专题09 概率与统计(三模)-各类考试必备素材之高三数学(理)全国各地优质金卷分项解析版(201

合集下载

专题09 概率与统计(三模)-各类考试必备素材之高三数学(文)全国各地优质金卷分项解析版(201

专题09 概率与统计(三模)-各类考试必备素材之高三数学(文)全国各地优质金卷分项解析版(201

【备战2018高考高三数学全国各地优质模拟试卷分项精品】专题九概率与统计1.【江西省南昌市2017-2018学年度高三第二轮复习测试】如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为.则阴影区域的面积约为( )A.B.C.D.无法计算2.【东北师范大学附属中学2018届高三第五次模拟考试】在区间上随机取两个数,记为事件的概率,则A.B.C.D.3.【江西省南昌市2018届高三二轮复习测试】将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,向量则和共线的概率为A.B.C.D.4.【湖北省黄石市2018年高三五月适应性考试】一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为( )A.B.C.D.5.【四川省成都市双流中学2017-2018学年数学(文科)考前模拟】某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A.B.C.D.6.【河南省安阳市35中2018届高三核心押题】在检测一批相同规格共航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( )A.B.C.D.7.【2018年普通高等学校招生全国统一考试模拟】如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为.现从中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .B .C .D .8.【2018年普通高等学校招生全国统一考试模拟试题】现有甲、乙两台机床同时生产直径为的零件,各抽测件进行测量,其结果如下图,则不通过计算从图中数据的变化不能反映的数字特征是( )A . 极差B . 方差C . 平均数D . 中位数9.【河北省衡水中学2018届高三下学期押题卷】中央电视台第一套节目午间新闻的播出时间是每天中午到,在某星期天中午的午间新闻中将随机安排播出时长分钟的有关电信诈骗的新闻报道.若小张于当天打开电视,则他能收看到这条新闻的完整报道的概率是( )A .B .C .D .10.【湖北省荆州市荆州中学2018届普通高等学校招生全国统一考试】题目略长,不要彷徨,套路不深,何必当真.荆州某公园举办水仙花展,有甲、乙、丙、丁4名志愿者,随机安排2人到A 展区,另2人到B 展区维持秩序,则甲、乙两人同时被安排到A 展区的概率为A .B .C .D .11.【黑龙江省2018届高三高考仿真模拟(六)】“吸烟有害健康,吸烟会对身体造成伤害”,哈尔滨市于年月日规定室内场所禁止吸烟.美国癌症协会研究表明,开始吸烟年龄()分别为岁、岁、岁和岁,其得肺癌的相对危险度()依次为、、、、;每天吸烟()支、支、支者,其得肺癌的相对危险度()分别为、和.用表示变量与之间的线性相关系数,用表示变量与之间的线性相关系数,则下列说法正确的是( )A .B .C .D .12.【广西柳州高级中学2017-2018学年高三5月模拟考试】根据下图给出的2000年至2016年我国实际利用外资情况,以下结论正确的是A.2000年以来我国实际利用外资规模与年份负相关B.2010年以来我国实际利用外资规模逐年增加C.2008年我国实际利用外资同比增速最大D.2010年以来我国实际利用外资同比增速最大13.【海南省琼海市2018届高考模拟考试】已知琼海市春天下雨的概率为.现采用随机模拟的方法估计未来三天恰有一天下雨的概率;先由计算器产生到之间取整数值的随机数,指定,,,表示下雨,,,,,,表示不下雨;再以每三个随机数作为一组,代表未来三天是否下雨的结果.经随机模拟产生了如下组随机数:,,,,,,,,,,,,,,,,,,,.据此估计,该地未来三天恰有一天下雨的概率为_________________.14.【北京市通州区2018届下学期高三年级三模考试】某学校开展一次“五四”知识竞赛活动,共有三个问题,其中第1、2题满分都是15分,第3题满分是20分.每个问题或者得满分,或者得0分.活动结果显示,每个参赛选手至少答对一道题,有6名选手只答对其中一道题,有12名选手只答对其中两道题.答对第1题的人数与答对第2题的人数之和为26,答对第1的人数与答对第3题的人数之和为24,答对第2题的人数与答对第3题的人数之和为22.则参赛选手中三道题全答对的人数是____;所有参赛选手的平均分是____.15.【黑龙江省大庆中学2018届高三考前仿真模拟考试】假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋中抽取60袋牛奶进行检验,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列开始向右读,请你写出抽取检测的第5袋牛奶的编号_______.(下面摘取了随机数表第7行至第9行)16.【河南省中原名校2018届高三高考预测金卷】在区间内随机地取出两个实数,则这两个实数之和小于的概率是__________.17.【东北师范大学附属中学2018届高三第五次模拟考试】长春市统计局对某公司月收入在元内的职工进行一次统计,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示职工月收入在区间内,单位:元).(Ⅰ)请估计该公司的职工月收入在内的概率;(Ⅱ)根据频率分布直方图估计样本数据的中位数和平均数.18.【江西省南昌市2018届高三二轮复习测试】我国是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中的值;(Ⅱ)已知平价收费标准为元/吨,议价收费标准为元/吨,当时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)19.【福建省莆田市莆田第六中学2018届高三下学期第三次模拟考试】某公司想了解对某产品投入的宣传费用与该产品的营业额的影响.右图是以往公司对该产品的宣传费用(单位:万元)和产品营业额(单位:万元)的统计折线图.(Ⅰ)根据折线图可以判断,可用线性回归模型拟合宣传费用与产品营业额的关系,请用相关系数加以说明;(Ⅱ)建立产品营业额关于宣传费用的回归方程;(Ⅲ)若某段时间内产品利润与宣传费和营业额的关系为应投入宣传费多少万元才能使利润最大,并求最大利润. (计算结果保留两位小数)参考数据:,,,,参考公式:相关系数,回归方程中斜率和截距的最小二乘法估计公式分别为,.20.【山东省日照市2018届高三5月校际联考】为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都要网络报价一次,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加2018年5月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的数据,统计了最近5个月参与竞拍的人数(见下表):(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数y(万人)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程:,并预测2018年5月份参与竞拍的人数.(2)某市场调研机构从拟参加2018年5月份车牌竞拍人员中,随机抽取了200人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:(i)求的值及这200位竟拍人员中报价大于5万元的人数;(ii)若2018年5月份车牌配额数量为3000,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.参考公式及数据:①,其中;②21.【四川省成都市双流中学2017-2018学年数学(文科)考前模拟】支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比.从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如图.(1)记A表示事件“微信支付人数低于50千人”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为支付人数与支付方式有关;(3)根据支付人数的频率分布直方图,对两种支付方式的优劣进行比较.附:K2=22.【河南省安阳市35中2018届高三核心押题】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:(Ⅰ)现从抽取的6件合格产品中再任选3件,求恰好取到2件优等品的概率;(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:(i)根据所给统计量,求关于的回归方程;(ii)已知优等品的收益(单位:千元)与的关系,则当优等品的尺寸为为何值时,收益的预报值最大?(精确到0.1)附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,.。

高三统计与概率专题讲解(非常好).docx

高三统计与概率专题讲解(非常好).docx

统计与概率综合专题'简单随机抽样考点一:抽样分层抽样(关键:确定抽样比)系统抽样(关键:号签为等差数列)1、某所大学的计算机工程学院的大一新生有160人,其屮男生95人,女生65人,现在要抽取一个容量为20的样本,若用分层抽样,女生应抽取__________ 人.2、某学校有教师160人,后勤服务人员40人,行政管理人员20人,要从屮抽选22人参加学区召开的职工代表大会,为了使所抽的人员更具有代表性,分别应从上述人员中抽选教师 ________ 人,后勤服务人员_____ 人,行政管理人员_____ 人。

3、某学校高一、高二、高三年级学生分别有1000名、800名、700名,为了了解全校学生的视力情况,欲从中抽取容量为200的样本,怎样抽取较为合理?4、一个总体分为两层,用分层抽样的方法从总体中抽取一个容量为20的样本,已知B层屮每个被抽到的概率都是丄,则总体的个数为125、(2012-四川高考,文3)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽収驾驶员的人数分別为12,21,25,43,则这四个社区驾驶员的总人数2为().A. 101B. 808C. 1 212D. 2012考点二:频率分布直方图干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为(2)________________________________ 根据题中信息估计总体平均数(3)_________________________________________ 估计总体落在[129,150]中的概率为___________________________________2、某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50), [50,60),…,[90,100]后得到如图的频率分布直方图.(1)求图屮实数G的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;⑶若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩Z差的绝对值不大于1()的概率.3、如图是根据部分城市某年6月份的平均气温(单位:.°C)数据得到的样本频率分布直方图,其中平均气温 的范围是[20.5,26.5],样本数据的分组为[20.5,21.5), [21.5,22.5), [22.5,23.5), [23.5,24.5), [24.5,25.5), [25.5,26.5].已知样本中平均气温低于22.5 °C 的城市个数为11,则样本中平均气温不低于25.5 °C 的城市个 数为 _________4、(2012-广东高考,文 ⑺某校100名学生期中•考试语文成绩的频率分布直方 平均气温比图如图所示,其中成绩分组区间是:[50,60), [60,70), [70,80), [80,90), [90,100]. (1) 求图中a 的值;(2) 根据频率分布直方图,估计这100名学生语文成绩的平均分;(3) 若这100名学生语文成绩某些分数段的人数(力与数学成绩相应分数段的 人数©)之比如下表所示,求数学成绩在[50,90)之外的人数考点三:茎叶图0 1 8 0 1 Q 0 1 8 3 4 6 0 1 3 4 6 3 4 6 2 3 6 822 3 6 82(B)3 6 8(C)(D)3 3 8 933 3 8 933 8 9444 0415 155 15 数据 8, 51, 33, 39, 38, 23, 26, 28,13, 16, 14的茎叶图是8 3 4 3 6 (A)3 8 1 1分数段(50,60) [60,70) [70,80) (80,90) 兀:丿1 : 12 : 13 :4 4 : 5(D) 37甲乙085 21 3 4 62、茎叶图 5 42 3 6 8中,甲组数据的中位数是9 7 6 6 1 13 3 8 99 44051(A) 31(B)31 + 3633.5(C) 364 5 86 9中,样本的中位数为5 8下图是2008年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶图,去 掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为7、(2012 •湖南高考,文13)如图是某学校一名篮球运动员在五场比赛中所得分 数的茎叶图,则该运动员在这五场比赛屮得分的方差为 _________________________________ •7、随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7. 3、 5 6 在茎叶图7 84、2 茎叶图4小所记录的原始数据共有 个,求中位数5、6 7 一个班的语文成绩的茎叶图为 8 9 03 0 14 4 6 75 5 6,则优秀率(80及以上)为3 3 5 6、 (1)根据茎叶图判断哪个班的平均身高较高; 甲班乙班(2) 计算甲班的样本方差(3) 现从乙班这10名同学小随机抽取2名身高不低于173cm 的同学,求身高为176cm 的同学被抽屮的概率.2 189 9 1 0 17 8 8 3 2 168 151 0 3 62 5 8 9考点四:平均数、中位数、众数、方差,标准差平均数:I众数:数据出现次数最多的数中位数:处于中间位置的数n方差:无是样本数据X],兀2,…兀”平均数,则方差= —(“ 一x)? + (兀一兀)2 +…+(兀一兀)2 n L I2 n1、两位射击运动员在一次射击测试屮各射靶10次,每次命中的环数如下:甲:7, & 7, 9, 5, 4, 9, 10, 7, 4乙:9, 5, 7, 8, 7, 6, 8, 6, 7, 7如果你是教练,你应该如何对这次射击情况作出评价?如杲这是一次选拔性考核,你应当如何作出选择?2、甲、乙两种水稻试验品种连续5年的平均单位而积产量如下(单位:t/km2 ),试根据这组数据估计哪一种水稻品种的产量比较稳定.考点五:线性回归方程①样本中心在回归线上。

高三数学概率与统计(201911新)

高三数学概率与统计(201911新)

热点题型2 互斥事件有一个发生的概率
[7样个题,2从](0中5年任山取东2个)袋球中都装是有白黑球球的和概白率球为共1
7 现有甲、乙两人从袋中轮流摸取1球,甲先取, 乙后取,然后甲再取……取后不放回,直到两人 中有一人取到白球时即终止。每个球在每一次被 取出的机会是等可能的。 (I)求袋中原有白球的个数; (II)求取球2次终止的概率; (III)求甲取到白球的概率
设取出的两张卡片数字之和为
,求
的分布列和期望值.
热点题型3、相互独立事件同时发生的概率 [样题3](05福建高考) 甲、乙两人在罚球线投球
命中的概率分别为1 与 2 25
(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好 命中一次的概率; (Ⅱ)甲、乙两人在罚球线各投球二次,求这四 次投球中至少一次命中的概率.
热点题型1 等可能事件的概率
[样题1] (20工旅游,规定每个部门只能在韶山、 衡山、张家界3个景区中任选一个,假设各部门选择每个景区
是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率.
变式新题型1.
从数字0、1、2、3、4、5中任取三个,组成 没有重复数字的三位数,求: (I)这个三位数是奇数的概率; (II)这个三位数小于450的概率。
2010届高考数学二轮 复习系列课件
22《概率与统计》
概率
高考考纲透析: 等可能性的事件的概率,互斥事件有
一个发生的概率,相互独立事件同时 发生的概率,独立重复试验
高考风向标:
1.相互独立事件同时发生的概率。 2.独立重复试验。
;夏资兰护肤专家 夏资兰护肤专家

微机继电保护简介 amplifier 0 状态行,3.6 状态观测器的设计 提高综合应用知识的能力、分析解决问

全国各地高考三模数学试题汇编专题 概率与统计第1讲计数原理排列与组合二项式定理(理卷A)

全国各地高考三模数学试题汇编专题 概率与统计第1讲计数原理排列与组合二项式定理(理卷A)

专题7 概率与统计第1讲 计数原理、排列与组合、二项式定理(A 卷)一、选择题(每题5分,共40分)1.(2015·聊城市高考模拟试题·8)将5名同学分成甲,乙,丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同分组方案的种数为( )A .180B .120C .80D .602.(绵阳市高中2015届第三次诊断性考试·7)绵阳市某高中的5名高三学生计划在高考结束后到北京、上海、杭州、广州等4个城市去旅游,要求每个城市都要有学生去,每个学生只去一个城市旅游,且学生甲不到北京,则不同的出行安排有( ) (A )180种(B )72种(C )216种(D )204种3.(2015.江西省上饶市高三第三次模拟考试·9)设函数()(2)n f x x a =+,其中20'(0)6cos ,12(0)f n xdx f π==-⎰,则()f x 的展开式中x 4的系数为( ) A .-240B .240C .-60D .604. (江西省新八校2014-2015学年度第二次联考·7)若6)1(xax +展开式的所有项系数之和为64,则展开式的常数项为( ) A. 10或 270-B.10C.20或540-D.205.(2015·赣州市高三适用性考试·7)6、(2015·山东省滕州市第五中学高三模拟考试·10)现有16张不同卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一颜色,且红色卡片至多1张,不同的取法为( )A .232种B .252种C .472种D .484种7.(2015·成都三诊`6)8.(2015·陕西省西工大附中高三下学期模拟考试·7)展开(a+b+c)10合并同类项后的项数是()A.11 B.66 C.76 D.1349.(2015·陕西省西工大附中高三下学期模拟考试·3)522xx⎫⎪⎝⎭-的展开式中常数项是()A.5 B.5-C.10 D.10-10. (2015·山东省潍坊市第一中学高三过程性检测·7)学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有()A.36种B.72种C. 30种D.6种二、非选择题11.(2015·武清区高三年级第三次模拟高考·12)一个数无论从左边念,还是从右边念都是同一个数,则这个数称为“回文数”,如11、22是两位“回文数”,111、101是三位“回文数”,则5位“回文数”的个数有个.12.(2015·山东省枣庄市高三下学期模拟考试·14)13.(2015·陕西省安康市高三教学质量调研考试·13)二项式的展开式中的系数是.14.(2015·山东省淄博市高三阶段性诊断考试试题·12)二项式53xx的展开式中常数项为___________.15. ( 2015`临沂市高三第二次模拟考试数学(理)试题·12)某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有______种.16.(2015·赣州市高三适用性考试·13)17.(2015·日照市高三校际联合5月检测·12)已知()51ax +的展开式中2x 的系数与454x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数相等,则a =_____.18. (2015·济南市高三教学质量调研考试·12)二项式43x x ⎛+ ⎪⎝⎭的展开式中常数项为________. 19.(2015·厦门市高三适应性考试·13)一个口袋内有5个不同的红球,4个不同的白球.若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于7分的取法有 种. 20.(2015·汕头市普通高考第二次模拟考试试题·11)专题7 概率与统计第1讲 计数原理、排列与组合、二项式定理(A 卷)参考答案与解析1.【答案】C【命题立意】本题主要考查排列组合的有关知识.【解析】由题意可得不同分组方案的种数为种801235222325=+C C A C C .故选C .2.【答案】A【命题立意】考虑间接法.【解析】不考虑甲不到北京则共有2454240C A =种排列方法,甲到北京的情况有:23443460C A A +=种情况,所以符合条件的有180种.【易错警示】本题学生如果找不到正确的思路容易错选B . 3.【答案】B【命题立意】本题重点考查了二项式定理、定积分、函数的导数等知识,属于中档题.【解析】根据题意,220066sin |6(sinsin 0)62n cosxdx x πππ===-=⎰,故6n =,所以6()(2)f x x a =+,从而得到55()6(2)212(2)f x x a x a '=+⨯=+,5(0)12f a '=,6(0)f a =,故56(0)121212(0)f a f a a '===-,解得1a =-,故6()(21)f x x =-, 616(2)(1)r r r r T C x -+=-,44644416(2)(1)240T C x x -+=-=,故选B .4.【答案】C【命题立意】考查二项式定理,考查计算能力,容易题.【解析】Θ6)1(xax +展开式的所有项系数之和为64,∴64)1(6=+a ,∴1=a 或3-=a ,当1=a 时,由rr r r r r x C x x C T 266661---+⋅=⋅⋅=,令026=-r ,得3=r ,展开式的常数项为2036=C ;当3-=a 时,由r r r r r r r r x C x x C T 26666661)3()3(-----+⋅-⋅=⋅⋅-⋅=,令026=-r ,得3=r ,展开式的常数项为540)3(363-=⋅-C .5.【答案】C【命题立意】本题主要考查排列组合的应用,注意要分类讨论.【解析】每个小组至少1人,则等价为有一个小组选派2人,其余两个小组各1人,则共有211121112334334334363654126C C C C C C C C C++=++=,选C.6.【答案】C【命题立意】本题主要考查含有限制条件的排列、组合问题【解析】7.【答案】C【命题立意】本题旨在考查排列组合.【解析】234336C A=.8.【答案】B【命题立意】本题旨在考查二项式定理及其应用,数学模型的构造与应用.【解析】对于这个式子,可以知道必定会有形如ma x b y c z的式子出现,其中m∈R,x,y,x∈N且x+y+z=10,构造13个完全一样的小球模型,分成3组,每组至少一个,共有分法212C种,每一组中都去掉一个小球的数目分别作为(a+b+c)10的展开式中每一项中a、b、c各字母的次数,小球分组模型与各项的次数是一一对应的,故(a+b+c)10的展开式中,合并同类项之后的项数为212C=66.9.【答案】D【命题立意】本题旨在考查二项式定理及其应用.10.【答案】C【命题立意】本题重点考查排列组合知识,难度中等.【解析】语文、数学、英语、理综4科专题讲座安排在周五下午第一、二、三节课一共有23 4336C A=种方法,数学、理综安排在同一节共有12326C A=种方法,所以一共有36630-=种方法.【解析】二项式的展开式中的常数项为T 1+1=15C ·(x1)4·(-2x 2)1=-10. 11.【答案】900【命题立意】本题主要考查对新定义题目的求解.【解析】第一步,选左边第一个数字,有9种选法;第二步,分别选左边第2、3、4、5个数字,共有10×10=102种选法,故5位回文数有9×102个. 12.【答案】48【命题立意】本题是一个排列组合的题目,题目难度较大,采用直接法解题,需要对题目进行分类讨论,注意不要漏掉分类。

专题09 数学与生活-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)

专题09 数学与生活-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)

专题09 数学与生活【母题来源】2021年高考乙卷【母题题文】魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A【试题解析】如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差.【命题意图】 1.相识三角形问题 2.考察数学与生活问题 3.考查学生的阅读理解能力 【命题方向】最近3年每年都会出现数学应用问题,也是命题的热点问题。

预测在2022年的高考过程中也会出现一个数学应用题目的出现 【得分要点】1. 会分析并提取数学问题2. 建立数学模型,并提取相关数据。

3. 通过数学模型解决相关题目一、单选题1.(2021·河南郑州市·高二期末)胡夫金字塔的形状为正四棱锥.1859年,英国作家约翰·泰勒在其《大金字塔》一书中提出:埃及人在建造胡夫金字塔时利用了黄金比例1 1.6182⎛⎫ ⎝≈ +⎪⎪⎭,泰勒还引用了古希腊历史学家希罗多德的记载:胡夫金字塔的每一个侧面的面积都等于金字塔高的平方,如图,即2h as =.已知四棱锥底面是边长约为860英尺的正方形()2860a =,顶点P 的投影在底面中心O ,H 为BC 中点,根据以上条件,PH 的长度(单位:英尺)约为( )A .3479.B .512.4C .611.6D .695.7【答案】D利用勾股定理可得222h s a =-,可得出22s a as -=,可解得12s a +=,即可得解. 【详解】由已知可得PO ⊥平面ABCD ,OH ⊂平面ABCD ,PO OH ∴⊥,PO h =,OH a =,PH s =,由勾股定理可得222PH PO OH =+,即222s h a =+,222h s a ∴=-,又因为2h as =,所以,22s a as -=,即220s as a --=,解得1 1.618430695.72s =≈⨯≈. 故选:D.2.(2021·广东高三其他模拟)十七世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿,”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36的等腰三角形(另一种是顶角为108的等腰三角形),如图所示的五角星由五个黄金三角形与一个正五边形组成,在其中一个黄金ABC中,BC AC =,据这些信息,可得sin126=( )A.14B.14-C.D.【答案】A 【分析】计算出cos 72,利用二倍角的余弦公式可求得cos144,然后利用诱导公式可求得sin126的值. 【详解】由题意可得18036722ACB -∠==,且112cos 4BCACB AC ∠==,所以,22cos1442cos 72121=-=⨯-=⎝⎭因此,()51sin126sin 270144cos1444+=-=-=. 故选:A.3.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(理))勾股定理是一个基本的几何定理,中国《周髀算经》记载了勾股定理的公式与证明.相传它是在商代由商高发现,故又人有称之为商高定理.我国古代称短直角边为“勾”,长直角边为“股”,斜边为“弦”.西方文献中一直把勾股定理称作毕达哥拉斯定理.毕达哥拉斯学派研究了勾为奇数、弦与股长相差为1的勾股数:如3,4,5;5,12,13;7,24,25;9,40,41;……,如勾为21,则弦为( ) A .217 B .219C .221D .223【答案】C 【分析】根据“弦与股长相差为1”列方程,解方程求得弦. 【详解】设弦为x ,则股为1x -,()22222211211,2211,2212x x x x ++-==+==.故选:C4.(2021·济南市·山东师范大学附中高一期中)阿基米德是古希腊伟大的数学家、物理学家、天文学家,是静态力学和流体静力学的奠基人,和高斯、牛顿并列为世界三大数学家,他在不知道球体积公式的情况下得出了圆柱容球定理,即圆柱内切球(与圆柱的两底面及侧面都相切的球)的体积等于圆柱体积的三分之二.那么,圆柱内切球的表面积与该圆柱表面积的比为( ) A .12B .13C .23D .34【答案】C 【分析】设球的半径为R ,可得出圆柱的底面半径与高,利用球体的表面积公式以及圆柱的表面积公式可得结果. 【详解】设球的半径为R ,则圆柱的底面半径为R ,高为2R ,则圆柱的表面积为222226S R R R R πππ=+⋅=,球的表面积为24S R π=球.所以,圆柱内切球的表面积与该圆柱表面积的比为224263R R ππ=. 故选:C .5.(2021·江苏南通市·高三其他模拟)瑞典人科赫提出了著名的“雪花”曲线,这是一种分形曲线,它的分形过程是:从一个正三角形(如图①)开始,把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段,这样就得到一个六角形(如图①),所得六角形共有12条边.再把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段.反复进行这一分形,就会得到一个“雪花”样子的曲线,这样的曲线叫作科赫曲线或“雪花”曲线.已知点O 是六角形的对称中心,A ,B 是六角形的两个顶点,动点P 在六角形上(内部以及边界).若OP xOA yOB =+,则x y +的取值范围是( )A .[3,3]-B .[4,4]-C .[5,5]-D .[6,6]-【答案】C 【分析】设OA a =,OB b =,求x y +的最大值,只需考虑图中以O 为起点,6个顶点分别为终点的向量即可,再根据对称可得最小值. 【详解】如图,设OA a =,OB b =,求x y +的最大值,只需考虑图中以O 为起点,6个顶点分别为终点的向量即可,讨论如下:当点P 在A 处时,1x =,0y =,故1x y +=;当点P 在B 处时,0x =,1y =,故1x y +=;当点P 在C 处时,2OC OA AC a b =+=+,故3x y +=;当点P 在D 处时,223OD OC CD OC BC OC OB a b =+=+=-=+,故5x y +=; 当点P 在E 处时,OE OA AE a b =+=+,故2x y +=; 当点P 在F 处时,3OF OA AF a b =+=+,故4x y +=. 于是x y +的最大值为5.根据其对称性可知x y +的最小值为5-,故x y +的取值范围是[5,5]-. 故选:C. 【点睛】关键点睛:解决本题的关键是根据题意得出只需考虑图中以O 为起点,6个顶点分别为终点的向量即可. 6.(2021·黑龙江高三其他模拟(理))我们把221nn F =+()0,1,2,n =⋅⋅⋅叫“费马数”(费马是十七世纪法国数学家).设()2log 1n n a F =-,1,2,3,n =⋅⋅⋅,设数列{}n a 的前n 项和为n S ,则使不等式12320212n S S S S n +++⋅⋅⋅+>-成立的正整数n 的最小值是( )A .8B .9C .10D .116【答案】B 【分析】求得2n n a =,利用等比数列的求和公式可求得n S ,利用分组求和法可求得123n S S S S +++⋅⋅⋅+,由已知条件可得出关于n 的不等式,即可得解. 【详解】()222log 1log 22nnn n a F =-==,则12n na a +=,故数列{}n a 是公比为2的等比数列, 则()12122212n n nS +-==--,所以,()()2234211341222222222412n n n nS S n n n S S +++++⋅-=++++-⋅=-=-⋅+--,由12320212n S S S S n +++⋅⋅⋅+>-可得222025n +>,1011220252<<,所以211n +≥,即9n ≥.故选:B. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}n n a b +结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为()0d d ≠,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.7.(2021·陕西西安市·高新一中高三二模(理))鼎被誉为中国历史上的传国重器,是青铜器文化的代表,是国家权力的象征,有着鼎盛千秋的寓意.1939年在河南安阳出土的后母戊鼎是一件形制巨大、工艺精巧、威武庄严的商后期青铜祭器,该器重832.84kg ,口长112cm ,口宽79cm ,连耳高133cm ,厚6cm ,某中学青铜文化研究小组的同学发现鼎的耳、身、足的高度之比约为3:4:4.据此推算,后母戊鼎的器腹容积最贴近的是( ) A .3218000cm B .3246000cmC .3284000cmD .3324000cm【答案】C 【分析】根据题中信息求出鼎的器腹容积,即可得出合适的选项. 【详解】由题意可知鼎的器腹容积约为()()413311262796261006742.36344⨯⎛⎫-⨯⨯-⨯⨯-≈⨯⨯⎪++⎝⎭()3283812cm =,与选项C 最贴近, 故选:C .8.(2021·安徽合肥市·合肥一中高三其他模拟(理))我国宋代数学家秦九韶在《数书九章》中提出了三斜求积公式:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实,一为从隅,开平方得积”,即S =,其中S ,a ,b ,c 分别表示三角形的面积和三边,a 为大斜,b 为中斜,c 为小斜.若某三角形的大斜、中斜和小斜边上的高分别为1则此三角形的面积为( )A B C D 【答案】B 【分析】根据高可设6a k =,b =,c =,分别利用面积公式和三斜求积公式表示出面积即可求得k ,得出面积. 【详解】由题可知::1:2a b c ==;不妨设6a k =,b =,c =,则3S k =.将三边代入三斜求积公式中可得S =故由面积可列出方程3k =k =所以3S k ===. 故选:B.9.(2021·浙江高一期末)阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.他推导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,圆柱的底面直径与高都等于球的直径,若球的体积为36π,则圆柱的表面积为( )A .36πB .45πC .54πD .63π【答案】C 【分析】首先理解题意,直接求解圆柱的体积,即可得圆柱底面的半径,再求圆柱的表面积. 【详解】由题意可知,2=3V V 内切球圆柱,=54V π∴圆柱, 设圆柱底面半径为r ,则2254r r ππ⨯=,得3r =, 则圆柱的表面积222254S r r r πππ=⨯+=. 故选:C二、多选题10.(2021·福建厦门市·高三二模)达芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为()cos ()(0)x f x a h a a =>,双曲余弦函数cos ()2x x e e h x -+=则以下正确的是( )A .()f x 是奇函数B .()f x 在(),0-∞上单调递减C .x R ∀∈,()f x a ≥D .()0,a ∃∈+∞,()2f x x ≥【答案】BCD 【分析】根据题意写出函数()f x 的解析式,由函数奇偶性的定义,即可判断选项A 是否正确;根据导数在函数单调性中的应用以及复合函数的单调性,即可判断选项B 是否正确;由基本不等式,即可判断选项C 是否正确;再根据选项C ,结合特称命题的特点,即可判断选项D 是否正确. 【详解】由题意可知,()cosh()(0)2x x aax e ef x a a a a -+==⋅>,,定义域为R所以()()2xx aaeef x a f x -+-=⋅=,所以()f x 是偶函数;故选项A 错误; 函数cos ()2x x e e h x -+=的导数为()cos ()2x x e e h x --'=, 所以当(),0x ∈-∞时,()cos ()0h x '<,当()0,x ∈+∞时,()cos ()0h x '>,所以函数cos ()2x xe e h x -+=,单调递减区间为 (),0-∞,单调递增区间为()0,+∞,又0a >,所以函数xy a=在(),0-∞上单调递增, 由复合函数的单调性可知,()f x 在(),0-∞上单调递减,故选项B 正确;由基本不等式可知,()2x x aae ef x a a a-+=⋅≥=,当且仅当0x =时取等号;故选项C 正确;由C 可知,x R ∀∈,()f x a ≥,所以()0,a ∃∈+∞,使得()2f x x ≥成立,故选项D 正确; 故选:BCD.11.(2021·广东茂名市·0.618⎫≈⎪⎪⎝⎭的矩形称为黄金矩形,称为黄金分割比例.下图为希腊的一古建筑,其中图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,若M 与K 间的距离超过1.5m ,C 与F 间的距离小于11m ,则该古建筑中A 与B 间的距离可能是( )(参考数据:20.6180.382≈,30.6180.236≈,40.6180.146≈,50.6180.090≈,60.6180.056≈,70.6180.034≈)A .26.8mB .30.1mC .27mD .29.2m 【答案】AC【分析】设AB x =,0.618a =≈,由题设可知2CF a x =,6KM a x =,结合已知条件列不等式组,求x 的范围即可确定正确选项.【详解】 设AB x =,0.618a ≈,①矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,①有BC ax =,2CF a x =,3FG a x =,4GJ a x =,5JK a x =,6KM a x =, 由题设得:62 1.511a x a x ⎧>⎨<⎩,解得26.78628.796x <<. 故选:AC .三、填空题12.(2021·全国高三其他模拟)若定义在R 上的非零函数()f x ,对任意实数x ,存在常数λ,使得()()f x f x λλ+=恒成立,则称()y f x =是一个“f λ。

高考数学三轮增分练(三)概率与统计 Word版含解析

高考数学三轮增分练(三)概率与统计 Word版含解析

(三)概率与统计.设甲、乙、丙三个乒乓球协会的运动员人数分别为.现采用分层抽样的方法从这三个协会中抽取名运动员组队参加比赛.()求应从这三个协会中分别抽取的运动员的人数;()将抽取的名运动员进行编号,编号分别为,,,,,,现从这名运动员中随机抽取人参加双打比赛.①用所给编号列出所有可能的结果;②设为事件“编号为和的两名运动员中至少有人被抽到”,求事件发生的概率.解()应从甲、乙、丙三个协会中抽取的运动员人数分别为.()①从名运动员中随机抽取人参加双打比赛的所有可能结果为{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},共种.②编号为和的两名运动员中至少有人被抽到的所有可能结果为{,},{,},{,},{,},{,},{,},{,},{,},{,},共种.因此,事件发生的概率()==..一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同.随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.()求“抽取的卡片上的数字满足+=”的概率;()求“抽取的卡片上的数字,,不完全相同”的概率.解()由题意知,(,,)所有的可能为(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),共种.设“抽取的卡片上的数字满足+=”为事件,则事件包括(),(),(),共种.所以()==.因此,“抽取的卡片上的数字满足+=”的概率为.()设“抽取的卡片上的数字,,不完全相同”为事件,则事件包括(),(),(),共种.所以()=-()=-=.因此,“抽取的卡片上的数字,,不完全相同”的概率为..(·课标全国乙)某公司计划购买台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个元.在机器使用期间,如果备件不足再购买,则每个元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记表示台机器在三年使用期内需更换的易损零件数,表示台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.()若=,求与的函数解析式;()若要求“需更换的易损零件数不大于”的频率不小于,求的最小值;()假设这台机器在购机的同时每台都购买个易损零件,或每台都购买个易损零件,分别计算这台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买个还是个易损零件?解()当≤时,=;当>时,=+(-)=-.所以与的函数解析式为=(∈).()由柱状图知,需更换的零件数不大于的频率为,不大于的频率为,故的最小值为.()若每台机器在购机同时都购买个易损零件,则这台机器中有台在购买易损零件上的费用为台的费用为台的费用为,因此这台机器在购买易损零件上所需费用的平均数为。

高三数学统计与概率试题答案及解析

高三数学统计与概率试题答案及解析

高三数学统计与概率试题答案及解析1.展开式中,项的系数为()A.120B.119C.210D.209【答案】D【解析】展开式中,含项的系数分别为选D.【考点】二项式定理2.(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80-90分数段的学员数为21人(1)求该专业毕业总人数N和90-95分数段内的人数;(2)现欲将90-95分数段内的名人分配到几所学校,从中安排2人到甲学校去,若人中仅有两名男生,求安排结果至少有一名男生的概率.【答案】(1)6;(2).【解析】根据题中所给的频率分布直方图找某些信息即可得结果,第二问根据题意找出对应的基本事件总数,再找出满足条件的基本事件数,从而得出结果.试题解析:(1)分数段频率为,此分数段的学员总数为人所以毕业生的总人数为,分数段内的人数频率为,所以分数段内的人数;(2)分数段内的人中有两名男生,名女生设男生为;女生为,设安排结果中至少有一名男生为事件从中取两名毕业生的所有情况(基本事件空间)为共种组合方式,每种组合发生的可能性是相同的其中, 至少有一名男生的种数为共种,所以,.【考点】(1)频率分布直方图;(2)古典概型.3.如果的展开式中各项系数之和为128,则展开式中的系数是.【答案】21【解析】由题可知,令,于是有,解得,二项式展开项的通式为,令,因此的系数;【考点】二项式系数的性质4.(本小题共14分)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.【答案】(Ⅰ)(Ⅱ)(Ⅲ)选择L2路线上班最好【解析】(Ⅰ)由题可知,利用二项分布即可得出;(Ⅱ)利用相互独立事件的概率计算公式及离散型随机变量的期望计算公式即可得出;(3)由于走路线时服从二项分布即可得出期望,比较两条路线的期望值即可得出选择的路线;试题解析:(Ⅰ)设走L1路线最多遇到1次红灯为A事件,则.所以走L1路线,最多遇到1次红灯的概率为.(Ⅱ)依题意,的可能取值为0,1,2.,,.随机变量的分布列为:.(Ⅲ)设选择L1路线遇到红灯次数为,随机变量服从二项分布,,所以.因为,所以选择L2路线上班最好.【考点】•二项分布 相互独立事件的概率 离散型随机变量的期望5.(本小题满分13分)已知,(Ⅰ)若,求的值;(Ⅱ)若,求中含项的系数;(Ⅲ)证明:【答案】(Ⅰ);(Ⅱ)99;(Ⅲ)证明见解析.【解析】(Ⅰ)求展开式中奇数项与偶数项系数和问题,可用计算;(Ⅱ)由题意,由二项式定理可求得展开式中某项的系数;(Ⅲ)这类组合恒等式的证明,通常用构造法,把构造成一个多项式中某项的系数,由(Ⅱ)的提示可得是中的系数,另一方面对求和可得,这个展开式中的系数应该为,这样就能证得结论.试题解析:(Ⅰ)因为,所以,又,所以(1)(2)(1)-(2)得:所以:(Ⅱ)因为,所以中含项的系数为(Ⅲ)设(1)则函数中含项的系数为(2)(1)-(2)得中含项的系数,即是等式左边含项的系数,等式右边含项的系数为所以【考点】二项式定理及其应用.6.已知的展开式中含项的系数为12,则展开式的常数项为__________.【答案】160【解析】二项式的通项为,令得,.令得,展开式的常数项为.【考点】二项式通项.7.(本小题满分12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.①求这两种金额之和不低于20元的概率;②若用X表示这两种金额之和,求X的分布列和数学期望.【答案】(1);(2),分布列详见解析,.【解析】本题主要考查离散型随机变量的分布列和数学期望、相互独立事件的概率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由用表中数据所得频率代替概率,能求出处罚10元会闯红灯的概率与罚20元会闯红灯的概率的差;第二问,①设“两种金额之和不低于20元”的事件为A,从5种金额中随机抽取2种,总的选法有,满足金额之和不低于20元的有6种,由此能求出所求的概率;②根据条件,X的可能取值为5,10,15,20,25,30,35,由此能求出X的分布列和数学期望.试题解析:(Ⅰ)由条件可知,处罚10元会闯红灯的概率与处罚20元会闯红灯的概率的差是.(Ⅱ)①设“两种金额之和不低于20元”的事件为A,从5种金额中随机抽取2种,总的抽选方法共有种,满足金额之和不低于20元的有6种,故所求概率为.②根据条件,X的可能取值为5,10,15,20,25,30,35,分布列为【考点】离散型随机变量的分布列和数学期望、相互独立事件的概率.8.(本小题满分12分)为了了解中学生的体能状况,某校抽取了n名高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中第二小组频数为7.(1)求频率分布直方图中a的值及抽取的学生人数n;(2)现从跳绳次数在[179.5,199.5]内的学生中随机选取2人,求至少有一人跳绳次数在[189.5,199.5]之间的概率。

高三数学概率统计知识点归纳(K12教育文档)

高三数学概率统计知识点归纳(K12教育文档)

高三数学概率统计知识点归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三数学概率统计知识点归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三数学概率统计知识点归纳(word版可编辑修改)的全部内容。

概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念1.平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量。

2019高考数学(理)真题和模拟题分类汇编-概率与统计.docx

2019高考数学(理)真题和模拟题分类汇编-概率与统计.docx

概率与统计专题1.[2019年高考全国III卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70^100=0.7.故选C.【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.[2019年高考全国II卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差【答案】A【解析】设9位评委评分按从小到大排列为不 <吃<兀3<兀4 <忑<冯.则①原始中位数为冯,去掉最低分X1,最高分兀后剩余兀2<兀3<兀4< <忑,中位数仍为无,A正确;-1 — 1②原始平均数% = <x2<x3<x4 <X8< x9),后来平均数x' ~—{x2 < x3 < x4 < x8),平均数受极端值影响较大,•••:与7不一定相同,B不正确;1 1 — _ —® S2 = -[(%! - X)2 + (%! - X)2 ++(%-元)2], s'2 =-[(X2-X,)2+(X3-x'f++(X8-y)2],由②易知,C不正确;④原极差=冯-召,后来极差=忑-兀2,显然极差变小,D不正确.故选A.3. [2019年高考浙江卷】设OVaVl,则随机变量X的分布列是则当a 在(0,1)内增大时,A. D(X)增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解. 本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合 性,注重重要知识、基础知识、运算求解能力的考查.【解析】方法1:由分布列得E(X)=匕色,则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.方法 2:则 D(X) = E(X-)-E(X) = 0 + — + --^^ = ^-^-^ = -[(a--)-+~],3 3 9 9 9 2 4则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计 算能力差,不能正确得到二次函数表达式.4. [2019年高考江苏卷】已知一组数据6, 7, 8, 8, 9, 10,则该组数据的方差是 _______________________ .【答案】|所以该组数据的方差是丄[(6-8)2 + (7 -8)2 + (8-8)2 + (8 -8)2+ (9 -8)2 + (10-8)2]=-. 635. [2019年高考全国II 卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁 列车所有车次的平均正点率的估计值为 _______________ • 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为10x0.97 + 20x0.98 + 10x0.99 = 39.2,其中高铁39 2 个数为10 + 20 + 10 = 40 ,所以该站所有高铁平均正点率约为=0.98 .40【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度 不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车 总数的比值.B. £>(X)减小C. £>(X)先增大后减小D. £>(X)先减小后增大【解析】由题意,该组数据的平均数为 --------- -------- =8,6.[2019年高考全国I卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4: 1获胜的概率是【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解•题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63x0.5x0.5x2 = 0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4x0.62x0.52x2 = 0.072,综上所述,甲队以4 : 1获胜的概率是q = 0.108 + 0.072 = 0.1 &【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.[2019年高考全国III卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A, B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同•经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C)的估计值为0.70.(1)求乙离子残留百分比直方图中a, b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1) a=0.35, b=0.10; (2)甲、乙离子残留百分比的平均值的估计值分别为4.05 , 6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a-0.35.^=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2x0.15+3x0.20+4x0.30+5x0.20+6x0.10+7x0.05=4.05.乙离子残留百分比的平均值的估计值为3x0.05+4x0.10+5x0.15+6x0.35+7x0.20+8x0.15=6.00.8.[2019年高考全国II卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.⑴求P (X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1) 0.5; (2) 0.1.【解析】(1) X=2就是10 : 10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X=2) =0.5x0.44- (1-0.5) x (1-0.4) =0.5.(2) X=4且甲获胜,就是10: 10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5x (1-0.4) + (1-0.5) x0.4]x0.5x0.4=0.1.9.[2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7: 30之前到校的概率均为扌.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7: 30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7: 30之前到校的天数比乙同学在7: 30之前到校的天数恰好多2”,求事件M发生的概率.【答案】(1)分布列见解析,E(X) = 2; (2)—.243【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7: 30之前到校的概率均为扌,2 2 1故X ~ B(3,-),从而P(X=k) = C; (-/ (-)3-'山=0,1,2,3.所以,随机变量X的分布列为随机变量X的数学期望E(X)=3x| = 2.(2)设乙同学上学期间的三天中7: 30之前到校的天数为Y ,2则Y 〜3(3,§),且M={X=3,Y = 1}{X = 2,Y = 0}.由题意知事件{X=3,Y = 1}与{X=2,Y = 0}互斥,且事件{X = 3}与{丫 = 1},事件{X = 2}与{Y = 0}均相互独立,从而由(1)知P(M) = P({X=3,Y = 1}{X=2,Y=0})= P(X=3,Y = l) + P(X=2,Y = 0)=P(X = 3)P(y = 1) + P(X = 2)P(Y = 0)8 2 4 1 20—___ x _ | _ x ___—___27 9 9 27 243 '10.[2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A, B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A, B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A, B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人, 发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1) 0.4; (2)分布列见解析,E (X) =1; (3)见解析.【解析】(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A, B两种支付方式都不使用的学生有5人.故样本中A, B两种支付方式都使用的学生有100-30-25-5=40人.40所以从全校学生中随机抽取1人,该学生上个月A, B两种支付方式都使用的概率估计为—-0.4.(2) X的所有可能值为0, 1, 2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.9 + 3 14 + 1由题设知,事件C, D相互独立,且P(C) = —= 0.4, P(D) = -^- = 0.6.所以P(X -2) = P(CD) = P(C)P(D) = 0.24 ,P(X = 1) = P(CD CD)= P(C)P(D) + P(C)P(D)=0.4 x (1 — 0.6) + (1 — 0.4) x0.6= 0.52,P(X =0) = P(CD) = P(C)P(D) = 0.24 .所以X的分布列为故x 的数学期望E(X) = 0x0.24 + 1x0.52 + 2x0.24 = 1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E) = -^ =――.C: 4060答案示例1:可以认为有变化.理由如下:P (E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.11.[2019年高考全国I卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为a和0, —轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,A0 = 0,1, ,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则Po=O,卩8=1,Pi = ap-i + bp: + epi*、(i = \,2,,7),其中1), b = P(X=0), C=P(X = 1).假设« = 0.5, 0 = 0.8.(i)证明:{p i+l-Pi] G = 0,l,2, ,7)为等比数列;(ii)求A,并根据A的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)⑴证明见解析,(ii) °4 =占,解释见解析.【解析】X的所有可能取值为-1,0,1.P(X=_l) = (l_a)0,P(X=Q) = a/3 + (l-a)(l-/3),p(X=l) = a(l_0),所以X的分布列为(2)(i)由(1)得a = 0.4,b = 0.5,c = 0.1.因此B =0.4p_i +0.5Pi +0.1p i+1,故0.1(p,+i —门)= 0.4(门一门_J, 即P M-P i=4(P i-P i-i)-又因为Pl _ Po = Pl * 0,所以{p^-p^i = 0,1,2,,7)为公比为4,首项为p的等比数列.(ii)由(i)可得ft = A-A+A-A+ +P l-Po + Po=(A-A)+(A-A)+ +(A-A)48-l=P\ •313由于A=h故0严歹二,44 _1 1所以A = (A - ft) + (ft - ^2)+(^2 - A)+(A - Po)==面•A表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为刃= 0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果f服从正态分布N(1Q2)Q>0),若P(0<£ <1) = 0.4,则P(0<^<2) =A. 0.4B. 0.8C. 0.6D. 0.2【答案】B【解析】由正态分布的图象和性质得P(0<^<2) = 2P(0<^<l) = 2x0.4 = 0.8.故选B.【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13. 【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙本容量和抽取的高中生近视人数分别为A. 100, 10 C. 200, 10【答案】D【解析】由题得样本容量为(3500 + 2000 + 4500) x 2% = 10000 x 2% = 200 , 抽取的高中生人数为2000x2% = 40人,则近视人数为40x0.5 = 20人,故选D.14. 【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的 次数为X,则X 的数学期望是A. 1B. 235 C. —D. 一22【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好岀现2枚正面向上的概率,进而利用二项分 布求数学期望即可.【解析】•••一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为丄x 丄=-,2 2 4X~B (4丄),E (X ) = 4x - = 1.故选A.4 4【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从 二项分布B ~(77, p ),也可以直接利用公式E (G = np 求数学期望.15. 【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三 三个年级中抽取的人数分别为 【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数.所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样 B. 100, 20 D. 200, 20甲【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为空,—,—,49 49 49因此,各年级抽取人数分别为98x —= 36, 98x —= 32, 98x —= 30,故选B.49 49 4916.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为则E(§) =14 13A. —B.—5 57 8C. —D.—3 3【答案】A【分析】先求出歹的可能取值及取各个可能取值时的概率,再利用E^) = ^p1+^p2+ +&门+可求得数学期望.【解析】§的可能取值为2,3,4, § = 2表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故3 3 9P(^ = 2) = -x- = —; ^ = 3表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白3 2 2 3 12球,故P(^ = 3) = -x-+-x-=—; ^=4表示从甲口袋中取岀一个白球,从乙口袋中取出一个红5 5 5 5 252 2 4 9 12 4 14球,故P(g = 4) = —x—= ——,所以E(^) = 2x —+ 3x —+ 4x—.故选A.5 5 25 25 25 25 517.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为元,方差为s',则A.壬= 70,『<75B.壬= 70,/>75C.壬>70,¥ <75D.壬<70,2 >75【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得元,M 的值,即可得到答案.设收集的48个准确数据分别记为西,尢2,,屯8, 则 75 =命[(X] — 70)2 + (x 2 -70)2 ++ (心-70)2 + (60 -70)2 + (90 — 70)2 ]=#3 - 70『*(勺 _ 70)2 + + (x 48 - 70)2 + 500],$2 =令[(西 _ 70)2 + (花-70)2 ++(屯8 _70)2 + (80 -70)2 + (70 -70)2]=寺[(Xi — 70)2 + (x 2 — 70)2 + + (x 48- 70)2 + 100] <75 ,所以52 < 75 ■故选A.【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数 和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18. 【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的 是A.成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000人C.考生竞赛成绩的平均分约70.5分D.考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率 分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4000x0.25 = 1000,故B 正确;由频率分布直方图可得:平均分等于45x0.1 + 55x0.15 + 65x0.2 + 75x0.3 + 85x0.15 +95x0.1 = 70.5,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为70 + 10X ^Q 71.67,故D 错误.故选D.0.319. 【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化 基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共 同参与诗【解析】由题意, 可得牙=70x50 + 80-60 + 70-9050= 70,成绩(分)词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髻小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率.4【答案】(1)1, 3 , 2 ;(2)—.【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数= =15,这2人来自同一年龄组包含的基本事件个数为加=C; +C; = 4,由此能求出这2人来自同一年龄组的概率.【解析】(1)•••样本容量与总体个数的比是岛=岂,108 18•••样本中包含3个年龄段落的个体数分别是:年龄在[7, 20)的人数为一x 18=1,108年龄在[20, 40)的人数为—x54=3,108年龄在[40, 80)的人数为—x36=2,108•••从这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为" = C;=15,这2人来自同一年龄组包含的基本事件个数为加=C; + C; = 4,m 4/.这2人来自同一年龄组的概率P = — = —.n 1520.[2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.(1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利%!万元,销售一台第二类机器获利吃万元,…,销售一台第五类机器获利忑,依据上表统计数据,随机销售一台机器获利的期望为£(%),设元=斗+勺+ ;3 +屯+抵,试判断E(x)与无的大小.(结论不要求证明)【答案】(1) -; (2) —; (3) E(x) < x .3 21【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,d记两台机器的利润率不同为事件B,由P(B) = —屮即可结果;(3)先由题意确定,X可能取的值, 求出对应概率,进而可得出E(x),再由亍=再+勺+;+"+兀求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器,利润率高于0.2的是第一类和第四类,共有10台.设“这台机器利润率高于0.2”为事件4,则P(A)=|^ = |.(2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有C :种不同方法, 两台机器的利润率不同则每类各取一台有C ;C ;°种不同方法,c 1^10设两台机器的利润率不同为事件B ,则P(3) =•因 ith J E(x) = -x8 + —x5 + -x3 + -xl0 = —;6 15 5 6 1529,所以 E(x) < x . 21. 【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如 下:等级 标准果优质果精品果礼品果个数10 30 40 20(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,方案1:不分类卖出,单价为20元/kg. 方案2:分类卖出,分类后的水果售价如下:等级 标准果优质果精品果礼品果售价(元/kg)16 18 22 24从采购单的角度考虑,应该采用哪种方案?(3) 用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望E(X). 【答案】(1) 笺;(2)第一种方案;(3)分布列见解析,£(X) = |.625 5P(x -3) =10 + 8 30*10)佥冷,(3)由题意可得,X 可能取的值为&5,3,10【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公 式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布, 利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的 计算公式求得结果.【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为4,则P(A) = ^ = |, 现有放回地随机抽取4个,设抽到礼品果的个数为X,则X~B(4,f), 所以恰好抽到2个礼品果的概率为P(X=2) = C^(j)2(|)2 =曇,(2)设方案2的单价为则单价的期望值为 13 42^) = 16x- + 18x- + 22x- + 24x- =因为E(g)>20,所以从采购商的角度考虑,应该采用第一种方案.(3) 用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个,现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,C 3 1c 2C* 1 则 P(X=0)=-^ = -; P(X=1)=-^A = -Jo ° Jo 乙P(X = 2) = ^ = A ; P (X =3)=4 = ±C ;o 10 30所以X 的分布列如下:【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的 求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求 解出概率.6 516 + 54 + 88 + 4810所以 E(X) = 0x- + lx- + 2x —+ 3x —=6 2 10 30。

高中数学专题――概率统计专题.doc(精选.)

高中数学专题――概率统计专题.doc(精选.)

专题二概率统计专题【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题.【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】题型1 抽样方法-)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999定后两位数为的号码为中奖号码,该抽样运用的抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对分析:实际“间隔距离相等”的抽取,属于系统抽样.解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B.点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体.例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24B.18C.16D.12 Array分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了.x=⨯=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380+++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是37337738037015006450016⨯=.答案C.2000点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识.例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[)出人.分析:实际上是每100人抽取一人,只要把区间内的人数找出来即可.解析:根据图可以看出月收入在[)2500,3500的人数的频率是()0.00050.00035000.4+⨯=,故月收入在[)2500,3500人数是100000.44000⨯=,故抽取25人.点评:本题把统计图表和抽样方法结合起来,主要目的是考查识图和计算能力.题型2统计图表问题例4(安徽省皖南八校2009届高三第二次联考理科数学第2题)从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如右图:若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为A .10B .20C .8D .16分析:根据图找出视力在0.9以上的人数的频率即可.解析:B . 视力住0.9以上的频率为(10.75.025)0.20.4++⨯=,人数为0.45020⨯=.点评:在解决频率分别直方图问题时容易出现的错误是认为直方图中小矩形的高就是各段的频率,实际上小矩形的高是频率除以组距.例5 (2009年杭州市第一次高考科目教学质量检测理科第13题)某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示,则这组数据的中位数是 ;众数是 .分析:根据茎叶图和中位数、众数的概念解决.解析:由于中位数是把样本数据按照由小到大的顺序排列起来,处在中间位置的一个(或是最中间两个数的平均数),故从茎叶图可以看出中位数是23;而众数是样本数据中出现次数最多的数,故众数也是23. 点评:一表(频率分布表)、三图(频率分布直方图、频率折线图、茎叶图)、三数(众数、中位数、众数)和标准差,是高考考查统计的一个主要考点.例5(2008高考广东文11)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[)55,75 的人数是 .分析:找出频率即可.解析: ()200.0400.00251013⨯+⨯=⎡⎤⎣⎦.点评:本题考查频率分布直方图,解题的关键是明确这个直方图上的纵坐标是频率/组距,得出生产数量在[)55,75的人数的频率.题型3 平均数、标准差(方差)的计算问题例6 (2008高考山东文9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A 3B 210C .3D .85分析:根据标准差的计算公式直接计算即可.解析: 平均数是5204103302301103100⨯+⨯+⨯+⨯+⨯=, 标准差是 ()()()()()22222205310433033302310131008010304082101005s ⨯-+⨯-+⨯-+⨯-+⨯-=+++===答案B .点评:本题考查数据组的平均数和标准差的知识,考查数据处理能力和运算能力.解题的关键是正确理解统计表的意义,会用平均数和标准差的公式,只要考生对此认识清楚,解答并不困难.例7.(中山市高三级2008—2009学年度第一学期期末统一考试理科第9题)若数据123,,,,n x x x x 的平均数5x =,方差22σ=,则数据12331,31,31,,31n x x x x ++++的平均 数为 ,方差为 .分析:根据平均数与方差的性质解决.解析:16,18 例8.(浙江宁波市2008学年度第一学期期末理科第3题)如图是2009年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A . 84,4.84B .84,1.6C . 85,1.6D .85,4解析:C题型4 用样本估计总体例8(2008高考湖南文12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多_____________人.解析:60 由上表得23211500023060.500-⨯=⨯= 点评:考查样本估计总体的思想.题型5.线性回归分析例9.(2007高考广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据x3 4 5 6 y2.5 3 4 4.5(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a =+;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?分析:本题中散点图好作,本题的关键是求y 关于x 的线性回归方程y bx a =+,它既可以由给出的回归系数公式直接计算,也可以遵循着最小二乘法的基本思想――即所求的直线应使残差平方和最小,用求二元函数最值的方法解决.解析:(1)散点图如右;(2)方法一:设线性回归方程为y bx a =+,则 222222222(,)(3 2.5)(43)(54)(6 4.5)42(1814)(3 2.5)(43)(54)(6 4.5)f a b b a b a b a b a a a b b b a b =+-++-++-++-=+-+-+-+-+- ∴79 3.5 4.52b a b -==-时, (,)f a b 取得最小值2222(1.51)(0.50.5)(0.50.5)(1.51)b b b b -+-+-+-, 即22250.5[(32)(1)]572b b b b -+-=-+,∴0.7,0.35b a ==时(),f a b 取得最小值.所以线性回归方程为0.70.35y x =+.方法二:由系数公式可知,266.54 4.5 3.566.5634.5, 3.5,0.75864 4.5x y b -⨯⨯-=====-⨯ 93.50.70.352a =-⨯=,所以线性回归方程为0.70.35y x =+. (3)100x =时,0.70.3570.35y x =+=,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.点评:本题考查回归分析的基本思想.求线性回归方程的方法一这实际上是重复了回归系数公式的推导过程,这里的另一个解决方法是对(),f a b 我们再按b 集项,即()()()()()22222,86(36133) 2.534 4.5f a b b a b a a a a =+-+-+-+-+-,而这个时候,当13336172a b -=时(),f a b 有最小值,结合上面解法中 3.5 4.5a b =-时(),f a b 有最小值,组成方程组就可以解出a ,b 的值;方法二前提是正确地使用回归系数的计算公式,一般考试中都会给出这个公式,但要注意各个量的计算;最后求出的19.65是指的平均值或者是估计值,不是完全确定的值.对于本题我们可以计算题目所给的数据组的相关系数0.9899r =,相关指数20.98R =.这说明x ,y 具有很强的线性相关性,说明解释变量对预报变量的贡献率是98%,即耗煤量的98%是来自生产量,只有约2%来自其它因素,这与我们的直观感觉是十分符合的.本题容易用错计算回归系数的公式,或是把回归系数和回归常数弄颠倒了.例10.(江苏扬州市2008-2009学年度第一学期期未调研测试第17题)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7数学88 83 117 92 108 100 112 物理 94 91 108 96 104101 106 (1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.分析:成绩的稳定性用样本数据的方差判断,由物理成绩估计数学成绩由回归直线方程解决.解析:(1)12171788121001007x --+-++=+=; 69844161001007y --+-+++=+=; 2994==1427S ∴数学,2250=7S ∴物理, 从而22S S >数学物理,所以物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系,根据回归系数公式得到 497ˆˆ0.5,1000.510050994b a ===-⨯=, ∴线性回归方程为0.550y x =+.当115y =时,130x =.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.点评:《考试大纲》在必修部分的统计中明确指出“①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程”.2007年广东就以解答题的方式考查了这个问题,在复习备考时不可掉一轻心.题型6 古典概型与几何概型计算问题例11 (2008高考江苏2)一个骰子连续投2次,点数和为4的概率 .分析:枚举基本事件总数和随机事件所包含的基本事件的个数后,根据古典概型的计算公式计算.解析:点数和为4,即()()()1,3,2,2,3,1,基本事件的总数是36,故这个概率是31369=.或是数形结合处理.点评:古典概型的计算是一个基础性的考点,高考中除了以解答题的方式重点考查概率的综合性问题外,也以选择题、填空题的方式考查古典概型的计算.例12.(2009年福建省理科数学高考样卷第4题)如图,边长为2的正方形内有一内切圆.在图形上随机投掷一个点,则该点落到圆内的概率是A .4πB .4πC .44π-D .π分析:就是圆的面积和正方形面积的比值.解析:根据几何概型的计算公式,这个概率值是4π,答案A . 点评:高考对几何概型的考查一般有两个方面,一是以选择题、填空题的方式有针对性地考查,二是作为综合解答题的一部分和其他概率计算一起进行综合考查.例13.(2008高考山东文18)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组 成一个小组.(1)求1A 被选中的概率;(2)求1B 和1C 不全被选中的概率.分析:枚举的方法找出基本事件的总数,结合着随机事件、对立事件的概率,用古典概型的计算公式解决. 解析:(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,,231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,,322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成,因而61()183P M ==. (2)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件, 由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=. 点评:本题考查古典概率、对立事件等概率的基础知识,考查分类讨论、“正难则反”等数学思想方法,考查分析问题解决问题的能力.题型7 排列组合(理科)例14.(浙江宁波市2008学年度第一学期期末理科第9题)由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =A .2014B .2034C .1432D .1430分析:按照千位的数字寻找规律. 解析:千位是1的四位偶数有123318C A =,故第19和是千位数字为2的四位偶数中最小的一个,即2014,答案A .例15.(2009年杭州市第一次高考科目教学质量检测理科第17题)有3张都标着字母A ,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中6张卡片组成牌号,则可以组成的不同牌号的总数等于 .(用数字作答)分析:由于字母A 是一样的,没有区别,故可以按照含有字母A 的多少分类解决,如含有2个字母A 时,只要在6个位置上选两个位置安排字母A 即可,再在其余位置上安排数字.解析:不含字母A 的有66720A =;含一个字母A 的有156667204320C A =⨯=;含两个字母A 时,24665400C A =;含三个字母A 时,33662400C A =.故总数为72043205400240012840+++=.点评:解决排列、组合问题的一个基本原则就是先对问题分类、再对每一类中的问题合理地分步,根据排列组合的有关计算公式和两个基本原理进行计算.题型8 二项式定理(理科)例15.(浙江宁波市2008学年度第一学期期末理科第12题)已知1110(1)n n n n n ax a x a x a x a --+=++++*()n ∈N ,点列(,)(0,1,2,,)i i A i a i n =部分图象 如图所示,则实数a 的值为___________.分析:根据点列的图可以知道012,,a a a 的值,即可以通过列方程组解决.解析:由图123,4a a ==,又根据二项展开式113n n a C a na -===,()()222233(1)4222n n na na a a n n a C a a ----=====,解得13a =. 点评:本题以点列的部分图象设计了一个与二项式有关的问题,解决问题的基本出发点是方程的思想. 例16(安徽省皖南八校2009届高三第二次联考理科数学第4题)若23123(1)1()n n x a x a x a x x n N +-=+++++∈,且13:1:7a a =,则5a 等于A .56B .56-C .35D .35- 分析:根据展开式的系数之比求出n 值.解析:2323,n n a C a C =-=-,由23:1:7a a =,得8n =,故55856a C =-=-,答案B .点评:解这类题目要注意展开式的系数和展开式中项的系数是区别,别把符号弄错了.题型9 离散型随机变量的分布、期望与方差(理科的重要考点)例17.(浙江宁波市2008学年度第一学期期末理科第19题)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回...地先后抽得两张卡片的标号分别为x 、y ,记x y x -+-=2ξ. (1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;(2)求随机变量ξ的分布列和数学期望.分析:根据对随机变量ξ的规定,结合,x y 的取值确定随机变量可以取那些值,然后根据其取这些值的意义,分别计算其概率.解析:(1)x 、y 可能的取值为1、2、3,12≤-∴x ,2≤-x y ,3≤∴ξ,且当3,1==y x 或1,3==y x 时,3=ξ. 因此,随机变量ξ的最大值为3 .有放回抽两张卡片的所有情况有933=⨯种,92)3(==∴ξP . (2)ξ的所有取值为3,2,1,0. 0=ξ 时,只有2,2==y x 这一种情况,1=ξ时,有1,1==y x 或1,2==y x 或3,2==y x 或3,3==y x 四种情况,2=ξ时,有2,1==y x 或2,3==y x 两种情况.91)0(==∴ξP ,94)1(==ξP ,92)2(==ξP . 则随机变量ξ的分布列为:因此,数学期望993929190=⨯+⨯+⨯+⨯=ξE . 点评:有放回的“取卡片、取球”之类的问题,其基本事件的总数要由分步乘法计数原理解决,这是一类重要的概率模型.例18.(江苏扬州市2008-2009学年度第一学期期未调研测试加试第4题)某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23. (1)求比赛三局甲获胜的概率;(2)求甲获胜的概率;(3)设甲比赛的次数为X ,求X 的数学期望.分析:比赛三局甲即指甲连胜三局,可以按照相互独立事件同时发生的概率乘法公式计算,也可以将问题归结为三次独立重复试验,将问题归结为独立重复试验概型;甲最后获胜,可以分为甲三局获胜、四局获胜、五局获胜三个互斥事件的概率之和;甲比赛的次数也就是本次比赛的次数,注意当三局就结束时,可能是甲取胜也可能是乙取胜等.解析:记甲n 局获胜的概率为n P ,3,4,5n =,(1)比赛三局甲获胜的概率是:333328()327P C ==; (2)比赛四局甲获胜的概率是:2343218()()3327P C ==; 比赛五局甲获胜的概率是:232542116()()3381P C ==; 甲获胜的概率是:3456481P P P ++=. (3)记乙n 局获胜的概率为'n P ,3,4,5n =.333311'()327P C ==,2343122'()()3327P C ==;23254128'()()3381P C ==; 故甲比赛次数的分布列为:X 3 4 5 ()P X33'P P + 44'P P + 55'P P + 所以甲比赛次数的数学期望是: 1882168107()3()4()5()27272727818127E X =⨯++⨯++⨯+=. 点评:这是一个以独立重复试验概型为基本考查点的概率试题,但这里又不是单纯的独立重复试验概型,是一个局部的独立重复试验概型和相互独立事件的结合.这类比赛型的概率试题也是一个重要的概率模型.题型11 正态分布例19.(2008高考湖南理4)设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c =( )A .1B .2C .3D .4分析:根据正态密度曲线的对称性解决.解析:B 根据正态密度曲线的对称性,即直线1x c =+与直线1x c =-关于直线2x =对称,故1122c c ++-=,即2c =. 点评:本质是通过正态密度曲线考查数形结合的思想意识.例20(2008高考安徽理10)设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>, 的密度函数图像如图所示.则有A .1212,μμσσ<<B .1212,μμσσ<>C .1212,μμσσ><D .1212,μμσσ>>分析:根据正态密度曲线的性质解决.解析:A 根据正态分布),(2σμN 函数的性质:正态分布曲线是一条关于μ=x 对称,在μ=x 处取得最大值的连续钟形曲线;σ越大,曲线的最高点越底且弯曲较平缓;反过来,σ越小,曲线的最高点越高且弯曲较陡峭,选A .点评:考试大纲对正态分布的要求是“利用实际问题直方图,了解正态分布曲线的特点及曲线所表示的意义”,这个考点多次出现在高考试卷中. 【专题训练与高考预测】文科部分一、选择题1.从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,若其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为 ( )A .1000B .1200C .130D .13002.已知x 与y 之间的一组数据:x0123y1357则y与x的线性回归方程为y a bx=+必过点()A.()2,2B.()1.5,0C.()1,2D.()1.5,43.从2007名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的概率()A.不全相等B.均不相等C.都相等,且为200750D.都相等,且为4014.根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为()A.15%B.20%C.45%D.65%5.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖奖券的概率是()A.14B.13C.12D.16.有如下四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,他应选择的游戏盘是()二、填空题7.归直线方程为0.50.81y x=-,则25x=时,y的估计值为.8.若由一个2*2列联表中的数据计算得2 4.013K=,那么有把握认为两个变量有关系.9.一工厂生产了某种产品180件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲、乙、丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了件产品.10.如图:M是半径为R的圆周上一个定点,在圆周上等可能的任取一点N,连接MN,则弦MN的长度超过2R的概率是.三、解答题11.一个质地均匀的正方体玩具的六个面上分别写着数字1,2,3,4,5,6,现将这个正方体玩具向桌面上先后投掷两次,记和桌面接触的面上的数字分别为,a b ,曲线:1x yC a b+=. (1)曲线C 和圆221x y +=有公共点的概率;(2)曲线C 所围成区域的面积不小于50的概率.12.某地(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系; (2)如果某家庭年收入为9万元,预测其年饮食支出.理科部分一、选择题1.在区间[]2,2-内任取两数a ,b ,使函数()222f x x bx a =++有两相异零点的概率是( )A .16B .14C .13D .122.在一次实验中,测得(,)x y 的四组值分别为()1,2,()2,3,()3,4,()4,5,则y 与x 的线性回归方程可能是( )A .1y x =+B .2y x =+C .21y x =+D .1y x =-5.向假设的三座相互毗邻的军火库投掷一颗炸弹,只要炸中其中任何一座,另外两座也要发生爆炸.已知炸中第一座军火库的概率为0.2,炸中第二座军火库的概率为0.3,炸中第三座军火库的概率为0.1,则军火库发生爆炸的概率是 ( ) A . 0.006 B .0.4 C . 0.5 D . 0.6 6.从标有1237,,,,的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,然后把两数相加得和,则取得的两球上的数字之和大于11或者能被4整除的概率是( )A .1649B .1549C .27D .13497.在长为60m ,宽为40m 的矩形场地上有一个椭圆形草坪,在一次大风后,发现该场地内共落有300片树叶,其中落在椭圆外的树叶数为96片,以此数据为依据可以估计出草坪的面积约为 ( )A .2768mB .21632mC .21732mD .2868m8.6名同学报考,,A B C 三所院校,如果每一所院校至少有1人报考,则不同的报考方法共有( ) A .216种 B .540种 C .729种 D .3240种 二、填空题9. 某校有高一学生400人,高二学生302人,高三学生250人,现在按年级分层抽样,从所有学生中抽取一个容量为190人的样本,应该高 学生中,剔除 人,高一、高二、高三抽取的人数依次是 . 10. 5)212(++xx 的展开式中整理后的常数项为 _____ . 11. 若2x =,则50(1)x +展开式中最大的项是 项. 三、解答题13.甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题.(1)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;(2)若甲、乙两运动员各自射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分布列及E ξ.15.袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X 的分布列; (2)不放回抽样时,取到黑球的个数Y 的分布列.16.某地10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元) 2 4 4 66 67 78 10 年饮食支出y (万元) 0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系; (2)如果某家庭年收入为9万元,预测其年饮食支出.【参考答案】文科部分1.解析:B 根据用样本估计总体的思想,池中有记号的鱼的频率是110,故鱼池中鱼的条数是1200条.4.解析:D 过样本中心点.选D.7.解析:C 任何个体被抽到的概率都相等,且是200750.8.解析:D 只有O型和A型,根据互斥事件的概率加法得结论为65%.9.解析:B 相当于在3张奖券中1张有奖,3人抽取,最后一人抽到中奖奖券的概率是13.10.解析:A 选择游戏盘的原则是中奖的概率大,A中中奖的概率是38,B中中奖的概率是13,C中中奖的概率是44π-,B中中奖的概率是1π,比较大小即知.11.解析:11.690.5250.8111.69⨯-=12.解析:95%13.解析:60.三条生产线的产品也组成等差数列.14.解析:12连接圆心O与M点,作弦MN使090=∠MON,这样的点有两个,分别记为12,N N,仅当N在不属于M的半圆弧上取值时满足2MN R>,此时021180=∠ONN,故所求的概率为21360180=.15.解析:基本事件的总数是.(1),a b应满足22111a b≤+,即22111a b+≥,逐个检验,()()()()()()()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,1,3,1,4,1,5,1,6,1,随机事件:曲线C和圆221x y+=有公共点的概率包含着11个基本事件,故所求的概率是1136;(2)曲线C所围成的区域的面积是2ab,即求25ab≥的概率,基本事件只能是()5,5,()5,6,()6,5,()6,6,故所求的概率是41369=.16.解析:(1)由题意知,年收入x为解释变量,年饮食支出y为预报变量,作散点图(如图所示).。

高中数学必修三概率知识点

高中数学必修三概率知识点

高中数学必修三概率知识点一、概述高中数学必修三中的概率知识点是数学学科的重要组成部分,也是日常生活和工作中经常涉及的重要内容之一。

概率论是研究随机现象的数学学科,通过对随机事件的分析和推断,揭示其内在规律和特点。

概率知识点作为高中数学必修三的重要内容,涉及概率的基本概念、事件的关系和运算、古典概型、几何概型以及离散型随机变量等知识点。

掌握这些知识点对于理解现实生活中的各种随机现象,进行科学合理的决策和风险评估具有重要意义。

在学习概率知识点时,需要掌握其基本概念和原理,学会运用概率思维解决实际问题,培养逻辑思维能力和数据处理能力。

概率知识点也是后续学习统计学、金融数学等学科的基础,对于提高数学素养和综合能力具有不可替代的作用。

1. 概率论的重要性概率论是数学的一个分支,用于研究随机现象的数量规律。

在高中数学必修三的学习中,概率知识点的重要性不容忽视。

它不仅仅是一门学科的核心内容,更是理解现实世界的一把钥匙。

在我们的日常生活中,无论是天气预测、金融投资、医学研究,还是游戏设计、风险评估等各个领域,概率知识都有着广泛的应用。

学习概率论不仅能够提高学生解决实际问题的能力,更能培养他们的逻辑思维和决策能力。

概率论是理解和预测随机事件的重要工具。

在日常生活和工作中,我们经常会遇到各种随机事件,比如抛硬币、抽奖等。

通过学习概率,我们可以知道这些随机事件的规律和趋势,从而更好地做出预测和决策。

其次val 序列深入式学习,概率论对于决策制定具有指导意义。

在金融投资领域,投资者可以通过学习概率知识,分析股票市场的走势和风险,从而做出更明智的投资决策。

在医学领域,医生可以根据疾病的发病率和患者的症状概率来做出诊断。

掌握概率知识对于个人和社会都具有重要意义。

它使我们能够更好地理解世界,做出明智的决策。

对于现代社会的发展,人们更需要有利用数学方法来理解世界的技能,这已成为我们教育的一大目标。

通过学习概率知识,学生可以为他们的未来生涯发展打下坚实的基础。

高考数学概率统计专题复习(专题训练)完整版.doc

高考数学概率统计专题复习(专题训练)完整版.doc

高考数学《概率统计》复习知识结构1.注意:互斥事件不一定是对立事件,但对立事件一定是互斥事件。

2.(1)试验的所有可能结果为有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相等。

(3)古典概型的概率公式:P(A)=事件A包含的可能结果数试验的所有可能结果数=mn.3.几何概型:如果每个事件发生的概率只与构成该事件区域的长度(或面积或体积)成比例,则称这样的概率模型为几何概型。

几何概型的概率公式:设某一事件(也是S中的某一区域),S包含A,它的量度大小(长度、面积或体积)为()Aμ,考虑到均匀分布性,事件A发生的概率() ()()A P ASμμ=.4.统计学中的几个基本概念:(1)样本平均数:样本中所有个体的平均数叫做样本平均数。

(2)平均数计算公式:一般地,如果有n 个数n x x x ,,,21⋅⋅⋅,则n21n x x x x +⋅⋅⋅++=. (3)加权平均数:如果n 个数中,出现次,出现次,…,出现次(这里n f f f k =+⋅⋅⋅++21),那么,根据平均数的定义,这n 个数的平均数可以表示为n2211n n f x f x f x x +⋅⋅⋅++=,这样求得的平均数叫做加权平均数,其中k f f f ,,,21⋅⋅⋅叫做权。

(4)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

(5)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

(6)方差:在一组数据n x x x ,,,21⋅⋅⋅中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用“s 2”表示。

方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定。

(7)方差计算公式:])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=. 简化计算公式,有:])[(122222212x n x x x ns n -+⋅⋅⋅++= 也可写成22222212])[(1x x x x n s n -+⋅⋅⋅++=. 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。

高考五三数学概率知识点

高考五三数学概率知识点

高考五三数学概率知识点前言:高考是每个学生都必须面对的一项重要考试,而数学是让很多学生头疼的科目之一。

其中,概率是数学中的一项重要内容,也是高考数学中常考的知识点之一。

本文将重点介绍高考数学中的五三概率知识点,希望能够帮助同学们更好地准备高考。

一、基本概念:概率是指某一事件发生的可能性大小。

在数学中,概率由一个介于0和1之间的数字表示,其中0表示不可能发生,1表示必然发生。

在实际应用中,概率通常用百分比或分数的形式表示。

二、事件的分类:在概率中,事件可以分为两类:必然事件和不可能事件。

必然事件是指一定会发生的事件,概率为1;不可能事件是指一定不会发生的事件,概率为0。

三、概率计算:概率的计算可以通过多种方法实现,其中最常用的方法是利用频率来计算概率。

频率是指在大量的试验中,某一事件发生的次数与总试验次数之比。

当试验次数足够多时,频率逼近于概率。

因此,通过频率来计算概率是一种较为常用的方法。

四、互斥事件:在概率中,互斥事件指的是两个事件不可能同时发生的情况。

对于互斥事件来说,它们的概率之和等于两个事件单独发生的概率之和。

例如,掷硬币的结果只可能是正面或反面,两者不可能同时出现。

五、独立事件:独立事件指的是两个事件之间互不影响的情况。

对于独立事件来说,它们的概率乘积等于两个事件单独发生的概率之积。

例如,两个骰子同时掷出的点数之和为7的概率为1/6 * 1/6 = 1/36。

六、条件概率:条件概率指的是在已知某一事件发生的情况下,另一事件发生的概率。

条件概率可以通过利用“事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生的条件下发生的概率”来计算。

七、贝叶斯定理:贝叶斯定理是利用条件概率来反推事件发生的可能性。

贝叶斯定理的公式为:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在B发生的条件下A发生的概率,P(B|A)表示在A发生的条件下B发生的概率,P(A)和P(B)分别表示A和B的独立发生的概率。

(好题)高中数学必修三第三章《概率》测试卷(答案解析)(2)

(好题)高中数学必修三第三章《概率》测试卷(答案解析)(2)

一、选择题1.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与另一段GN GN 的比例中项,即满足512MG NG MN MG -==,后人把这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.在矩形ABCD 中,E ,F 是线段AB 的两个“黄金分割”点.在矩形ABCD 内任取一点M ,则该点落在DEF 内的概率为( )A .52- B .51- C .52- D .51- 2.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .153.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .564.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4135.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( ) A .916B .58C .181288D .5126.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.517.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .18.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .359.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .5810.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .193611.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

高三数学(概率统计部分)整理

高三数学(概率统计部分)整理

高三数学(概率统计部分)整理概率统计是历年高考的热点内容之一,考查方式多样,难度中等 ,主要考查概率与统计的基本概念、公式以及基本技能、方法,以及分析问题、解决问题的能力•通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近 学生实际的问题。

以排列和概率统计知识为工具,考查概率的计算、随机变量的概率分布、 均值、方差、抽样方法、样本频率估计、线性回归方程、独立性检验、随机变量的分布列、 期望、方差等内容• 考点1.求等可能性事件、互斥事件和相互独立事件的概率(1) 等可能性事件(古典概型)的概率:P(A) = Card (A )= m ; card (I) n (2) 互斥事件有一个发生的概率: P(A + B) = P(A) + P(B); 特例:对立事件的概率: P(A) + P(A ) = P(A + A )= 1.(3) 相互独立事件同时发生的概率:P(A • B) = P(A) • P(B);特例:独立重复试验的概率:P n (k) = cnv (1 _P )心.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项•(4) 解决概率问题的一般步骤:r 等可能事件第一步,确定事件性质 互斥事件 ■独立事件n 次独立重复试验互斥事件:P(A - B^P(A) ■ P(B)独立事件: P(A B)=P(A) P(B)n 次独立重复试验:P n (k) =C;p k (1 _p)n ±第四步,答,即给提出的问题有一个明确的答复 注意:两者都是等可能性.(2)在几何概型中注意区域是线段,平面图形,立体图形 型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数, 概型的概率计算公式计算; (4)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去 分排列与组合;(5)辨别清楚条件概率问题,两种计算方法,合理选用。

北师大版高中数学必修三模拟方法——概率的应用精品课件(共18张PPT)

北师大版高中数学必修三模拟方法——概率的应用精品课件(共18张PPT)

上,聪聪玩掷飞镖游戏,假设飞镖 拉直后在绳子上任意处剪断.剪得
都能射中圆盘, 且射中圆盘上每 的两段绳长都不小于10cm的概率
个点都是等可能的, 则射中红色 是多少?
区域的概率是多少?
高潮部分:00:50-01:50.
思考1:如果放大(或缩小)红色区域的面积,事件A发生的概率会如何变化?
请问:他恰好听到《青花瓷》高潮部分的概率是多少? 点 的距离小于等于1的概率为 . 成正比, 而与其位置、形状无关.
AC D B
成正比, 而与其位置、形状无关.
剪得的两段绳长都不小于10cm的概率是多少?
随机事件A所构成区域?
线段CD的长度 红色区域的面积 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. P(A) 总长度 P(A) 总面积
思考:上述两个概率问题有什么共同点?
A
B
C
D
0
1
2
3
4
解:记“小明恰好听到歌曲的高潮部分”为事件A
设线段
A BP (=A4) cm1 ,CD=1cm.
4 1
答:小明恰好听到歌曲的高潮部分的概率是 4
例3:取一个边长为2a的正方形及其内切圆,随机 地向正方形内丢一粒豆子,那么豆子落入圆内的 概率为多少?
解:记“豆子落入圆内”为事件
A. P(A)
问题1:有多少种不同的剪法? 问题2: 如何选取剪断的位置,使得两段的长都不小于 10cm? 问题3: 如何计算事件A“剪得两段的长都不小于 10cm”的概率?
M
C
D
N
一个基本事件? 所有基本事件所构成区域? 随机事件A所构成区域? 事件A发生的概率?

高三数学复习必修三数学概率知识点总结

高三数学复习必修三数学概率知识点总结

高三数学复习必修三数学概率知识点总结概率论,是研究随机现象数量规律的数学分支。

1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA 为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A cap;B为不可能事件,即A cap;B=ф,那么称事件A与事件B互斥;(3)若A cap;B为不可能事件,A cup;B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(Acup;B)=P(A)+P(B);若事件A与B为对立事件,则A cup;B为必然事件,所以P(A cup;B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0 le;P(A) le;1;2)当事件A与B互斥时,满足加法公式:P(A cup;B)=P(A)+P(B);3)若事件A与B为对立事件,则A cup;B为必然事件,所以P(A cup;B)=P(A)+P(B)=1,于是有P(A)=1—P (B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【备战2018高考高三数学全国各地优质模拟试卷分项精品】专题九 概率与统计1.【黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(十)】下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为,后因某未知原因使第5组数据的值模糊不清,此位置数据记为(如下表所示),则利用回归方程可求得实数的值为( )A . 8.3B . 8.2C . 8.1D . 82.【黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(十)】某中学有3个社团,每位同学参加各个社团的可能性相同,甲、乙两位同学均参加其中一个社团,则这两位同学参加不同社团的概率为( )A .B .C .D .3.【黑龙江省哈尔滨市第六中学2018届高三下学期考前押题卷(一)】若随机变量服从二项分布,则( )A .B .C .D .4.【湖北省武汉市2018届高中毕业生四月调研测试】一张储蓄卡的密码共有位数字,每位数字都可以从中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过次就按对的概率为( )A .B .C .D .5.【宁夏平罗中学2018届高三第四次(5月)模拟数学(理)】从标有数字1、2、3、4、5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片是奇数的情况下,第二次抽到卡片是偶数的概率为 ( )A .B .C .D .6.【宁夏平罗中学2018届高三第四次(5月)模拟数学(理)】某高校调查了320名学生每周的自习时间(单位:小时),制成了下图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为,,,,.根据直方图,这320名学生中每周的自习时间不足22.5小时的人数是( )A.68 B.72 C.76 D.807.【陕西省黄陵中学2018届高三6月模拟考数学(理)】近几个月来,继“共享单车”后,“共享汽车”也在我国几座大城市中悄然兴起,关系非常要好的三个家庭(每个家庭个大人,个小孩,且大人都有驾照)共人决定周末乘甲、乙两辆共享汽车出去旅游,已知每车限坐人(乘同一辆车的人不考虑位置),其中户家庭的人需乘同一辆,则户家庭恰好乘坐甲车且甲车至少有名小孩的概率为()A.B.C.D.8.【黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(十一)】某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算的观测值,则下列选项正确的是()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响9.【黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(七)】为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:,,,,.根据收集到的数据可知,由最小二乘法求得回归直线方程为,则的值为()A.75 B.155.4 C.375 D.466.210.【重庆市合川区高2018届高三下5月模拟理】有一个容量为66的样本,数据的分组及各组的频数如下:[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2根据样本的频率分布估计,数据落在[30.5,42.5)内的概率约是( )A.B.C.D.11.【江西省新余市第四中学2018届高三适应性考试】已知随机变量服从正态分布且,则( )A.B.C.D.12.【2018年高考第二次适应与模拟】我国成功申办2022年第24届冬季奥林匹克运动会,届时冬奥会的高山速降运动将给我们以速度与激情的完美展现,某选手的速度服从正态分布,若在内的概率为,则他速度超过的概率为A.B.C.D.13.【山西省运城市康杰中学2018届高考模拟(二)】1000名学生成绩近似服从正态分布N(100,100),则成绩在120分以上的考生人数约为_________.[注:正态总体在区间内取值的概率分别为0.683, 0.954, 0.997]14.【黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(十一)】某工厂生产的三种不同型号的产品数量之比依次为,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的三种产品中抽出样本容量为的样本,若样本中型产品有16件,则的值为__________.15.【湖北省宜昌市一中2018届高三考前适应性训练2】已知函数,若都是从区间内任取的实数,则不等式成立的概率是__________.16.【河南省豫西名校2017-2018学年高二下学期第二次联考】一个口袋中装有大小相同的2个黑球和3个红球,从中摸出两个球,若表示摸出黑球的个数,则__________.17.【吉林省吉大附中2018届高三第四次模拟考试数学(理)】我国著名数学家周密的《鬼谷算》中有一道题目:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”翻译成现代文为:若一个自然数满足被3除余2被5除余3,被7除余2,则所有满足条件的的取值集合为__________.18.【河北省衡水中学2018届高三数学(理科)三轮复习】设某总体是由编号为,,…,,的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列数字开始从左到右依次选取两个数字,则选出来的第个个体编号为__________................第行...............第行19.【广东省深圳市2018届高考模拟测试】2013年春节,有超过20万名广西、四川等省籍的外来务工人员选择驾驶摩托车沿321国道返乡过年,为保证他们的安全,交管部门在321国道沿线设立多个驾乘人员休息站,交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车,就进行省籍询问一次,询问结果如下图所示.(Ⅰ)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(Ⅱ)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?(Ⅲ)在上述抽出的驾驶人员中任取2名,求至少有一名驾驶人员是广西籍的概率.20.【湖南省长沙市周南中学2018届高三第三次模拟考试】某省级示范高中高三年级对考试的评价指标中,有“难度系数”“区分度”和“综合”三个指标,其中,难度系数,区分度,综合指标.以下是高三年级6 次考试的统计数据:(I) 计算相关系数,若,则认为与的相关性强;通过计算相关系数,能否认为与的相关性很强(结果保留两位小数)?(II) 根据经验,当时,区分度与难度系数的相关性较强,从以上数据中剔除(0.7,0.8)以外的值,即.(i) 写出剩下4 组数据的线性回归方程(保留两位小数);(ii) 假设当时,与的关系依从(i)中的回归方程,当为何值时,综合指标的值最大?参考数据:参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式为21.【广东省佛山市南海区南海中学2018届高三考前七校联合体高考冲刺交流】某学校为鼓励家校互动,与某手机通讯商合作,为教师办理流量套餐.为了解该校教师手机流量使用情况,通过抽样,得到位教师近年每人手机月平均使用流量(单位:)的数据,其频率分布直方图如下:若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.(Ⅰ) 从该校教师中随机抽取人,求这人中至多有人月使用流量不超过的概率;(Ⅱ) 现该通讯商推出三款流量套餐,详情如下::这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值流量,资费元;如果又超出充值流量,系统就再次自动帮用户充值流量,资费元/次,依次类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.22.【湖北省武汉市2018届高中毕业生四月调研测试】在某市高中某学科竞赛中,某一个区名考生的参赛成绩统计如图所示.(1)求这名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩服正态分布,其中,分别取考生的平均成绩和考生成绩的方差,那么该区名考生成绩超过分(含分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取名考生,记成绩不超过...分的考生人数为,求.(精确到)附:①,;②,则,;③.23.【宁夏平罗中学2018届高三第四次(5月)模拟】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(Ⅱ)从图中A,B,C,D四人中随机.选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)24.【湖北省荆州中学2018届高三全真模拟考试(二)】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间(分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示:(分)将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过40分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望;(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)25.【广东省汕头市潮南区2018届高考(5月)冲刺】为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩;(精确到个位)(2)研究发现,本次检测的理科数学成绩近似服从正态分布(,约为),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占.(ⅰ)估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位)(ⅱ)从该市高三理科学生中随机抽取人,记理科数学成绩能达到自主招生分数要求的人数为,求的分布列及数学期望.(说明:表示的概率.参考数据:)。

相关文档
最新文档