2014年全国中考数学试题汇编《二次函数》(03)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年全国中考数学试题汇编《二次函数》(03)
填空题
61.(2009•郴州)抛物线y=﹣3(x﹣1)2+5的顶点坐标为_________.
62.(2010•枣庄)已知抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),且顶点在第一象限.有下列三个结论:①a<0;
②a+b+c>0;③.把正确结论的序号填在横线上_________.
63.(2009•庆阳)如图为二次函数y=ax2+bx+c的图象,在下列说法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有_________.(请写出所有正确的序号)
64.(2009•咸宁)已知A、B是抛物线y=x2﹣4x+3上位置不同的两点,且关于抛物线的对称轴对称,则点A、B的坐标可能是_________(写出一对即可).
66.(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是
_________.
67.(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是_________.
68.(2009•黄石)若抛物线y=ax2+bx+3与y=﹣x2+3x+2的两交点关于原点对称,则a、b分别为_________、_________.
69.(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=_________.
70.(2009•常德)一个函数的图象关于y轴成轴对称图形时,称该函数为偶函数.那么在下列四个函数①y=2x;②y=
﹣3x﹣1;③y=;④y=x2+1中,偶函数是_________(填出所有偶函数的序号,答案格式如:“1234”).71.(2012•新疆)当x=_________时,二次函数y=x2+2x﹣2有最小值.
72.(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=_________.
73.(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为_________.
74.(2012•黔南州)如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x 上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为_________.
76.(2009•包头)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是_________个.
77.(2010•日照)如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是_________.
78.(2009•泰安)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为_________.
79.(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是_________cm2.
80.(2009•庆阳)如图,从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是h=9.8t﹣4.9t2,那么小球运动中的最大高度h最大=_________米.
81.(2009•莆田)出售某种文具盒,若每个获利x元,一天可售出(6﹣x)个,则当x=_________元时,一天出售该种文具盒的总利润y最大.
82.(2009•江津区)锐角△ABC中,BC=6,S△ABC=12,两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0),当x=
_________,公共部分面积y最大,y最大值=_________.
83.(2009•浙江)如图,抛物线y=ax2+bx+c与x轴的一个交点A在点(﹣2,0)和(﹣1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则:
(1)abc_________0(填“>”或“<”);
(2)a的取值范围是_________.
84.(2009•兰州)二次函数y=x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴
上,B1,B2,B3,…,B2008在二次函数y=x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008
都为等边三角形,请计算△A0B1A1的边长=_________;△A1B2A2的边长=_________;△A2007B2008A2008的边长=_________.
85.(2009•金华)如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x 轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是_________.
解答题
86.(2009•嘉兴)如图,曲线C是函数y=在第一象限内的图象,抛物线是函数y=﹣x2﹣2x+4的图象.点P n(x,
y)(n=1,2,…)在曲线C上,且x,y都是整数.
(1)求出所有的点P n(x,y);
(2)在P n中任取两点作直线,求所有不同直线的条数;
(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
87.(2009•太原)已知,二次函数的表达式为y=4x2+8x.写出这个函数图象的对称轴和顶点坐标,并求图象与x
轴的交点的坐标.
88.(2009•河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
89.(2009•宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.
90.(2009•佛山)(1)请在坐标系中画出二次函数y=﹣x2+2x的大致图象;
(2)在同一个坐标系中画出y=﹣x2+2x的图象向上平移两个单位后的图象;
(3)直接写出平移后的图象的解析式.
注:图中小正方形网格的边长为1.
2009年全国中考数学试题汇编《二次函数》(03)
参考答案与试题解析
填空题
61.(2009•郴州)抛物线y=﹣3(x﹣1)2+5的顶点坐标为(1,5).
62.(2010•枣庄)已知抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),且顶点在第一象限.有下列三个结论:①a<0;
②a+b+c>0;③.把正确结论的序号填在横线上①,②,③.
x=
x=
63.(2009•庆阳)如图为二次函数y=ax2+bx+c的图象,在下列说法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有①②④.(请写出所有正确的序号)
64.(2009•咸宁)已知A、B是抛物线y=x2﹣4x+3上位置不同的两点,且关于抛物线的对称轴对称,则点A、B的坐标可能是(1,0)或(3,0)(写出一对即可).
66.(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是y=x2﹣1.
67.(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是y=﹣x2﹣2x+3.
68.(2009•黄石)若抛物线y=ax2+bx+3与y=﹣x2+3x+2的两交点关于原点对称,则a、b分别为、3.则两根之和为:﹣,两根之积为<
=
,
,
±
69.(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=11.
),当
﹣+
70.(2009•常德)一个函数的图象关于y轴成轴对称图形时,称该函数为偶函数.那么在下列四个函数①y=2x;②y=
﹣3x﹣1;③y=;④y=x2+1中,偶函数是4(填出所有偶函数的序号,答案格式如:“1234”).
71.(2012•新疆)当x=﹣1时,二次函数y=x2+2x﹣2有最小值.
72.(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=.
﹣,取得最大值时=.
73.(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.
74.(2012•黔南州)如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x 上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为l=﹣2m2+8m+12.
76.(2009•包头)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是4个.
,即
﹣
由一元二次方程根与系数的关系知,结合
,∴
的值的情况来判断;判断的关系时,可利用由一元二次方程根与系数的关系
77.(2010•日照)如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是x<﹣1或x>3.
78.(2009•泰安)如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M是DB上一
点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为y=x2+4x(0<x≤6).
=
∴,
﹣
y=
x
79.(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是12.5cm2.
×
,则边长分别为,
x((
80.(2009•庆阳)如图,从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是h=9.8t﹣4.9t2,那么小球运动中的最大高度h最大= 4.9米.
81.(2009•莆田)出售某种文具盒,若每个获利x元,一天可售出(6﹣x)个,则当x=3元时,一天出售该种文具盒的总利润y最大.
==3
82.(2009•江津区)锐角△ABC中,BC=6,S△ABC=12,两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0),当x=3,公共部分面积y最大,y最大值=6.
∴
,根据=
﹣x﹣
﹣
83.(2009•浙江)如图,抛物线y=ax2+bx+c与x轴的一个交点A在点(﹣2,0)和(﹣1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则:
(1)abc<0(填“>”或“<”);
(2)a的取值范围是≤a≤.
﹣
,解得﹣;
,解得﹣;
﹣.
84.(2009•兰州)二次函数y=x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴
上,B1,B2,B3,…,B2008在二次函数y=x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=1;△A1B2A2的边长=2;△A2007B2008A2008的边长=2008.
a×a
×
b点坐标为()代入解析式得(﹣
c点坐标为()代入解析式得(
,
的边长为×
85.(2009•金华)如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x 轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,
则符合条件的点A的坐标是(3,),(,),(2,2),(,).
的纵坐标是横坐标的的坐标为(
的横坐标是纵坐标的的坐标为(
t
个,为,,
),),(
解答题
86.(2009•嘉兴)如图,曲线C是函数y=在第一象限内的图象,抛物线是函数y=﹣x2﹣2x+4的图象.点P n(x,
y)(n=1,2,…)在曲线C上,且x,y都是整数.
(1)求出所有的点P n(x,y);
(2)在P n中任取两点作直线,求所有不同直线的条数;
(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
,
87.(2009•太原)已知,二次函数的表达式为y=4x2+8x.写出这个函数图象的对称轴和顶点坐标,并求图象与x 轴的交点的坐标.
∴
88.(2009•河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
,得:
.
﹣
89.(2009•宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.
)﹣
,﹣
+3﹣),
90.(2009•佛山)(1)请在坐标系中画出二次函数y=﹣x2+2x的大致图象;(2)在同一个坐标系中画出y=﹣x2+2x的图象向上平移两个单位后的图象;(3)直接写出平移后的图象的解析式.
注:图中小正方形网格的边长为1.。