实验五FM调频波信号调制
调频解调实验

频率调制解调实验李祖明 131180016一、实验目的1.熟悉电子元器件和高频电子线路实验系统; 2.掌握用变容二极管调频振荡器实现FM 的方法; 3.理解静态调制特性、动态调制特性概念和测试方法。
4.了解调频波产生和解调的全过程以及整机调试方法,建立起调频系统的初步概念; 5.了解斜率鉴频与相位鉴频器的工作原理;6.熟悉初、次级回路电容、耦合电容对于电容耦合回路相位鉴频器工作的影响。
二.实验内容1.用示波器观察调频器输出波形,考察各种因素对于调频器输出波形的影响; 2.变容二极管调频器静态调制特性测量; 3.变容二极管调频器动态调制特性测量。
4.调频-鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 5.观察初级回路电容、次级回路电容、耦合电容变化对FM 波解调的影响。
三.实验原理频率调制工作原理: (1)调频及其数学表达式设调制信号为()cos m c u t U t ωΩΩ=Ω,载波信号为()cos c m c u t U t ω=。
调频时,载波高频振荡的瞬时频率随调制信号()u t Ω呈线性变化,其比例系数为f K ,即()()()c f c t K u t t ωωωωΩ=+=+∆,式中,c ω是载波角频率,也是调频信号的中心角频率。
()t ω∆是由调制信号()u t Ω所引起的角频率偏移,称频偏或频移。
()t ω∆与()u t Ω成正比,()()f t K u t ωΩ∆=。
()t ω∆的最大值称为最大频偏,用ω∆表示:max max ()()f t K u t ωωΩ∆=∆=单音频调制时,对于调频信号,它的()t ω为()cos cos c f m c t K U t t ωωωωΩ=+Ω=+∆Ω由此就得到调频信号的数学表达式,即有()cos (cos )cos(sin )m c m c u t U t dt U t t ωωωϕωϕ∆⎡⎤=+∆Ω+=+Ω+⎣⎦Ω⎰假定初相角0ϕ=,则得()cos(sin )m c u t U t t ωω∆=+ΩΩ式中,ω∆Ω叫调频波的调制指数,以符号f m 表示,即 f m ω∆=Ω它是最大频偏ω∆与调制信号角频率Ω之比。
实验五 2FSK的调制

实验报告题目:基于TIMS通信原理实验报告AM信号的调制与解调2014年12月1、 了解连续相位2FSK 信号的产生和实现方法。
2、 测量连续相位2FSK 信号的波形以及功率谱。
3、 了解用锁相环进行2FSK 信号解调的原理以及实验方法。
二、 实验原理2FSK 是用二进制数字基带信号去控制正弦载波频率,传号和空号载波频率分别为 和 。
本实验产生的是相位连续2FSK 。
以双极性不归零码为调制信号,对载波进行FM 得到连续相位2FSK ,表达式为:2()cos[22()]tFSK c f s t A f t K b d ππττ-∞=+⎰其带宽可以用卡松公式近似为:22(1)FSK f bB R β≈+其中 为主瓣带宽。
用VCO 作为调频器来产生相位连续的2FSK 框图如下图所示:连续相位2FSK 信号解调可以采用锁相环解调,原理框图如下图所示:1、连续相位2FSK信号的产生(1)单独测试VCO压控灵敏度。
a.首先将VCO模块的Vin输入端接地,调节VCO模块前面板上的f0旋钮,使VCO中心频率为100kHz。
b.将可变直流电源模块的直流电压输入于VCO的Vin端。
改变直流电压值,测量VCO的中心频率随直流电压的变化情况,调节VCO前面板上的GAIN旋钮,使VCO在输入直流电压为±2V时的频偏为±2kHz,即压控灵敏度为1kHz/V。
(2)按图连接各模块,序列发生器的时钟频率为2.083kHz。
本实验要求只调制不解调。
四、实验结果2FSK波形如下:如图,清晰明了且正确的2FSK波形出现。
五、实验讨论(思考题)实验步骤的第一步一定要重视,很多时候,波形不正确就是因为vco调控不当。
六、实验总结此次试验由于不需要解调,只做调制实验,所以我们就心平气和的一步步稳稳的做,最终保证了实验的顺利和实验结果的完美程度。
调幅调频收音机的组装与调试实训报告

调幅调频收⾳机的组装与调试实训报告AM/FM收⾳机的安装与调试实训报告⼀、实训⽬的:1、学习收⾳机的调试与装配。
2、提⾼读整机电路图及电路板图的能⼒。
3、掌握收⾳机⽣产⼯艺流程,提⾼焊接⼯艺⽔平。
⼆、实训内容:1、收⾳机电路原理分析。
2、掌握印制电路板的组装及焊接⼯艺。
3、进⾏AM、FM中频及统调覆盖的调试及整机测试。
4、故障判断及排除。
三、实训基本要求:1、会检测元器件并判别其质量。
2、独⽴完成各测试点的测量与整机安装。
3、会排除在调试与装配过程中可能出现的问题与故障。
四、实训步骤(⼀)对照元件清单表清点元件(⼆)元件的插接与焊接(三)收⾳机的整机调试1、调幅部分的调整①中频放⼤电路的调整——调AM中周调整时,整机置中波AM收⾳位置将⾳量电位器置于最⼤位置,将收⾳机调谐到⽆电台⼴播⼜⽆其它⼲扰的地⽅(或者将可调电容调到最⼤,即接收低频端)。
使⾼频信号发⽣器输出载频为465kHz,调制信号频率为1000Hz,调制度为30%的调幅信号接⼊IC的“10”脚。
⽤⽆感螺丝⼑微微旋转中频变压器(⿊⾊中周)的磁帽向上或向下调整,使⽰波器显⽰的波形幅度最⼤⽆失真。
在调整中频变压器时也可以⽤喇叭监听,当喇叭⾥能听到1000Hz的⾳频信号,且声⾳最⼤,⾳⾊纯正,此时可认为中频变压器调整到最佳状态。
②、调整接收范围(频率覆盖)——调AM的电感和电容调整时,整机置中波AM收⾳位置。
将⾳量电位器置于最⼤位置。
低端频率调整:将可变电容器(调谐双联)旋到容量最⼤处,即机壳指针对准频率刻度的最低频端。
使⾼频信号发⽣器输出载频为515kHz,调制信号频率为1000Hz,调制度为30%的⾼频调幅信号接⼊IC的“l0”脚。
⽤⽆感螺丝⼑调整中波振荡线圈的磁芯(红⾊中周),以改变线圈的电感量,使⽰波器出现1000Hz波形,并使波形最⼤。
或直接鉴听收⾳机的声⾳,使收⾳机发出的声⾳最响最清晰。
⾼端频率调整:将整机的可变电容器置容量最⼩处,这时机壳指针应对准频率刻度的最⾼频端。
频率调制实验报告

频率调制实验报告一、实验目的:通过本次实验,掌握频率调制的原理和方法,了解频率调制在通信系统中的应用。
二、实验原理:频率调制是指在信号调制过程中,改变信号的频率以实现信号的传输和调制。
频率调制可以将模拟信号转换为远距离传输的载波信号,常见的应用包括调频广播、调频电视、无线电通信等领域。
频率调制的主要实现方式包括调频调制(FM)和相移键控调制(PM)。
三、实验仪器与材料:1. 示波器2. 音频信号发生器3. 频率调制解调实验箱4. 连接线5. 电源线四、实验步骤:1. 将音频信号发生器与调频解调实验箱相连,并接通电源;2. 在音频信号发生器上输入一个正弦波载频率的模拟信号;3. 在频率调制解调实验箱上进行频率调制的调节,观察调制后的信号波形;4. 调节调频解调实验箱的解调部分,观察解调后的信号波形;5. 分析实验结果,并记录数据。
五、实验结果与分析:在实验中,我们成功实现了对模拟信号的频率调制,并通过示波器观察到了调制前后的信号波形变化。
实验结果表明,频率调制可以改变信号的频率特性,从而实现信号的传输和调制。
通过观察解调后的信号波形,我们可以验证频率调制的有效性,并进一步了解频率调制在通信系统中的应用。
六、实验总结:本次实验通过频率调制的实际操作,使我们更深入地理解了频率调制的原理和方法。
实验结果也验证了频率调制在通信系统中的重要作用。
在今后的学习和研究中,将深入探讨频率调制的相关知识,并将其应用于实际工程中。
七、实验心得:通过本次实验,我们感受到了实验操作的乐趣和挑战,同时也认识到了频率调制在通信领域的广泛应用。
在未来的学习和工作中,我们将不断深化对频率调制的理解,努力创新和应用,为通信技术的发展贡献自己的力量。
以上就是关于频率调制实验的报告,希望对你有所帮助。
《高频实验》实验五混频器

实验五混频器一、实验目的:1. 掌握晶体三极管混频器频率变换的物理过程和本振电压V。
和工作电流Ie对中频输出电压大小的影响。
2. 掌握由集成模拟乘法器实现的平衡混频器频率变换的物理过程3. 比较晶体管混频器和平衡混频器对输入信号幅度及本振电压幅度要求的不同点。
二、实验内容:1.研究晶体管混频器的频率变换过程。
2 •研究晶体管混频器输出中频电压V i与混频管静态工作点的关系。
3•研究晶体管混频器输出中频电压V i与输入本振电压的关系。
4. 研究平衡混频器的频率变换过程。
三、基本原理混频器常用在超外差接收机中,它的任务是将己调制(调幅或调频)的高频信号变成已调制的中频信号而保持其调制规律不变。
本实验中包含两种常用的混频电路:晶体三极管混频器和平衡混频器。
其实验电路分别如图6-1、6—2所示。
图6—1为晶体管混频器,该电路主要由VT8(3DG6或9014)和6. 5MHZ选频回路(CP3)组成。
10K电位器(VR13 )改变混频器静态工作点,从而改变混频增益。
输入信号频率fs= 10MHZ,本振频率fo = 16.455MHZ,其选频回路CP3选出差拍的中频信号频率f i= 6.5MHZ,由J36 输出。
图6—2为平衡混频器,该电路由集成模拟乘法器MC 1496 完成。
MC1496 模拟乘法器,其内部电路和引脚参见4—l,MC1496 可以采用单电源供电,也可采用双电源供电。
本实验电路中采用十12V,一9V供电。
VR19 (电位器)与R95 (10K? )、R96 (10K?)组成平衡调节电路,调节VR19可以使乘法器输出波形得到改善。
CP5为6. 5MHz选频回路。
本实验中输入信号频率为fs= 10MHZ,本振频率fo = 16.455MHZ。
图6—3 为16. 455MHZ 本振振荡电路,平衡混频器和晶体管混频器的本振信号可由J43 输出。
图6-1晶体管混频电路IT ~n 1— *—R83 7"R8S fR83 -z=rZZ2(6.5M)516KS卄12VCP5TR95 1OKs To 欝 SIO+■;: SKJ- 亠 BIAS -如叽 .''-CARt川沁 ..烹 I ■・ W 二■■"'.■ . ?.<L . L.~ ? 1”- F" ■■- --■■■-_■ -・51 R87 C98 if 廻1Q21BZ.OXTT ?1K 0UT+OOT- R97 1K图6-2平衡混频电路L11 5.6UH103图6-3 16.455MHZ 本振振荡电路四、实验步骤(一)晶体管混频器P.H.OUTU8C97102105VR19 504T2 36+12V 12 .6UHC83 1Q2J50 BZ.IN1熟悉实验板上各元件的位置及作用2 •观察晶体管混频前后的波形变换:将J28短路块连通在C.DL , J34 (BZ.IN )短路块连接在下横线处,平衡混频中的J49断开,即将16.455MHZ本振信号加入晶体管混频器上,将10 MHMHz100mV左右的高频小信号加到晶体管混频器信号输入端J32处,此时短路块J33应置于开路。
调频同步广播设备的信号传输与解调

调频同步广播设备的信号传输与解调调频同步广播是现代广播系统中常用的一种广播方式,它利用调频技术将音频信号传输到接收设备。
在调频同步广播系统中,信号传输和解调是至关重要的环节,决定了广播质量和音频效果。
在调频同步广播设备中,信号传输是指将音频信号通过适当的调制方式,转换为调频信号进行传输。
在传输的过程中,需要考虑信号的有效传输距离、抗干扰能力以及传输质量等因素。
为了满足这些要求,调频同步广播设备通常采用频率调制(FM)方式进行信号传输。
频率调制是将音频信号的基带频率通过调谐电路与载波频率相加,形成调频信号的过程。
通过调制的方式,音频信号能够直接嵌入到载波信号中进行传输。
在调频同步广播中,简单的调频方式是调幅调频(AM-FM)方式,它能够很好地保持音频信号的传输质量。
在调频信号传输的同时,也需要考虑到信号的解调过程。
解调是将调频信号恢复成原始音频信号的过程。
在调频同步广播设备中,解调方法通常是通过相干解调实现的。
相干解调是利用调制信号和载波信号之间的相位关系进行解调的一种方式。
通过相干解调,可以有效还原出原始的音频信号。
相干解调的基本原理是利用调制信号和载波信号之间的相位差来还原音频信号。
在解调过程中,需要对载波信号进行合理的提取和处理,使其与调制信号进行相比较。
在调频同步广播设备中,常用的解调方法是锁相解调(PLL)技术。
PLL技术通过对调频信号的锁定和追踪,可以对信号进行有效解调。
调频同步广播设备的信号传输与解调涉及到多个参数,其中最重要的是调频频率和调幅深度。
调频频率决定了传输信号的中心频率,而调幅深度则影响了信号的带宽和频谱效果。
为了确保信号传输的稳定性和质量,调频同步广播设备需要对这些参数进行精确的控制和调整。
除了频率和深度的调整外,调频同步广播设备还需要考虑信号的抗干扰能力和传输距离。
抗干扰能力是指设备在面对外界干扰源时能够保持信号传输的稳定性。
传输距离则决定了信号传输的有效范围,对于大范围广播来说,需要考虑信号传输的延伸和增强。
频率调制实验报告

一、实验目的1. 理解频率调制的原理及其在通信系统中的应用。
2. 掌握变容二极管调频器的工作原理和电路设计。
3. 学习使用示波器和频率计等仪器对调频信号进行观测和分析。
4. 熟悉调频信号的解调过程。
二、实验原理频率调制(Frequency Modulation,简称FM)是一种通过改变载波的频率来传递信息的调制方式。
在频率调制中,调制信号(信息信号)与载波信号相乘,得到调频信号。
调频信号的特点是频率随调制信号的变化而变化,而幅度保持不变。
变容二极管调频器是一种常用的调频电路,其工作原理如下:1. 调制信号通过电容C1加到变容二极管D1的结电容上,改变结电容C1的大小。
2. 变容二极管D1的结电容C1与外部LC振荡回路构成谐振回路,谐振频率f0由LC振荡回路的参数决定。
3. 当调制信号加到变容二极管D1上时,结电容C1的变化导致谐振频率f0的变化,从而实现频率调制。
三、实验仪器与设备1. 变容二极管调频器实验装置2. 示波器3. 频率计4. 信号发生器5. 调制信号发生器6. 信号源四、实验步骤1. 搭建变容二极管调频器电路:根据实验装置提供的设计图,连接变容二极管D1、电容C1、LC振荡回路等元件,并接入信号源。
2. 调节电路参数:调整LC振荡回路的参数,使谐振频率f0与信号源频率f0'相等。
3. 观察调频信号:使用示波器观察调制信号和调频信号的波形,分析调频信号的特点。
4. 测量调频信号频率:使用频率计测量调频信号的频率,并与理论计算值进行比较。
5. 解调调频信号:使用调制信号发生器产生与调制信号频率相同的本振信号,通过解调电路将调频信号还原为调制信号。
五、实验结果与分析1. 调频信号波形:通过示波器观察,调频信号的波形呈正弦波形,频率随调制信号的变化而变化。
2. 调频信号频率:使用频率计测量调频信号的频率,结果显示频率随调制信号的变化而变化,符合理论预期。
3. 解调信号波形:通过解调电路将调频信号还原为调制信号,解调信号的波形与原始调制信号基本一致。
fm 调制 原理

fm 调制原理
在全称为频率调制(Frequency Modulation)的FM调制过程中,音频信号的频率被用来调制载波信号的频率,从而实现音频信号的传输。
FM调制的原理可以通过以下步骤进行解释:
1. 音频信号:
- 音频信号是指源自声音、音乐或任何其他音频源的电信号。
它通常是低频信号,具有变化频率和振幅的特征。
- 例如,假设我们有一段音频信号,表示为f(t)。
2. 载波信号:
- 载波信号是高频信号,用于携带音频信号进行传输。
- 携带音频信号的载波信号的频率通常比音频信号的频率高
得多。
载波信号可以用数学表示为Acos(2πfct),其中A是振幅,fc是载波频率。
3. 调制过程:
- 在FM调制中,音频信号的频率变化会导致载波信号的频
率发生相应的变化。
这是通过将音频信号的振幅和频率转化为相应的调制指数来实现的。
- 调制指数(或调制指数常数)是一个常数,用于控制音频
信号如何影响载波信号的频率。
它决定了载波频率的变化速率,即频率偏移与音频信号振幅的比例。
- 调制指数可以用数学表示为β = kf,其中β是调制指数,k
是调制灵敏度,f是音频信号的频率。
4. FM调制方程:
- 考虑到调制指数,我们可以将FM调制表示为:FM(t) = Acos[2πfct + βsin(2πfmt)]
- 其中,FM(t)是调制后的信号,fm是音频信号的频率。
通过这种方式,音频信号中的频率变化会被转化为载波信号的相应频率变化,从而实现了音频信号的传输。
在解调器中,可以使用特定的电路将调制过的信号转换回原始音频信号,以实现声音重现。
基于MATLAB的模拟信号频率调制(FM)与解调分析

课程设计任务书学生姓名:专业班级:电信指导教师:工作单位:武汉理工大学题目:信号分析处理课程设计-基于MATLAB的模拟信号频率调制(FM)与解调分析初始条件:1.Matlab6.5以上版本软件;2.先修课程:通信原理等;要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、利用MATLAB中的simulink工具箱中的模块进行模拟频率(FM)调制与解调,观察波形变化2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结果和图表等),并对实验结果进行分析和总结;3、课程设计说明书按学校统一规范来撰写,具体包括:⑴目录;⑵理论分析;⑶程序设计;⑷程序运行结果及图表分析和总结;⑸课程设计的心得体会(至少800字,必须手写。
);⑹参考文献(不少于5篇)。
时间安排:周一、周二查阅资料,了解设计内容;周三、周四程序设计,上机调试程序;周五、整理实验结果,撰写课程设计说明书。
指导教师签名: 2013 年 7月 2 日系主任(或责任教师)签名: 2013年 7月 2日目录1 Simulink简介 (1)1.1 Matlab简介························································错误!未定义书签。
调频和解跳实验报告

调频和解跳实验报告1. 引言调频(Frequency Modulation, FM)是一种常见的调制方式,通过改变载波信号的频率来传输原始信号。
解跳(De-Emphasis)是FM调频和解调过程中的一个重要步骤,用于恢复原始信号。
本实验旨在通过实际操作验证调频和解跳的原理,并分析其在实际应用中的效果。
2. 实验设备与方法2.1 实验设备本实验所需设备如下:- 信号发生器- 调频解调示波器- 音频音响- 高频调谐器2.2 实验方法实验分为两个阶段进行:调频和解跳。
2.2.1 调频1. 将信号发生器连接至调频解调示波器的输入端。
2. 设置信号发生器的输出波形和频率。
3. 打开音频音响,并调节适当音量。
4. 将调频解调示波器的输出连接至音频音响输入端。
5. 调节信号发生器的频率,观察音响输出是否能够听到声音。
2.2.2 解跳1. 将高频调谐器连接至调频解调示波器的输出端。
2. 通过高频调谐器调节解调示波器的输出频率。
3. 观察音响输出是否能够听到清晰的声音。
3. 实验结果与分析3.1 调频实验结果经过调节信号发生器的频率,我们成功地实现了调频信号的产生。
音频音响能够发出相应的声音,声音的音量和音调随信号发生器的频率变化而变化。
这验证了调频的基本原理,即通过改变载波信号的频率来传输原始信号。
3.2 解跳实验结果通过高频调谐器的调节,我们成功地实现了解跳效果的改善。
在初始状态下,音响输出的声音可能会出现跳变或者啸叫的现象。
随着高频调谐器的调节,音响输出的声音变得更加清晰,跳变和啸叫现象得到有效抑制。
这说明解跳过程起到了恢复原始信号的作用。
4. 实验讨论本实验的结果验证了调频和解跳的基本原理,并且证明了这两个过程对音频信号的传输质量有着重要影响。
然而,在实际应用中,我们需要考虑各种因素对调频和解跳效果的影响。
例如,信号发生器的输出频率范围、音频音响的输入灵敏度、高频调谐器的精度等。
在实际调频广播和解调过程中,可能会出现干扰、衰减、失真等问题。
频率调制的原理

频率调制的原理
频率调制(Frequency Modulation,简称FM)是一种调制技术,利用改变信号的频率来传输信息。
其原理是在调制信号的幅度不变的情况下,通过改变载波信号的频率来表示信号的大小。
频率调制的原理可以通过以下步骤来解释:
1. 载波信号生成:首先,产生一个高频的连续波形信号,称为载波信号。
这个载波信号的频率通常是几十kHz到几GHz的
范围。
载波信号没有携带任何传输信息,只是用来传输调制信号。
2. 调制信号生成:接下来,产生一个称为调制信号的基带信号。
基带信号是需要传输的信息信号,如声音、图像等。
它通常具有较低的频率范围。
3. 频率调制:通过改变载波信号的频率来传输调制信号。
调制信号通过改变载波信号的频率来表示信号的幅度变化。
具体来说,当调制信号的幅度变大时,载波信号的频率增加;而当调制信号的幅度变小时,载波信号的频率减小。
4. 调制信号解调:在接收端,通过解调将调制信号还原成原始信号。
这一过程需要使用一个解调电路,它可以提取出载波信号中的频率变化,从而得到原始信号。
频率调制主要有两种方式:窄带调频(Narrowband FM)和宽
带调频(Wideband FM)。
窄带调频是指当调制信号的频率较
低时,改变载波信号的频率的方式。
而宽带调频是指在调制信号的频率较高时,改变载波信号的频率的方式。
频率调制具有一些优点,例如抗干扰性能好、信号质量稳定等。
因此,在广播电视、无线通信等领域中得到了广泛的应用。
用MatLab仿真通信原理系列实验

用MatLab仿真通信原理系列实验一、引言通信原理是现代通信领域的基础理论,通过对通信原理的研究和仿真实验可以更好地理解通信系统的工作原理和性能特点。
MatLab作为一种强大的数学计算软件,被广泛应用于通信原理的仿真实验中。
本文将以MatLab为工具,介绍通信原理系列实验的仿真步骤和结果。
二、实验一:调制与解调1. 实验目的通过MatLab仿真,了解调制与解调的基本原理,并观察不同调制方式下的信号特征。
2. 实验步骤(1)生成基带信号:使用MatLab生成一个基带信号,可以是正弦波、方波或任意复杂的波形。
(2)调制:选择一种调制方式,如调幅(AM)、调频(FM)或相移键控(PSK),将基带信号调制到载波上。
(3)观察调制后的信号:绘制调制后的信号波形和频谱图,观察信号的频谱特性。
(4)解调:对调制后的信号进行解调,还原出原始的基带信号。
(5)观察解调后的信号:绘制解调后的信号波形和频谱图,与原始基带信号进行对比。
3. 实验结果通过MatLab仿真,可以得到不同调制方式下的信号波形和频谱图,观察到调制后信号的频谱特性和解调后信号的还原效果。
可以进一步分析不同调制方式的优缺点,为通信系统设计提供参考。
三、实验二:信道编码与解码1. 实验目的通过MatLab仿真,了解信道编码和解码的基本原理,并观察不同编码方式下的误码率性能。
2. 实验步骤(1)选择一种信道编码方式,如卷积码、纠错码等。
(2)生成随机比特序列:使用MatLab生成一组随机的比特序列作为输入。
(3)编码:将输入比特序列进行编码,生成编码后的比特序列。
(4)引入信道:模拟信道传输过程,引入噪声和干扰。
(5)解码:对接收到的信号进行解码,还原出原始的比特序列。
(6)计算误码率:比较解码后的比特序列与原始比特序列的差异,计算误码率。
3. 实验结果通过MatLab仿真,可以得到不同编码方式下的误码率曲线,观察不同信道编码方式对信号传输性能的影响。
实验五 振幅键控、移频键控、移相键控调制实验

通信原理实验五 振幅键控、移频键控、移相键控调制和频谱分析实验一、 实验目的1 掌握用键控法产生2ASK, 2FSK, 2PSK 信号的方法2 掌握2ASK, 2FSK, 2PSK 信号的频谱特性二、 实验内容用matlab 生成以下波形及波形的频谱:1 2ASK, 2FSK, 2PSK 信号波形2 2ASK, 2FSK, 2PSK 信号频谱三、 实验原理调制信号为二进制序列时的数字频带调制称为二进制数值调制。
由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK )、二进制移频键控(2FSK )、二进制移相键控(2PSK )三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。
1. 2ASK 调制原理。
在振幅键控中载波幅度是随着基带信号而变化的。
将载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有无来代表信号中的“1”或者是“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK )。
2ASK 信号典型的时域波形如图5-1所示,其时域数学表达式为:S 2ASK (t )=a n ·A cos ωc t (5-1) 式中,A 为未调载波幅度,ωc 为载波角频率,a n 为符合下列关系的二进制序列的第n 个码元:⎩⎨⎧-=P P a n 110出现概率为出现概率 (5-2)令A=1,则2ASK 信号的一般时域表达式为:t t S t nT t g a t S c c n s n ASK ωωcos )(cos )()(2=⎥⎥⎦⎤⎢⎢⎣⎡-=∑ (5-3)式中,T s 为码元间隔,g (t )为持续时间[-T s /2, T s /2]内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而S (t )就是代表二进制信息的随机单极性脉冲序列。
图5-1 2ASK 信号的典型时域波形为了更深入掌握2ASK 信号的性质,除时域分析外,还应进行频域分析。
最简单FM调频工作原理

最简单FM调频工作原理
FM调频是一种调制方式,它是通过改变载频信号的频率来传输信息。
下面是FM调频的最简单工作原理。
1. 信号源产生要传输的音频信号,并将其连接到调制器。
2. 调制器将音频信号转换为频率变化,并与一个固定频率的载频信号相结合。
3. 经过调制后的信号被发送到天线。
4. 天线将调制后的信号以无线电波的形式传播出去。
5. 接收器中的天线接收到无线电波,并将其转换为电信号。
6. 接收器中的解调器解调接收到的信号,恢复出原始的音频信号。
通过这种方式,音频信号通过调制和解调的过程,被转化成无线电波进行传输,并在接收端再次转换为原始音频信号。
这就是最简单的FM调频工作原理。
《高频电子线路》超外差式FM收音机实验

《高频电子线路》超外差式FM收音机实验一、实验目的1、在模块实验的基础上掌握超外差式FM收音机组成原理,建立调频系统概念。
2、掌握FM收音机系统联调的方法,培养解决实际问题的能力。
二、实验内容完成FM收音机整机联调。
三、实验仪器1、天线1根2、10 号板1块3、9 号板1块4、5 号板1块5、6 号板1块6、2 号板1块7、双踪示波器1台8、耳机1副四、实验说明1.调频广播与中波或短波广播相比,主要有以下几类优点:(一)调频广播的调制信号频带宽,信道间隔为200KHz,单声道调频收音机的通频带为180KHz,调频立体声收音机的通频带为198KHz,高音特别丰富,音质好。
(二)调频广播发射距离较近,各电台之间干扰小。
电波传输稳定,抗干扰能力强,信噪比高,失真小,能获得高保真的放音。
(三)调频广播能够有效的解决电台拥挤问题。
调频广播的信道间隔为200KHz,在调频广播波段范围内,可设立100个电台。
又由于调频广播传播距离近,发射半径有限,在辽阔的国土上,采用交叉布台的方法,一个载波可重复多次的使用而不会产生干扰。
这样,有效的解决了(调幅广播无法解决的)频道不够分配的问题。
2.实验中超外差式FM收音机原理框图如下:FM广播:88—108M98.7—118.7M图17-1 FM收音机原理框图下面简单说明一下工作原理,我们身边的无线电波是摸不着看到到的,但它们的确存在,从空间的角度去看略显复杂,因为无线电波是重叠在一起的。
那么接收机又是怎么从这么复杂的环境中把我们想要的信号分离出来的呢?从频率的角度去看,实际上这些无线电波并不是重叠的,在坐标轴中以横轴为频率轴,靠近原点也就是频率较低的一般是工频干扰,比如我们使用的交流电有50Hz的干扰,包括其谐波。
家用电器工作时也会产生干扰。
我国AM 广播频段为525~1605KHz,FM广播频段相对较高,为88~108M。
远离原点的频率可能会有手机信号,卫星信号等等。
关于FM调频的研究报告

西安邮电大学通信与信息工程学院通信原理关于FM调频的研究报告第八组:韦昉、贾宗林、吴亮、石旭、魏超、杨士媛、李晗、李彦波目录一、FM简介 (3)1.1Frequency Modulation (3)1.2合成技术 (3)1.3基本原理 (3)1.4频谱计算 (3)1.5复合频率调制 (4)二、调频技术 (5)2.1简介 (5)2.2调频技术基础 (5)2.3立体声调频——多路信号 (9)2.4噪声消除技术 (12)2.5Si4700/01 调频调谐器 (13)三、System view仿真 (14)3.1窄带调频的基本原理 (14)3.2解调原理 (15)3.3System View仿真过程 (17)四、基于Multisim的FM调频与鉴频电路设计与仿真 (19)4.1课程设计的研究基础 (19)4.2方案论证及实现 (20)4.3调频基本原理 (20)4.4实验结果与分析 (24)五、FM调频技术的应用 (26)5.1FM无线调频系统 (26)5.2FM收音机 (31)5.3FM调频发射器 (36)5.4FM无线话筒 (41)六、参考文献 (51)一、FM简介1.1Frequency Modulation我们习惯上用FM来指一般的调频广播(76-108MHz,在我国为87.5-108MHz、日本为76-90MHz),事实上FM也是一种调制方式,即使在短波范围内的27-30MHz之间,作为业余电台、太空、人造卫星通讯应用的波段,也有采用调频(FM)方式的。
FM radio即为调频收音机。
1.2合成技术频率调制(FM)在电子音乐合成技术中,是最有效的合成技术之一,它最早由美国斯坦福大学约翰.卓宁(JohnChowning)博士提出。
20世纪60年代,卓宁在斯坦福大学开始尝试使用不同类型的颤音,他发现当调制信号的频率增加并超过某个点的时候,颤音效果就在调制过的声音里消失了,取而代之的是一个新的更复杂的声音。
通信原理实验13 模拟调制解调实验(FM)

实验十三模拟调制解调实验(FM)实验内容1.模拟调制(FM)实验2.模拟解调(FM)实验一、实验目的1.掌握变容二极管调频电路的工作原理及调频调制特性及其测量方法。
2.熟悉相位鉴频器的基本工作原理。
3.了解鉴频特性曲线(S曲线)的正确调整方法。
二、实验电路工作原理(一)模拟调制实验1.变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
变容二极管调频电路如图8-1所示。
从J2处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从J1处输出为调频波(FM)。
C15为变容二级管的高频通路,L1为音频信号提供低频通路,L1和C23又可阻止高频振荡进入调制信号源。
图8-1 变容二极管调频f因为LCf π21=,所以电容小时,振荡频率高,而电容大时,振荡频率低。
从图(a )中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LCf π21=,f 和C 的关系也是非线性。
不难看出,C-u 和f-C的非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。
2. 变容二极管调频器获得线性调制的条件设回路电感为L ,回路的电容是变容二极管的电容C (暂时不考虑杂散电容及其它与变容二极管相串联或并联电容的影响),则振荡频率为LCf π21=。
为了获得线性调制,频率振荡应该与调制电压成线性关系,用数学表示为Au f =,式中A 是一个常数。
由以上二式可得LCAu π21=,将上式两边平方并移项可得2222)2(1-==Bu u LA C π,这即是变容二极管调频器获得线性调制的条件。
这就是说,当电容C 与电压u 的平方成反比时,振荡频率就与调制电压成正比。
3. 调频灵敏度调频灵敏度f S 定义为每单位调制电压所产生的频偏。
通信原理实验二

通信原理实验二实验二:调制与解调一、实验目的1. 理解调制与解调的基本概念;2. 掌握调幅(AM)、调频(FM)以及解调的原理;3. 实现AM、FM的信号调制与解调。
二、实验原理1. 调制原理调制是指在通信过程中将信息信号调制到载波上,以便传输的过程。
调制是将信息信号的某些特征参数随时间变化的过程。
1.1 调幅(AM)调制调幅是指通过改变载波的振幅来传输信息的一种调制方式。
调幅信号能够改变载波的背景亮度,使其随着信息信号的变化而变化。
1.2 调频(FM)调制调频是通过改变载波的频率来传输信息的一种调制方式。
调频信号能够改变载波的频率,使其频率随着信息信号的变化而变化。
2. 解调原理解调是指将调制信号中的信息还原出来的过程。
解调过程是调制的逆过程。
2.1 调幅(AM)解调调幅解调是从调幅信号中还原出原始信号的过程。
调幅信号在传输过程中会叠加一定的噪声,因此解调时需要采取一定的处理方法,如包络检波、同步检波等。
2.2 调频(FM)解调调频解调是从调频信号中还原出原始信号的过程。
调频信号在传输过程中对噪声具有较好的抵抗能力,因此解调过程较为简单,常采用频率鉴别解调等方法。
三、实验内容1. 实现AM调制与解调2. 实现FM调制与解调四、实验步骤1. 搭建AM调制电路,将音频信号与载波信号进行调制;2. 实现AM解调,将调制后的信号还原为音频信号;3. 搭建FM调制电路,将音频信号与载波信号进行调制;4. 实现FM解调,将调制后的信号还原为音频信号;5. 测试与观测调制与解调过程中的信号波形变化。
五、实验数据记录与分析(根据实际实验情况填写数据并进行相应的分析)六、实验总结通过本次实验,我们学习了调制与解调的原理,并实际搭建电路进行了AM和FM的调制与解调。
通过观测信号波形变化,我们加深了对调制与解调过程的理解,并掌握了相关的实验操作技巧。
本次实验对我们理解通信原理中的调制与解调起到了很好的辅助作用。
通信原理实验

通信原理实验通信原理是现代通信领域的基础知识,通过实验可以更加直观地了解通信原理的相关概念和技术。
本次实验将涉及到模拟调制解调实验、数字调制解调实验以及信道编码和解码实验。
首先,我们将进行模拟调制解调实验。
模拟调制是指利用模拟信号进行调制的过程,而模拟解调则是将调制后的信号还原成原始信号的过程。
在实验中,我们将学习调幅调制(AM)、调频调制(FM)和调相调制(PM)的原理,并通过实验验证调制后的信号特性和解调的效果。
接下来,我们将进行数字调制解调实验。
数字调制是指利用数字信号进行调制的过程,而数字解调则是将调制后的信号还原成原始数字信号的过程。
在实验中,我们将学习脉冲编码调制(PCM)、正交振幅调制(QAM)和频移键控(FSK)等数字调制技术,并通过实验验证数字调制解调的原理和性能。
最后,我们将进行信道编码和解码实验。
信道编码是为了提高通信系统抗干扰能力和改善信道传输质量而对数字信号进行编码的过程,而信道解码则是将经过编码的信号进行解码还原的过程。
在实验中,我们将学习卷积码和纠错码的原理,以及信道编码和解码的实际应用。
通过以上实验,我们可以更加深入地理解通信原理的基本原理和技术,为今后的学习和研究打下坚实的基础。
希望大家能够认真对待本次实验,积极参与实验操作,加深对通信原理的理解和掌握,为将来的学习和工作打下坚实的基础。
总结,通过本次实验,我们对通信原理的模拟调制解调、数字调制解调以及信道编码和解码等方面有了更深入的了解。
希望大家能够在实验中认真学习,掌握相关技术,为今后的学习和工作打下坚实的基础。
同时也希望大家能够在实验中加强合作,共同进步,共同提高。
谢谢大家的参与!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五F M调频波信号调
制
Revised by Jack on December 14,2020
实验五 FM 调频波信号调制
一、仿真实验目的
(1)掌握变容二极管调频电路的原理。
(2)了解调频电路的调制特性及测量方法。
(3)观察调频波波形,观察调制信号振幅对频偏的影响。
(4)观察寄生调幅现象,了解其产生及消除的方法。
二、FM 调制原理(变容二极管调频电路)
调频即为载波的瞬时频率受调制信号的控制。
许多中小功率的发射机都采用变容二极管直接调频技术,直接调频法即在工作于发射载频的LC 振荡回路上直接调频,具体采用的方法是用模拟基带信号控制振荡回路变容二极管的大小,使振荡器输出信号的瞬时频率随基带信号做线性变化。
其频率的变化量与调制信号成线性关系。
变容二极管j C 通过耦合电容1C 并接在N LC 回路的两端,形成振荡回路总电容的一部分。
因而,振荡回路的总电容C 为:j N C C C +=
振荡频率为: )
(2121j N C C L LC f +==ππ 变容二极管是一种电抗可变的非线性元件,通过改变外加反向电压可以改变空间电荷区的宽度,从而改变势垒电容的大小。
变容二极管在反向偏置直接调频电路中,不能工作于正向偏压区,必须加上一个大于调制信号振幅的反向直流偏压。
变容二极管调频产生的调频信号的调制指数较大,但载频稳定性较差。
除了这种方法还可直接用锁相环产生调制指数较大,载频很稳定的调频信号。
三、仿真电路
变容二极管调频电路如图所示。
该电路为一种针对克拉泼电路做的一种改进型电容三端式电路——西勒电路。
变容二极管的结电容以部分接入的形式纳入在回路中。
该高频等效电路未考虑负载电阻。
所以,振荡频率f 0=1/2πN LC 。
西勒电路在分立元件系统或集成高频电路系统中均获得广泛的应用。
调频波:从示波器上看到的波形频率变化不明显,从频率计(XFC1)可看出频率不停变化。
载波信号80kHz ,调制信号3kHz ,从示波器看不出明显的调频波频率的变化。
调频广播载波频率范围是(88~108)MHz ,低频调制信号最高20kHz,从载波波形也看不出频率的变化。
FM 调频波信号调制电路图
FM 调频波信号波形图
四、实验步骤和测试内容
(1) 测试变容二极管的静态调制特性,即拿掉3V ,保留直流电压1V ,观察02 V 以及取其它值时振荡频率的变化,这时的振荡器属于压控振荡器。
(2)观察调频波波形。
(3)观察调制信号振幅对频偏的影响,观察寄生调幅现象。
五、实验报告要求
1.整理实验数据,在同一坐标纸上画出静态调制特性曲线,并求出其调制灵敏度,说明曲线斜率受哪些因素的影响。
答:受电压和频率影响。
2. 分析调制信号振幅对频偏的影响
答:对于一般的频率调制电路,
小信号情况下,调频的频偏和调制信号的幅度成线性关系;
大信号情况下,频率调制率也会出现像放大器增益饱和类似的情况。
实验六 FM 调频信号的解调
一、仿真实验目的
(1)熟悉乘积型相位鉴频器的基本工作原理,熟悉模拟乘法器的使用。
(2)掌握并联回路对S 曲线和对解调波形的影响。
二、FM 解调原理(乘积型相位鉴频器)
乘积型相位鉴频器实际上是一种正交鉴频器。
调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。
由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。
单调谐移相网络传输特性,在失谐不太大的情况下
其幅频、相频特性
假定输入调频波的中心频率ωc=ω0,将输入调频波的瞬时角频率ω=ωc-
Δωmcos Ωt=ωc+Δω代入上式,得
设低通滤波器增益为1,则
当Δf/f0<<1时,乘积型相位鉴频器输出为:
三、仿真实验电路 u 1C L R u 2(a )
0f 02πϕ
(b )
C
调频信号的解调电路如图所示。
调频信号源采用中心频率30KHz,调制频率为3KHz。
调频信号的解调电路图
四、实验步骤和测试内容
(1)观察并联回路对波形的影响。
答:改变R1的值,观察波形如图所示
(2)测量鉴频特性曲线,由此计算鉴频灵敏度和线性频率范围。
五、实验报告要求
整理实验数据,在同一坐标纸上画出鉴频特性曲线,并计算计算鉴频灵敏度和线性频率范围。