (x ) > 0,.・. g (x )在[0,+s )上是增函数,• •• g(x) > g(0) = 0,•••当 a wl 时,(x + 1)ln( x +1) > ax 对 x 》0 都成立. (2) 当 a >1 时,令 g '(x ) = 0 解得 x = e a —1 — 1.当 0<x <e — — 1 时,g ' (x )<0 ;当 x >e —— 1 时,g ' (x )>0 , • g (x )在(0 , e a— 1— 1)上递减,在(e a— 1— 1 ,+^)上递增,a — 1• g (e — 1)<g (0) = 0,7. 若函数 f (x ) = ax — In x 在詰,+8解析由已知得f '(x ) = a —0对、 1 1 成立,= 2,「. a >2.上单调递增,则实数 a 的取值范围为? x € 1 +R 2,十; 1恒成立,• a 》-对? x € / x□2,十•••当a>1时,不是对所有的x>0,都有f (x) >ax成立. 综上,由(1)(2)可知,实数a的取值范围是(一汽1].a ( x 一 i )10.(2017 •武汉调研)已知函数 f (x ) = In x — -(a € R).X(1) 求函数f (x )的单调区间;(2) 求证:不等式(x + 1)ln x >2(x — 1)对? x € (1 , 2)恒成立.① a w 0时,f ' (x )>0, f (x )在(0 ,+s )上为增函数; ② a >0时,f (x )在(a,+^)上为增函数,在(0 , a )上为减函数⑵ 证明 法一 •/ x € (1 , 2) ,••• x + 1>0,•要证原不等式成立,即证In —>2(二)对? —€ (1 , 2)恒成立,令g ( —) = In———n - 12 (x — 1)x n ,(x — 1 ) 2、,g '(x )= ( x +1)2 > °,: g (x )在(0,+m)上为增函数,2 (x — 1)• In x > x +—对? x € (1 , 2)恒成立,• (x + 1)ln x >2(x — 1)对? x € (1 , 2)恒成立. 法二 令 F (x ) = (x + 1)ln x — 2(x — 1), , x +1 F (x ) = In x +~^— 2,—=In —一 ——一 1令 0 (x ) = In x —,由(1)知 a = 1 时,—0 (x )在(0 , 1)上为减函数,在(1 ,+^ )上为增函数.••• x € (1 , 2),则 0 (X )在(1 , 2)为增函数,0 (X )> 0 (1) = 0, 即 x € (1 , 2) , F ' (x )>0 ,• F (x )在(1 , 2)上为增函数, • F (x )>F (1) = 0,• ( — + 1)In —>2( — — 1)对? — € (1 , 2)恒成立.能力提升题组 (建议用时:25分钟)(1)解定义域为(0,+m) , fx — a(x)•••当 x € (1 , 2)时,g (x )>g (1) = In 12 (1 — 1)1 + 1 =0,11. 函数f(x) = 3—2+ In ——2—的极值点的个数是()A.0B.1C.2D.无数个解析函数定义域为(0 , +m),由于 x >0, g (x ) = 6x 2— 2x + 1 中△=— 20<0, 所以g (x )>0恒成立,故f '(x )>0恒成立, 即f (x )在定义域上单调递增,无极值点 .答案 A 12.(2014 •全国I 卷)已知函数f (x ) = ax — 3x + 1,若f (x )存在唯一的零点 x o ,且X o >O , 则实数a 的取值范围是( )A.(2 ,+^)B.( —a, — 2)C.(1 ,+a )D.( —a, — 1)2 2解析 法一 由题意0,由f '(x ) = 3ax — 6x = 0得x = 0或x =.a且f (0) = 1>0,故f (x )有小于0的零点,不符合题意,排除 A, C.3 23 1 法二 f (x )有唯一正零点 X 0,等价于方程 ax — 3x +1 = 0有唯一正根X 。

数学(文)一轮教学案:第三章第2讲 导数的应用 Word版含解析

数学(文)一轮教学案:第三章第2讲 导数的应用 Word版含解析

第2讲导数的应用考纲展示命题探究1函数的单调性与导数的关系2用充分必要条件来诠释导数与函数单调性的关系(1)f′(x)>0(或f′(x)<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或f′(x)≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件(f′(x)=0不恒成立).注意点应用导数解决函数单调性问题的原则方法(1)求函数f(x)的单调区间,也是求不等式f′(x)>0(或f′(x)<0)的解集,但单调区间不能脱离函数定义域而单独存在,求单调区间要坚持“定义域优先”的原则.(2)由函数f(x)在区间[a,b]内单调递增(或递减),可得f′(x)≥0(或f′(x)≤0)在该区间恒成立,而不是f′(x)>0(或f′(x)<0)恒成立,“=”不能少.必要时还需对“=”进行检验.1.思维辨析(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)f(x)在(a,b)上单调递增与(a,b)是f(x)的单调递增区间是相同的说法.()答案(1)×(2)√(3)×2.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0) B.(0,+∞)C.(-∞,-3)和(1,+∞) D.(-3,1)答案 D解析y′=-2x e x+(3-x2)e x=e x(-x2-2x+3),由y′>0⇒x2+2x-3<0⇒-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).故选D.3.函数f (x )=e x -2x 的单调递增区间是________.答案 (ln 2,+∞)解析 f ′(x )=e x -2,令f ′(x )=0得x =ln 2.当x ∈(ln 2,+∞)时,f ′(x )>0,∴f (x )=e x -2x 的单调递增区间为(ln 2,+∞).[考法综述] 单调性是导数几种应用中最基本也是最重要的内容,因为求极值和最值都离不开单调性.利用导数讨论函数单调性或求函数的单调区间是导数的重要应用,也是高考的热点,经常在解答题的分支问题中出现,难度一般.命题法 判断函数的单调性典例 已知函数f (x )=ln x -mx +m ,m ∈R .(1)已知函数f (x )在点(1,f (1))处与x 轴相切,求实数m 的值;(2)求函数f (x )的单调区间;(3)在(1)的结论下,对于任意的0<a <b ,证明:f (b )-f (a )b -a<1a -1. [解] 由f (x )=ln x -mx +m ,得f ′(x )=1x -m (x >0).(1)依题意得f ′(1)=1-m =0,即m =1.(2)当m ≤0时,f ′(x )=1x -m >0,函数f (x )在(0,+∞)上单调递增;当m >0时,f ′(x )=-m ⎝⎛⎭⎪⎫x -1m x ,由f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫0,1m ,由f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫1m ,+∞, 即函数f (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递增,在⎝ ⎛⎭⎪⎫1m ,+∞上单调递减. (3)证明:由(1)知m =1,得f (x )=ln x -x +1,对于任意的0<a <b ,f (b )-f (a )b -a<1a -1可化为(ln b -b )-(ln a -a )b -a<1a -1,因为0<a <b ,所以有b -a >0,故不等式可化为(ln b -b )-(ln a -a )<⎝ ⎛⎭⎪⎫1a -1(b -a ),即ln b a <b a -1,令t =b a ,得ln t -t +1<0(t >1),令f (t )=ln t -t +1.由(2)知,函数f (x )在(1,+∞)上单调递减,且f (1)=0,即f (t )<f (1),于是上式成立,故对于任意的0<a <b ,f (b )-f (a )b -a <1a-1成立. 【解题法】 单调区间的求法及由单调性求参数取值范围的方法(1)利用导数求函数的单调区间的两个方法①方法一:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x );c .解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;d .解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. ②方法二:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x ),令f ′(x )=0,解此方程,求出在定义域内的一切实根;c .把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义域分成若干个小区间;d .确定f ′(x )在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.(2)由函数的单调性求参数的取值范围的方法①可导函数在某一区间上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)(f ′(x )在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围.②可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题.③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.1.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1 答案 D解析 由题意可知存在唯一的整数x 0,使得e x 0(2x 0-1)<ax 0-a ,设g (x )=e x (2x -1),h (x )=ax -a ,由g ′(x )=e x (2x +1)可知g (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增,作出g (x )与h (x )的大致图象如图所示,故⎩⎪⎨⎪⎧ h (0)>g (0)h (-1)≤g (-1),即⎩⎨⎧ a <1-2a ≤-3e ,所以32e≤a <1,故选D.2.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)答案 A解析 令F (x )=f (x )x ,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x )x 在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x 在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A.3.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1k B .f ⎝ ⎛⎭⎪⎫1k >1k -1 C .f ⎝ ⎛⎭⎪⎫1k -1<1k -1 D .f ⎝ ⎛⎭⎪⎫1k -1>k k -1答案 C解析 构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数.∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0,∴g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0, 即f ⎝ ⎛⎭⎪⎫1k -1>k k -1-1=1k -1, 所以选项C 错误,故选C.4.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)答案 C解析 (1)当a =0时,显然f (x )有两个零点,不符合题意.(2)当a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,解得x 1=0,x 2=2a .当a >0时,2a >0,所以函数f (x )=ax 3-3x 2+1在(-∞,0)与⎝ ⎛⎭⎪⎫2a ,+∞上为增函数,在⎝⎛⎭⎪⎫0,2a 上为减函数,因为f (x )存在唯一零点x 0,且x 0>0,则f (0)<0,即1<0,不成立.当a <0时,2a <0,所以函数f (x )=ax 3-3x 2+1在⎝ ⎛⎭⎪⎫-∞,2a 和(0,+∞)上为减函数,在⎝ ⎛⎭⎪⎫2a ,0上为增函数,因为f (x )存在唯一零点x 0,且x 0>0,则f ⎝ ⎛⎭⎪⎫2a >0,即a ·8a 3-3·4a 2+1>0,解得a >2或a <-2,又因为a <0,故a 的取值范围为(-∞,-2).选C.5.已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0.(1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.解 (1)由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x-a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x , 所以g ′(x )=2-2x +2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x 2当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明:由f ′(x )=2(x -a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x =0,解得a =x -1-ln x 1+x -1. 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1. 则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0. 故存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-ln x 01+x -10,u (x )=x -1-ln x (x ≥1). 由u ′(x )=1-1x ≥0知,函数u (x )在区间(1,+∞)上单调递增.所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e -1<1. 即a 0∈(0,1).当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0.由(1)知,f ′(x )在区间(1,+∞)上单调递增,故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0.所以,当x ∈(1,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.6.设函数f (x )=3x 2+ax e x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e , 从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x-e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +a e x, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366, x 2=6-a +a 2+366. 当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92, 故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞. 7.函数f (x )=ax 3+3x 2+3x (a ≠0).(1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.解 (1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ). ①若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1. 故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根:x 1=-1+1-a a ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f ′(x )>0, 故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数;若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞). 1 判断函数极值的方法一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.2 求可导函数f (x )的极值的步骤(1)求导函数f ′(x );(2)求方程f ′(x )=0的根;(3)检验f ′(x )在方程f ′(x )=0的根的左右两侧的函数值的符号,如果左正右负,那么函数y =f (x )在这个根处取得极大值;如果左负右正,那么函数y =f (x )在这个根处取得极小值,可列表完成.3 函数的最值在闭区间[a ,b ]上的连续函数y =f (x ),在[a ,b ]上必有最大值与最小值.在区间(a ,b )上的连续函数y =f (x ),若有唯一的极值点,则这个极值点就是最值点.注意点 极值点的含义及极值与最值的关系(1)“极值点”不是点,若函数f (x )在x 1处取得极大值,则x 1即为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).(2)极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.1.思维辨析(1)导数为零的点不一定是极值点.( )(2)三次函数在R 上必有极大值和极小值.( )(3)函数的极大值不一定比极小值大.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )(6)函数f (x )=x sin x 有无数个极值点.( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)√2.函数y =x 4-4x +3在区间[-2,3]上的最小值为( )A .72B .36C .12D .0 答案 D解析 因为y ′=4x 3-4,令y ′=0即4x 3-4=0,解得x =1.当x <1时,y ′<0,当x >1时,y ′>0,所以函数的极小值为y |x =1=0,而在端点处的函数值y |x =-2=27,y |x =3=72,所以y min =0.3.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3 答案 A解析 ∵f ′(x )=3ax 2+b ,∴f ′(1)=3a +b =0.①又当x =1时有极值-2,∴a +b =-2.②联立①②解得⎩⎪⎨⎪⎧a =1,b =-3. [考法综述] 函数的极值与最值是高考热点内容,对极值的考查主要有2个命题角度:①判断极值的情况,②已知函数求极值.考查函数最值时必定涉及函数的单调性,还会涉及方程和不等式.题型有大题也有小题且有一定难度.另外已知函数的极值(最值)情况求参数的取值范围也是热点考查内容,涉及函数的单调性时,往往需要进行分类讨论,这类题综合性强,难度较大.命题法 求函数的极值与最值典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2(x <1),a ln x (x ≥1). (1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.[解] (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表: x(-∞,0) 0 f ′(x )- 0 + 0 -f (x )极小值 极大值 点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增,则f (x )在[1,e]上的最大值为f (e)=a .故当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.【解题法】 求函数极值和最值的方法(1)求函数的极值应先确定函数的定义域,再解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表结合导函数与0的大小(或函数的单调性)进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.(2)函数的最大值①若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.②若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.③函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到.1.对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f (x )的零点B .1是f (x )的极值点C .3是f (x )的极值D .点(2,8)在曲线y =f (x )上答案 A解析 由A 知a -b +c =0;由B 知f ′(x )=2ax +b,2a +b =0;由C 知f ′(x )=2ax +b ,令f ′(x )=0可得x =-b 2a ,则f ⎝ ⎛⎭⎪⎫-b 2a =3,则4ac -b 24a =3;由D 知4a +2b +c =8.假设A 选项错误,则⎩⎪⎨⎪⎧ a -b +c ≠0,2a +b =0,4ac -b 24a =3,4a +2b +c =8,得⎩⎪⎨⎪⎧ a =5,b =-10,c =8,满足题意,故A 结论错误.同理易知当B 或C 或D 选项错误时不符合题意,故选A.2.已知函数f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当x ∈(0,1)时,f (x )取得极大值,当x ∈(1,2)时,f (x )取得极小值,则⎝ ⎛⎭⎪⎫b +122+(c -3)2的取值范围是( )A.⎝ ⎛⎭⎪⎫372,5 B .(5,5) C.⎝ ⎛⎭⎪⎫374,25 D .(5,25)答案 D解析 因为f ′(x )=3x 2+2bx +c ,f ′(x )的两个根分别在(0,1)和(1,2)内,所以f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ c >0,3+2b +c <0,12+4b +c >0,作出可行域如图中阴影部分所示(不包括b 轴),⎝ ⎛⎭⎪⎫b +122+(c -3)2表示可行域内一点到点P ⎝ ⎛⎭⎪⎫-12,3的距离的平方,由图象可知,P ⎝ ⎛⎭⎪⎫-12,3到直线3+2b +c =0的距离最小,即⎝ ⎛⎭⎪⎫b +122+(c -3)2的最小值为⎝ ⎛⎭⎪⎫|3-1+3|52=5,P ⎝ ⎛⎭⎪⎫-12,3到点A ⎝ ⎛⎭⎪⎫-92,6的距离最大,此时⎝ ⎛⎭⎪⎫b +122+(c -3)2=25,因为可行域的临界线为虚线,所以所求范围为(5,25),故选D.3.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值范围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-2,1)答案 C 解析 令f ′(x )=3x 2-3=0,得x =±1,且x =-1为函数f (x )的极大值点,x =1为函数f (x )的极小值点.函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2,解得-5<a <1,且a ≥-2.故实数a 的取值范围是[-2,1).4.设函数f (x )=e x (sin x -cos x )(0≤x ≤2015π),则函数f (x )的各极小值之和为( )A .-e 2π(1-e 2015π)1-e 2πB .-e 2π(1-e 2015π)1-e πC .-1-e 2016π1-e 2πD .-e 2π(1-e 2014π)1-e 2π答案 D解析 因为f ′(x )=2e x sin x ,所以x ∈(2k π+π,2k π+2π)(k ∈Z )时,f ′(x )<0,f (x )单调递减,x ∈(2k π+2π,2k π+3π)(k ∈Z )时,f ′(x )>0,f (x )单调递增,故当x =2k π+2π(k ∈Z )时,f (x )取极小值,其极小值为f (2k π+2π)=-e 2k π+2π(k ∈Z ),又0≤x ≤2015π,所以f (x )的各极小值之和S =-e 2π-e 4π-…-e 2014π=-e 2π(1-e 2014π)1-e 2π,故选D. 5.已知点M 在曲线y =3ln x -x 2上,点N 在直线x -y +2=0上,则|MN |的最小值为________.答案 2 2解析 当点M 处的曲线的切线与直线x -y +2=0平行时|MN |取得最小值.令y ′=-2x +3x =1,解得x =1,所以点M 的坐标为(1,-1),所以点M 到直线x -y +2=0的距离为|1+2+1|2=22,即|MN |的最小值为2 2.6.函数f (x )=x 3-3x 2+6在x =________时取得极小值. 答案 2解析 依题意得f ′(x )=3x (x -2).当x <0或x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.因此,函数f (x )在x =2时取得极小值.7.设函数f (x )=(x +a )ln x ,g (x )=x 2e x .已知曲线y =f (x )在点(1,f (1))处的切线与直线2x -y =0平行.(1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2,又f ′(x )=ln x +a x +1,所以a =1.(2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0,又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0.因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈[2,+∞)时,h ′(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根.(3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎨⎧ (x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0]时,若x ∈(0,1],m (x )≤0;若x ∈(1,x 0],由m ′(x )=ln x +1x +1>0.可知0<m (x )≤m (x 0).故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减.可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e 2.8.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a 3, x 2=-1+4+3a 3,x 1<x 2, 所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增.(2)因为a >0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增.所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减.所以f (x )在x =x 2=-1+4+3a 3处取得最大值. 又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0处和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值. 9.设函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k …是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.解 (1)f ′(x )=e x ·x 2-2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =(x -2)(e x -kx )x 3(x >0), 由k ≤0,知e x -kx >0,令f ′(x )=0,则x =2,当x ∈(0,2)时,f ′(x )<0,f (x )为减函数,当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.综上,f (x )的减区间为(0,2),增区间为(2,+∞).(2)由题意知f ′(x )=0,即e x -kx =0在(0,2)内存在两个不等实根. 令g (x )=e x -kx ,g ′(x )=e x -k ,令g ′(x )=0,x =ln k ,则0<ln k <2,即1<k <e 2.当0<x <ln k 时,g ′(x )<0,g (x )为减函数.当ln k <x <2时,g (x )为增函数.∵g (0)=1>0,只需⎩⎪⎨⎪⎧g (2)>0,g (ln k )<0,即⎩⎪⎨⎪⎧e 2-2k >0,e ln k -k ·ln k <0,得e<k <e 22. 综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫e ,e 22 10.已知函数f (x )=ln x -a (x 2-x )(a ∈R ).(1)当a =1时,求f (x )在点(1,f (1))处的切线方程;(2)求f (x )在[1,2]上的最大值.解 (1)当a =1时,f (x )=ln x -x 2+x ,f ′(x )=1x -2x +1. ∴f (1)=0,f ′(1)=0,即所求切线方程为:y =0.(2)∵f ′(x )=1x -2ax +a =-2ax 2+ax +1x,x >0. ∴当a =0时,f ′(x )>0,f (x )在[1,2]上单调递增.∴f (x )max =f (2)=ln 2.当a ≠0时,可令g (x )=-2ax 2+ax +1,x ∈[1,2],g (x )的对称轴x =14且过点(0,1).∴当a <0时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增, ∴f (x )max =f (2)=ln 2-2a .当a >0时,若g (1)≤0,即a ≥1时,f ′(x )<0在[1,2]上恒成立. f (x )在[1,2]上单调递减,∴f (x )max =f (1)=0.若g (1)>0,g (2)<0,即16<a <1时,f ′(x )在⎣⎢⎡⎭⎪⎫1,a +a 2+8a 4a 上大于零, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上小于零, ∴f (x )在⎣⎢⎡⎦⎥⎤1,a +a 2+8a 4a 上单调递增, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上单调递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫a +a 2+8a 4a =ln a +a 2+8a 4a +a 2+8a +a -48. 若g (1)>0,g (2)≥0,即0<a ≤16时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增,∴f (x )max =f (2)=ln 2-2a .综上:f (x )max =⎩⎪⎨⎪⎧ ln 2-2a ,a ≤16ln a +a 2+8a 4a +a 2+8a +a -48,16<a <10,a ≥1.11.已知函数f (x )=-x 3+ax 2-4(a ∈R ),f ′(x )是f (x )的导函数.(1)当a =2时,对于任意的m ∈[-1,1],n ∈[-1,1],求f (m )+f ′(n )的最小值;(2)若存在x 0∈(0,+∞),使f (x 0)>0,求a 的取值范围.解 (1)由题意得f (x )=-x 3+2x 2-4,f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或43.当x 在[-1,1]上变化时,f ′(x ),f (x )随x 的变化情况如下表:∵f ′(x )=-3x 2+4x 的对称轴为直线x =23,且抛物线开口向下,∴对于n ∈[-1,1],f ′(n )的最小值为f ′(-1)=-7.∴f (m )+f ′(n )的最小值为-11.(2)∵f ′(x )=-3x ⎝⎛⎭⎪⎫x -2a 3.①若a ≤0,当x >0时,f ′(x )<0,∴f (x )在(0,+∞)上单调递减.又f (0)=-4,则当x >0时,f (x )<-4.∴当a ≤0时,不存在x 0>0,使f (x 0)>0.②若a >0,则当0<x <2a 3时,f ′(x )>0;当x >2a 3时,f ′(x )<0.从而f (x )在⎝ ⎛⎦⎥⎤0,2a 3上单调递增,在⎣⎢⎡⎭⎪⎫2a 3,+∞上单调递减, ∴当x ∈(0,+∞)时,f (x )max =f ⎝ ⎛⎭⎪⎫2a 3=-8a 327+4a 39-4=427a 3-4. 根据题意,得4a 327-4>0,即a 3>27,解得a >3.综上,a 的取值范围是(3,+∞).1 利用导数证明不等式的常用技巧(1)利用给定函数的某些性质,如函数的单调性、最值、极值等,服务于所要证明的不等式.(2)当给出的不等式无法直接证明时,先对不等式进行等价转化后再进行求证.(3)根据不等式的结构特征构造函数,利用函数的最值进行求证,构造函数的方法较为灵活,要结合具体问题,平时要多积累.其一般步骤为:构造可导函数→研究其单调性求最值→得出不等关系→整理得出所证明的结论.2 导数在研究函数零点中的作用(1)研究函数图象的交点、方程的根、函数的零点归根到底是研究函数的性质,如单调性、极值等.(2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.3 利用导数求解实际问题中的优化问题生活中求利润最大、用料最省、效率最高等问题称之为优化问题.导数是解决生活中优化问题的有力工具,用导数解决优化问题的基本思路是:优化问题→用函数表示的数学问题→用导数解决数学问题→优化问题的答案.利用导数解决实际应用问题一般有如下几类:(1)给出了具体的函数关系式,只需研究这个函数的性质即可;(2)函数关系式中含有比例系数,根据已知数据求出比例系数得到函数关系式,再研究函数的性质;(3)没有给出函数关系,需要先建立函数关系,再研究函数的性质.注意点 函数定义域的重要性在函数的综合应用中,不论是研究函数的性质,还是构造函数,还是建立新的函数关系时,都要正确求出函数的定义域,再利用导数求解.1.思维辨析(1)2ax +e x≥x +1恒成立,可转化为a ≥x +1-e x2x 恒成立.( ) (2)对任意x ∈R ,f (x )≥g (x )恒成立,则f (x )min ≥g (x )max .( )(3)若函数y =f (x )与y =g (x )的图象有2个交点,则f (x )-g (x )有2个零点.( )答案 (1)× (2)× (3)√2.在区间(0,π)上,sin x 与x 的大小关系是________.答案 sin x <x解析 构造函数f (x )=sin x -x ,则f ′(x )=cos x -1≤0且不恒等于0,故函数f (x )在(0,π)上单调递减,所以f (x )<f (0)=0,故sin x <x .3.已知函数f (x )=x +1e x .(1)讨论函数f (x )的单调性,并求其最值;(2)若对任意的x ∈(0,+∞),有f (x )<ax 2+1恒成立,求实数a的取值范围.解 (1)f (x )=x +1e x ,f ′(x )=1-1e x =0,则x =0.当x ∈(-∞,0)时f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时f ′(x )>0,f (x )单调递增,所以f (x )的最小值为f (0)=1,无最大值.(2)由(1)知,若a =0,则当x >0时f (x )>1=ax 2+1,原不等式不成立.若a <0,则当x >0时,ax 2+1<1,原不等式不成立.若a >0,f (x )<ax 2+1等价于(ax 2-x +1)e x >1.设φ(x )=(ax 2-x +1)e x ,那么φ′(x )=[ax 2+(2a -1)x ]e x .若a ≥12,则φ(x )=(ax 2-x +1)e x 在(0,+∞)上单调递增,φ(x )的最小值大于φ(0)=1,因而(ax 2-x +1)e x >1恒成立.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1a -2时φ(x )单调递减,φ(x )<φ(0)=1,原不等式不成立.综上所述,实数a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. [考法综述] 函数与导数的压轴试题,在每年的高考中属于必考内容,其命题方向主要有两个:一是围绕函数的性质考查函数的奇偶性、单调性、周期性、极值、最值,曲线的切线等问题展开,二是围绕函数与方程、不等式命制探索方程根的个数、不等式的证明、不等式恒成立等问题展开.此类压轴试题难度较大,逻辑推理能力较强,在今后的备考中不可小视.命题法1 利用导数证明不等式问题典例1 已知函数f (x )=e xx e x +1. (1)证明:0<f (x )≤1;(2)当x >0时,f (x )>1ax 2+1,求a 的取值范围. [解] (1)证明:设g (x )=x e x +1,则g ′(x )=(x +1)e x .当x ∈(-∞,-1)时,g ′(x )<0,g (x )单调递减;当x ∈(-1,+∞)时,g ′(x )>0,g (x )单调递增.所以g (x )≥g (-1)=1-e -1>0.又e x >0,故f (x )>0.f ′(x )=e x (1-e x )(x e x +1)2. 当x ∈(-∞,0)时,f ′(x )>0,f (x )单调递增;当x ∈(0,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )≤f (0)=1.综上,有0<f (x )≤1.(2)①若a =0,则x >0时,f (x )<1=1ax 2+1,不等式不成立. ②若a <0,则当0<x <1-a时,1ax 2+1>1,不等式不成立. ③若a >0,则f (x )>1ax 2+1等价于(ax 2-x +1)e x -1>0.(*) 设h (x )=(ax 2-x +1)e x -1,则h ′(x )=x (ax +2a -1)e x .若a ≥12,则当x ∈(0,+∞)时,h ′(x )>0,h (x )单调递增,h (x )>h (0)=0.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1-2a a 时,h ′(x )<0,h (x )单调递减,h (x )<h (0)=0.不等式不恒成立.于是,若a >0,不等式(*)成立当且仅当a ≥12.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 【解题法】 利用导数证明不等式的方法(1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.(2)关于恒成立问题可以转化为求函数的最值.一般地,f (x )≥a 恒成立,只需f (x )min ≥a 即可;f (x )≤a 恒成立,只需f (x )max ≤a 即可.命题法2 利用导数研究函数的零点问题典例2 已知函数f (x )=4x -x 4,x ∈R .(1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a 3+4 13 .[解] (1)由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增;当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明:设点P 的坐标为(x 0,0),则x 0=4 13 ,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0).令函数F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)·(x -x 0),则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减,故F ′(x )在(-∞,+∞)上单调递减.又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减,所以对于任意的实数x ,F (x )≤F (x 0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-413).设方程g(x)=a的根为x2′,可得x2′=-a12+413.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2′),因此x2≤x2′.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1′,可得x1′=a4.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1′)=a=f(x1)≤h(x1),因此x1′≤x1.由此可得x2-x1≤x2′-x1′=-a3+413.【解题法】利用导数研究零点问题的方法利用导数研究方程根、函数的零点、图象交点问题的常用方法为:通过导数研究函数的单调性、最值、变化趋势等,根据题目的要求得出图象的走势规律,通过数形结合的思想分析问题,使问题的求解清晰、直观的整体展现.命题法3利用导数求解实际生活中的优化问题典例3某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元,设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.[解] (1)设容器的容积为V ,由题意知V =πr 2l +43πr 3, 又V =80π3,故l =V -43πr 3πr 2=803r 2-43r =43⎝ ⎛⎭⎪⎫20r 2-r . 由于l ≥2r ,因此43⎝ ⎛⎭⎪⎫20r 2-r ≥2r , 整理得40r 2≥5r ,故0<r ≤2.所以建造费用y =2πrl ×3+4πr 2c =2πr ×43⎝ ⎛⎭⎪⎫20r 2-r ×3+4πr 2c . 因此y =4π(c -2)r 2+160πr ,0<r ≤2.(2)由(1)得y ′=8π(c -2)r -160πr 2=8π(c -2)r 2⎝ ⎛⎭⎪⎫r 3-20c -2,0<r ≤2. 由于c >3,所以c -2>0,当r 3-20c -2=0时,r =320c -2. 令 320c -2=m ,则m >0, 所以y ′=8π(c -2)r 2(r -m )(r 2+rm +m 2).①当0<m <2,即c >92时,当r =m 时,y ′=0;当r ∈(0,m )时,y ′<0;当r ∈(m,2)时,y ′>0.所以r =m 是函数y 的极小值点,也是最小值点.②当m ≥2,即3<c ≤92时,当r ∈(0,2]时,y ′<0,函数单调递减,所以r =2是函数y 的最小值点.综合所述,当3<c ≤92时,建造费用最小时r =2;当c >92时,建造费用最小时r =320c -2. 【解题法】 利用导数解决实际生活中的优化问题的方法(1)分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函数关系式y =f (x ).(2)求导数f ′(x ),解方程f ′(x )=0.(3)判断使f ′(x )=0的点是极大值点还是极小值点.(4)确定函数的最大值或最小值,还原到实际问题中作答.一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.1.设f (x )是定义在R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,则关于x 的函数g (x )=f (x )+1x 的零点个数为( )A .1B .2C .0D .0或2答案 C 解析 由f ′(x )+f (x )x >0,得xf ′(x )+f (x )x>0,当x >0时,xf ′(x )+f (x )>0,即[xf (x )]′>0,函数xf (x )单调递增;当x <0时,xf ′(x )+f (x )<0,即[xf (x )]′<0,函数xf (x )单调递减.∴xf (x )>0f (0)=0,又g (x )=f (x )+x -1=xf (x )+1x ,函数g (x )=xf (x )+1x 的零点个数等价于函数y =xf (x )+1的零点个数.当x >0时,y =xf (x )+1>1,当x <0时,y =xf (x )+1>1,所以函数y =xf (x )+1无零点,所以函数g (x )=f (x )+x -1的零点个数为0.故选C.2.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)-4f (-2)>0的解集为________.答案 (-∞,-2016)解析 由2f (x )+xf ′(x )>x 2,x <0得2xf (x )+x 2f ′(x )<x 3,∴[x 2f (x )]′<x 3<0.令F (x )=x 2f (x )(x <0),则F ′(x )<0(x <0),即F (x )在(-∞,0)上是减函数,因为F (x +2014)=(x +2014)2f (x +2014),F (-2)=4f (-2),所以不等式(x +2014)2f (x +2014)-4f (-2)>0即为F (x +2014)-F (-2)>0,即F (x +2014)>F (-2),又因为F (x )在(-∞,0)上是减函数,所以x +2014<-2,∴x <-2016.3.已知f (x )=ax -cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.若∀x 1∈⎣⎢⎡⎦⎥⎤π4,π3,∀x 2∈⎣⎢⎡⎦⎥⎤π4,π3,x 1≠x 2,f (x 2)-f (x 1)x 2-x 1<0,则实数a 的取值范围为________. 答案 a ≤-32解析 f ′(x )=a +sin x .依题意可知f (x )在⎣⎢⎡⎦⎥⎤π4,π3上为减函数,所以f ′(x )≤0对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立,可得a ≤-sin x 对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立.设g (x )=-sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.易知g (x )为减函数,故g (x )min =-32,所以a ≤-32.4.已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).5.设a >1,函数f (x )=(1+x 2)e x -a .(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤ 3a -2e -1.解 (1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2 a )e ln a -a =(1+ln 2 a )a -a =a ln 2 a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点. 又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数, 故函数f (x )在(-∞,+∞)上仅有一个零点.(3)证明:设点P (x 0,y 0),由曲线y =f (x )在点P 处的切线与x 轴平行知,f ′(x 0)=0,即f ′(x 0)=(x 0+1)2e x 0=0,(x 0+1)2=0,x 0=-1,即P (-1,2e -1-a ).由点M (m ,n )处的切线与直线OP 平行知,f ′(m )=k OP ,即(1+m )2e m =2e -1-a -0-1-0=a -2e . 由e m ≥1+m 知,(1+m )3≤(1+m )2e m=a -2e , 即1+m ≤ 3a -2e ,即m ≤ 3a -2e -1.6.已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞).则F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x . 由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1. 当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增. 从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1), 综上,k 的取值范围是(-∞,1). 7.设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 解 (1)由f (x )=x 22-k ln x (k >0),得 f ′(x )=x -k x =x 2-kx . 由f ′(x )=0,解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:∞);f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e. 当k =e 时,f (x )在区间(1,e]上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.。

高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书

高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书

第5课时 利用导数研究函数的零点问题考点1 讨论函数的零点个数——综合性(2021·海口模拟)已知函数f(x)=.(1)判断f(x)的单调性,并比较2 0202 021与2 0212 020的大小;(2)若函数g(x)=(x-2)2+x(2f(x)-1),其中≤a≤,判断g(x)的零点的个数,并说明理由.参考数据:ln 2≈0.693.解:(1)函数f(x)=,定义域是(0,+∞),故f′(x)=.令f′(x)>0,解得0<x<e;令f′(x)<0,解得x>e,故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则f(2 020)>f(2 021),即>,故2 021ln 2 020>2 020ln 2 021,故ln 2 0202 021>ln 2 0212 020,故2 0202 021>2 0212 020.(2)因为g(x)=(x2-4x+4)+2ln x-x,所以g′(x)=ax+-2a-1=.令g′(x)=0,解得x=2或x=,①当a=时,则g′(x)=≥0,g(x)在(0,+∞)上单调递增,且g(2)=2ln 2-2<0,g(6)=2ln 6-2>0,故g(2)g(6)<0,故存在x0∈(2,6),使得g(x0)=0,故g(x)在(0,+∞)上只有1个零点;②当<a<时,则<2,则g(x)在上单调递增,在上单调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),g(2)=2ln 2-2<0,有极大值g=2a--2ln a-2,且g(2)=2ln 2-2<0,g(6)=8a+2ln 6-6>2ln 6-2>0,故g(2)g(6)<0,故存在x1∈(2,6),使得g(x1)=0,故g(x)在(2,+∞)上只有1个零点,另一方面令h(a)=g=2a--2ln a-2,h′(a)=2+-=2>0,所以h(a)在上单调递增,所以h(a)<h=e--2-2ln <0,则g<0,故g(x)在上没有零点.综上:当≤a≤时,g(x)只有1个零点.已知函数f(x)=x-(e为自然常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)设a∈R,讨论函数g(x)=x-ln x-f(x)的零点个数.解:(1)f(x)=x-,则f′(x)=.因为f(x)在(0,+∞)上单调递增,所以f′(x)≥0在(0,+∞)上恒成立.记φ(x)=e x+ax-a,则φ(x)≥0在(0,+∞)上恒成立,φ′(x)=e x+a.当a≥-1时,φ′(x)=e x+a>1+a≥0,即φ(x)在(0,+∞)上单调递增,所以φ(x)>φ(0)=1-a≥0,所以-1≤a≤1;当a<-1时,令φ′(x)=e x+a=0,解得x=ln(-a).当0<x<ln(-a)时,φ′(x)<0,φ(x)在(0,ln(-a))上单调递减;当x>ln(-a)时,φ′(x)>0,φ(x)在(ln(-a),+∞)上单调递增,所以φ(x)≥φ(ln(-a))=-2a+a ln(-a)≥0,解得-e2≤a<-1.综上可得,实数a的取值范围是[-e2,1].(2)g(x)=x-ln x-f(x)=-ln x(x>0),令g(x)=0,得a=(x>0).令h(x)=,则h′(x)=,当x∈(0,1]时,ln x≤0,x-1≤0,所以h′(x)≥0,h(x)单调递增;当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)在(0,+∞)单调递增,又h(x)=∈R,a∈R,所以y=a与h(x)=的图象只有一个交点,所以a∈R,g(x)只有唯一一个零点.考点2 由函数的零点个数求参数的范围——综合性(2022·湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).(1)讨论f(x)的单调性;(2)若函数g(x)=f(x)-x ln x-3a在上有两个不同的零点,求a的取值范围.解:(1)f′(x)=3x2+3a.①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<-或x>,令f′(x)<0,解得-<x<,所以f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.(2)g(x)=x3+3ax-x ln x,依题意,x3+3ax-x ln x=0在上有两个不同的解,即3a=ln x-x2在上有两个不同的解.设h(x)=ln x-x2,x∈,则h′(x)=-2x=.当x∈时,h′(x)≥0,h(x)单调递增;当x∈时,h′(x)<0,h(x)单调递减,所以h(x)max=h=-ln 2-,且h=-ln 2-,h(2)=ln 2-4,h>h(2),所以-ln 2-≤3a<-ln 2-,所以-ln 2-≤a<-ln 2-,即实数a的取值范围为.已知函数f(x)=x2+ax+1-,a∈R.(1)若f(x)在(0,1)上单调递减,求a的取值范围;(2)设函数g(x)=f(x)-x-a-1,若g(x)在(1,+∞)上无零点,求整数a的最小值.解:(1)由题知f′(x)=2x+a+≤0在(0,1)上恒成立,即a≤-2x恒成立.令h(x)=-2x,则h′(x)=-2=-2>0,所以h(x)在(0,1)上单调递增,所以a≤h(x)min=h(0)=1.故a的取值范围是(-∞,1].(2)由已知x>1,假设g(x)=0⇔-a=x+,记φ(x)=x+,则φ′(x)=1+.令φ′(x)>0,解得x>1+,所以φ(x)在(1,1+)上单调递减,在(1+,+∞)上单调递增,φ(1+)=1++=1+=1+∈(2,3),由题知-a=φ(x)在(1,+∞)内无解,故-a<φ(1+)<3,所以a>-φ(1+),所以整数a的最小值为-2.考点3 函数极值点的偏移问题——综合性(2021·新高考全国Ⅰ卷)已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<+<e.(1)解:函数f(x)的定义域为(0,+∞),又f′(x)=1-ln x-1=-ln x,当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,故f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:因为b ln a-a ln b=a-b,故b(ln a+1)=a(ln b+1),即=,故f =f .设=x1,=x2,由(1)可知不妨设0<x1<1,x2>1.因为x∈(0,1)时,f(x)=x(1-ln x)>0,x∈(e,+∞)时,f(x)=x(1-ln x)<0,故1<x2<e.先证:x1+x2>2,若x2≥2,x1+x2>2必成立.若x2<2,要证x1+x2>2,即证x1>2-x2,而0<2-x2<1,故即证f(x1)>f(2-x2),即证f(x2)>f(2-x2),其中1<x2<2.设g(x)=f(x)-f(2-x),1<x<2,则g′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)].因为1<x<2,故0<x(2-x)<1,故-ln x(2-x)>0,所以g′(x)>0,故g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,故f(x)>f(2-x),即f(x2)>f(2-x2)成立,所以x1+x2>2成立,综上,x1+x2>2成立.设x2=tx1,则t>1,结合=,=x1,=x2,可得x1(1-ln x1)=x2(1-ln x2),即1-ln x1=t(1-ln t-ln x1),故ln x1=,要证x1+x2<e,即证(t+1)x1<e,即证ln (t+1)+ln x1<1,即证ln (t+1)+<1,即证(t-1)ln (t+1)-t ln t<0.令S(t)=(t-1)ln (t+1)-t ln t,t>1,则S′(t)=ln (t+1)+-1-ln t=ln -.先证明一个不等式:ln(x+1)≤x.设u(x)=ln(x+1)-x,则u′(x)=-1=,当-1<x<0时,u′(x)>0;当x>0时,u′(x)<0,故u(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,故u(x)ma x=u(0)=0,故ln(x+1)≤x成立.由上述不等式可得当t>1时,ln ≤<,故S′(t)<0恒成立,故S(t)在(1,+∞)上为减函数,故S(t)<S(1)=0,故(t-1)ln (t+1)-t ln t<0成立,即x1+x2<e成立.综上所述,2<+<e.对称化构造是解决极值点偏移问题的方法,该方法可分为以下三步:已知函数f(x)=ln x-ax有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)求证:x1·x2>e2.(1)解:f′(x)=-a=(x>0),①若a≤0,则f′(x)>0,不符合题意.②若a>0,令f′(x)=0,解得x=.当x∈时,f′(x)>0;当x∈时,f′(x)<0.由题意知f(x)有两个零点的必要条件为f(x)=ln x-ax的极大值f=ln -1>0,解得0<a<.显然e∈,f(e)=1-a e<0,∈,f=2ln-.设t=>e,g(t)=2ln t-t,g′(t)=-1<0,所以g(t)在(e,+∞)上单调递减,g(t)<g(e)=2-e<0,即f <0.所以实数a的取值范围为.(2)证明:因为f(1)=-a<0,所以1<x1<<x2.构造函数H(x)=f-f=ln -ln -2ax,0<x<.H′(x)=+-2a=>0,所以H(x)在上单调递增,故H(x)>H(0)=0,即f >f.由1<x1<<x2,知-x1>,故f(x2)=f(x1)=f <f=f.因为f(x)在上单调递减,所以x2>-x1,即x1+x2>.故ln (x1x2)=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.拓展考点 隐零点求解问题已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.(1)解:f(x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1=0,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x(x>0).设h(x)=2x-2-ln x,h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以h(x)在上单调递减,在上单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在上有唯一零点x0,在上有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.解:(1)当a≤0时,f(x)的单调递增区间是(-∞,+∞),无单调递减区间;当a>0时,函数f(x)的单调递减区间是(-∞,ln a),单调递增区间是(ln a,+∞).(解答过程略)(2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+(x>0)恒成立.令g(x)=+x(x>0),得g′(x)=+1=(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点),且eα=α+2.当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=+α.又eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.1.按导函数零点能否精确求解可以把零点分为两类:1.已知函数f(x)=e x-a-eln(e x+a),若关于x的不等式f(x)≥0恒成立,求实数a的取值范围.解:由函数f(x)=e x-a-eln(e x+a),求得定义域为,对函数求导可得:f′(x)=e x-,则存在一个x0,使得f′(x0)=0,且-<x<x0时,f′(x)<0,x>x0时,f′(x)>0,则f(x)≥f(x0)=e x0-a-eln(e x0+a)=-a-e·ln e=e x0+-2e-a=e x0+a+-2e-2a.因为e x0+a+≥2e,所以f(x0)≥2e-2e-2a=-2a≥0,则a≤0,所以实数a的取值范围为(-∞,0].2.已知函数f(x)=.(1)求函数f(x)的零点及单调区间;(2)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<-1.(1)解:函数f(x)的零点为e.函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e).(解答过程略)(2)证明:要证曲线y=存在斜率为6的切线,即证y′==6有解,等价于1-ln x-6x2=0在x>0时有解.构造辅助函数g(x)=1-ln x-6x2(x>0),g′(x)=--12x<0,函数g(x)在(0,+∞)上单调递减,且g(1)=-5<0,g=1+ln 2->0,所以∃x0∈,使得g(x0)=1-ln x0-6x=0.即证明曲线y=存在斜率为6的切线.设切点坐标为,则y===-6x0,x0∈.令h(x)=-6x,x∈,由h(x)在区间上单调递减,则h(x)<h=-1,.所以y0<-1求证:x1x2>e2(e为自然对数的底数).[四字程序]思路参考:转化为证明ln x1+ln x2>2,根据x1,x2是方程f′(x)=0的根建立等量关系.令t=,将ln x1+ln x2变形为关于t的函数,将ln x1+ln x2>2转化为关于t的不等式进行证明.证明:欲证x1x2>e2,需证ln x1+ln x2>2.若f(x)有两个极值点x1,x2,则函数f′(x)有两个零点.又f′(x)=ln x-mx(x>0),所以x1,x2是方程f′(x)=0的两个不等实根.于是,有解得m=.另一方面,由得ln x2-ln x1=m(x2-x1),从而得=,于是,ln x1+ln x2==.又0<x1<x2,设t=,则t>1.因此,ln x1+ln x2=,t>1.要证ln x1+ln x2>2,即证>2,t>1.即当t>1时,有ln t>.设函数h(t)=ln t-,t>1,则h′(t)=-=≥0,所以,h(t)为(1,+∞)上的增函数.又h(1)=0,因此,h(t)>h(1)=0.于是,当t>1时,有ln t>.所以ln x1+ln x2>2成立,即x1x2>e2.思路参考:将证明x1x2>e2转化为证明x1>.依据x1,x2是方程f′(x)=0的两个不等实根,构造函数g(x)=,结合函数g(x)的单调性,只需证明g(x2)=g(x1)<g.证明:由x1,x2是方程f′(x)=0的两个不等实根,且f′(x)=ln x-mx(x>0),所以mx1=ln x1,mx2=ln x2.令g(x)=,g(x1)=g(x2),由于g′(x)=,因此,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又x1<x2,所以0<x1<e<x2.令h(x)=g(x)-g(x∈(0,e)),h′(x)=>0,故h(x)在(0,e)上单调递增,故h(x)<h(e)=0,即g(x)<g.令x=x1,则g(x2)=g(x1)<g.因为x2,∈(e,+∞),g(x)在(e,+∞)上单调递减,所以x2>,即x1x2>e2.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量k=t1-t2<0构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设k=t1-t2<0,则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2.即只需证明t1+t2>2,即>2⇔k(1+e k)<2(e k-1)⇔k(1+e k)-2(e k-1)<0.设g(k)=k(1+e k)-2(e k-1)(k<0),则g′(k)=k e k-e k+1.令m(k)=k e k-e k+1,则m′(k)=k e k<0,故g′(k)在(-∞,0)上单调递减,故g′(k)>g′(0)=0,故g(k)在(-∞,0)上单调递增,因此g(k)<g(0)=0,命题得证.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量=k∈(0,1)构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设=k∈(0,1),则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2,即只需证明t1+t2>2,即>2⇔ln k<⇔ln k-<0.设g(k)=ln k-(k∈(0,1)),g′(k)=>0,故g(k)在(0,1)上单调递增,因此g(k)<g(1)=0,命题得证.1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要具有良好的转化与化归能力、运算求解能力、逻辑思维能力.本题的解答体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.已知函数f(x)=x ln x-2ax2+x,a∈R.(1)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(2)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.(1)解:f′(x)=ln x+2-4ax.因为f(x)在(0,+∞)内单调递减,所以f′(x)=ln x+2-4ax≤0在(0,+∞)内恒成立,即4a≥+在(0,+∞)内恒成立.令g(x)=+,则g′(x)=.所以,当0<x<时,g′(x)>0,即g(x)在内单调递增;当x>时,g′(x)<0,即g(x)在内单调递减.所以g(x)的最大值为g=e,所以实数a的取值范围是.(2)证明:若函数f(x)有两个极值点分别为x1,x2,则f′(x)=ln x+2-4ax=0在(0,+∞)内有两个不等根x1,x2.由(1),知0<a<.由两式相减,得ln x1-ln x2=4a(x1-x2).不妨设0<x1<x2,则<1,所以要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,亦即证明>ln.令函数h(x)=-ln x,0<x<1,所以h′(x)=<0,即函数h(x)在(0,1)内单调递减.所以当x∈(0,1)时,有h(x)>h(1)=0,所以>ln x,即不等式>ln成立.综上,x1+x2>,命题得证.。

高考数学大一轮复习第三章导数及其应用2第2讲导数与函数的单调性课件文新人教A版

高考数学大一轮复习第三章导数及其应用2第2讲导数与函数的单调性课件文新人教A版

利用导数求函数单调区间的方法 (1)当导函数不等式可解时,解不等式 f′(x)>0 或 f′(x)<0 求出 单调区间. (2)当方程 f′(x)=0 可解时,解出方程的实根,按实根把函数的 定义域划分区间,确定各区间 f′(x)的符号,从而确定单调区间. (3)当导函数的方程、不等式都不可解时,根据 f′(x)结构特征, 利用图象与性质确定 f′(x)的符号,从而确定单调区间. [提醒] 所求函数的单调区间不止一个时,这些区间之间不能 用“∪”及“或”连接,只能用“,”及“和”隔开.
1.函数 f(x)的定义域为 R,f(-1)=2,对任意 x∈R,f′(x)>
2,则 f(x)>2x+4 的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-1)
D.(-∞,+∞)
解析:选 B.由 f(x)>2x+4,得 f(x)-2x-4>0,设 F(x)=f(x)
-2x-4,则 F′(x)=f′(x)-2,因为 f′(x)>2,所以 F′(x)>0 在
判断正误(正确的打“√”,错误的打“×”) (1)若函数 f(x)在(a,b)内单调递增,那么一定有 f′(x)>0.( ) (2)如果函数 f(x)在某个区间内恒有 f′(x)=0,则 f(x)在此区间内 没有单调性.( )
答案:(1)× (2)√
函数 f(x)=cos x-x 在(0,π)上的单调性是( )
2.由函数的单调性与导数的关系可得的结论 (1)函数 f(x)在(a,b)内可导,且 f′(x)在(a,b)任意子区间内都不 恒等于 0,当 x∈(a,b)时: f′(x)≥0⇔函数 f(x)在(a,b)上单调递增; f′(x)≤0⇔函数 f(x)在(a,b)上单调递减. (2)f′(x)>0(<0)在(a,b)上成立是 f(x)在(a,b)上单调递增(减)的 充分条件. [提醒] 利用导数研究函数的单调性,要在定义域内讨论导数 的符号.

创新设计(江苏专用)2018版高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算课时作业 理

创新设计(江苏专用)2018版高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算课时作业 理

第三章 导数及其应用第1讲 导数的概念及运算基础巩固题组(建议用时:40分钟)一、填空题1.设y =x 2e x ,则y ′=________.解析 y ′=2x e x +x 2e x =(2x +x 2)e x .答案 (2x +x 2)e x2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)=________.解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x, ∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 -13.曲线y =sin x +e x 在点(0,1)处的切线方程是________.解析 y ′=cos x +e x ,故切线斜率为k =2,切线方程为y =2x +1,即2x -y +1=0.答案 2x -y +1=04.(2017·苏州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为________.解析 y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e. 答案 1e5.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.解析 因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,解得a =12.答案 126.(2017·南师附中月考)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3)=1-1=0.答案 07.(2017·苏北四市模拟)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________.解析 ∵y ′=-1-cos x sin 2 x ,∴ 由条件知1a=-1,∴a =-1. 答案 -18.(2016·全国Ⅱ卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1). y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2). ∴⎩⎪⎨⎪⎧ 1x 1=1x 2+1,ln x 1+1=x 2+-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案 1-ln 2二、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53, 所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14. ∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.能力提升题组(建议用时:20分钟)11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数:①y =sin x ;②y =ln x ;③y =e x ;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于②:y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x 1>0,x 2>0,∴不存在x 1,x 2,使得x 1x 2=-1;对于③:y ′=e x ,若有e x 1·e x 2=-1,即ex 1+x 2=-1.显然不存在这样的x 1,x 2; 对于④:y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2.答案 ①12.(2017·合肥模拟改编)点P 是曲线x 2-y -ln x =0上的任意一点,则点P 到直线y =x-2的最小距离为________.解析 点P 是曲线y =x 2-ln x 上任意一点,当过点P 的切线和直线y =x -2平行时, 点P 到直线y =x -2的距离最小,直线y =x -2的斜率为1,令y =x 2-ln x ,得y ′=2x -1x =1,解得x =1或x =-12(舍去), 故曲线y =x 2-ln x 上和直线y =x -2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y =x -2的距离等于2,∴点P 到直线y =x -2的最小距离为 2.答案 2 13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析 ∵f (x )=12x 2-ax +ln x , ∴f ′(x )=x -a +1x(x >0). ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2(当且仅当x =1时取等号). 答案 [2,+∞)14.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解 根据题意有f ′(x )=1+2x 2,g ′(x )=-a x. 曲线y =f (x )在x =1处的切线斜率为f ′(1)=3,曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a ,所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1).所以y +1=3(x -1),即切线方程为3x -y -4=0.曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。

创新设计2018版高考数学(文)(人教)大一轮复习配套讲义:第三章导数及其应用第2讲第2课时含解析

创新设计2018版高考数学(文)(人教)大一轮复习配套讲义:第三章导数及其应用第2讲第2课时含解析

基础巩固题组(建议用时:40分钟)一、选择题1。

下列函数中,既是奇函数又存在极值的是()A.y=x3B。

y=ln(-x)C。

y=x e-x D.y=x+错误!解析由题可知,B,C选项中的函数不是奇函数,A选项中,函数y=x3单调递增(无极值),D选项中的函数既为奇函数又存在极值。

答案D2.(2017·石家庄质检)若a〉0,b>0,且函数f(x)=4x3-ax2-2bx +2在x=1处有极值,若t=ab,则t的最大值为()A.2 B。

3 C。

6 D.9解析f′(x)=12x2-2ax-2b,则f′(1)=12-2a-2b=0,则a+b =6,又a>0,b〉0,则t=ab≤错误!错误!=9,当且仅当a=b=3时取等号.答案D3.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax错误!,当x∈(-2,0)时,f(x)的最小值为1,则a的值等于()A。

错误! B.错误! C.错误!D。

1解析由题意知,当x∈(0,2)时,f(x)的最大值为-1。

令f′(x)=错误!-a=0,得x=错误!,当0〈x<错误!时,f′(x)>0;当x〉错误!时,f′(x)<0。

∴f(x)max=f 错误!=-ln a-1=-1,解得a=1。

答案D4。

已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )A。

(-1,2) B.(-∞,-3)∪(6,+∞)C.(-3,6)D.(-∞,-1)∪(2,+∞)解析∵f′(x)=3x2+2ax+(a+6),由已知可得f′(x)=0有两个不相等的实根,∴Δ=4a2-4×3×(a+6)〉0,即a2-3a-18>0,∴a〉6或a〈-3。

答案B5.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y=f(x)图象的是( )解析因为[f(x)e x]′=f′(x)e x+f(x)(e x)′=[f(x)+f′(x)]e x,且x=-1为函数f(x)e x的一个极值点,所以f(-1)+f′(-1)=0;选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0。

创新设计2018版高考数学(文)(人教)大一轮复习配套讲义:第三章导数及其应用第2讲第1课时含解析

创新设计2018版高考数学(文)(人教)大一轮复习配套讲义:第三章导数及其应用第2讲第1课时含解析

基础巩固题组(建议用时:40分钟)一、选择题1.函数f(x)=x-ln x的单调递减区间为( )A。

(0,1) B.(0,+∞)C.(1,+∞) D。

(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-错误!=错误!,令f′(x)<0,解得0〈x<1,所以单调递减区间是(0,1)。

答案A2。

(2015·陕西卷)设f(x)=x-sin x,则f(x)()A.既是奇函数又是减函数B。

既是奇函数又是增函数C。

是有零点的减函数D。

是没有零点的奇函数解析因为f′(x)=1-cos x≥0,所以函数为增函数,排除选项A和C.又因为f(0)=0-sin 0=0,所以函数存在零点,排除选项D,故选B。

答案B3。

已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是( )A。

f(b)〉f(c)〉f(d) B.f(b)〉f(a)〉f(e)C.f(c)>f(b)>f(a) D。

f(c)>f(e)>f(d)解析依题意得,当x∈(-∞,c)时,f′(x)〉0,因此,函数f(x)在(-∞,c)上是增函数,由a<b〈c,所以f(c)〉f(b)〉f(a)。

答案C4.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围为( )A。

(-∞,2)B。

(-∞,2]C.错误!D.错误!解析∵f′(x)=6x2-6mx+6,当x∈(2,+∞)时,f′(x)≥0恒成立,即x2-mx+1≥0恒成立,∴m≤x+错误!恒成立。

令g(x)=x+错误!,g′(x)=1-错误!,∴当x〉2时,g′(x)>0,即g(x)在(2,+∞)上单调递增,∴m≤2+12=错误!。

答案D5.(2017·保定第一中学模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)〉2,则f(x)>2x+4的解集为()A.(-1,1) B。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 导数及其应用 第2讲 导数的应用 第1课时 利用导数研究函数的单调性练习 理 新人教A 版基础巩固题组 (建议用时:40分钟)一、选择题1.函数f (x )=x ln x ,则( ) A.在(0,+∞)上递增B.在(0,+∞)上递减C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减 解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )>0得x >1e ,令f ′(x )<0得0<x <1e ,故选D.答案 D2.下面为函数y =x sin x +cos x 的递增区间的是( )A.⎝ ⎛⎭⎪⎫π2,3π2B.(π,2π)C.⎝⎛⎭⎪⎫3π2,5π2D.(2π,3π)解析 y ′=(x sin x +cos x )′=sin x +x cos x -sin x =x cos x ,当x ∈⎝ ⎛⎭⎪⎫3π2,5π2时,恒有x cos x >0. 答案 C3.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件. 答案 A4.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析 由y =f ′(x )的图象知,y =f (x )在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢. 答案 B5.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A.(1,2]B.(4,+∞]C.[-∞,2)D.(0,3]解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,则[a -1,a +1]⊆(0,3], ∴a -1>0且a +1≤3,解得1<a ≤2. 答案 A 二、填空题6.函数f (x )=exx的单调递增区间为________.解析 函数的定义域为{x |x ≠0},且f ′(x )=e x(x -1)x2,令f ′(x )>0得x >1. 答案 (1,+∞)7.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则实数a 的取值范围是________.解析 f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x,由题意当x ∈[-1,1]时,f ′(x )≤0恒成立, 即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立. 令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.答案 ⎣⎢⎡⎭⎪⎫34,+∞8.(2017·合肥模拟)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则实数a 的取值范围是________.解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时, f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案 ⎝ ⎛⎭⎪⎫-19,+∞三、解答题9.(2016·北京卷)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间. 解 (1)∵f (x )=x ea -x+bx ,∴f ′(x )=(1-x )ea -x+b .由题意得⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e. (2)由(1)得f (x )=x e 2-x+e x ,由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.当x ∈(-∞,1)时,g ′(x )<0,g (x )在(-∞,1)上递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)上递增, ∴g (x )≥g (1)=1在R 上恒成立,∴f ′(x )>0在R 上恒成立.∴f (x )的单调递增区间为(-∞,+∞). 10.设函数f (x )=13x 3-a 2x 2+1.(1)若a >0,求函数f (x )的单调区间;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)由已知得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ).(2)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝⎛⎭⎪⎫x +2x max=-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的实数a 的取值范围是(-∞,-22).能力提升题组 (建议用时:20分钟)11.(2017·承德调考)已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( ) A.f (1)<e f (0),f (2 017)>e 2 017f (0) B.f (1)>e f (0),f (2 017)>e 2 017f (0) C.f (1)>e f (0),f (2 017)<e 2 017f (0) D.f (1)<e f (0),f (2 017)<e 2 017f (0)解析 令g (x )=f (x )ex,则g ′(x )=⎣⎢⎡⎦⎥⎤f (x )e x ′=f ′(x )e x-f (x )(e x)′e 2x =f ′(x )-f (x )e x<0, 所以函数g (x )=f (x )ex在R 上是单调减函数,所以g (1)<g (0),g (2 017)<g (0), 即f (1)e1<f (0)1,f (2 017)e2 017<f (0)1,故f (1)<e f (0),f (2 017)<e 2 017f (0).答案 D12.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13.答案 C13.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析 由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案 (0,1)∪(2,3)14.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求实数m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x, 当a >0时,f (x )的增区间为(0,1), 减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )=0在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373,所以-373<m <-9,即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。

相关文档
最新文档