初一数学第一学期期末考试试题11103附答案
第一学期期末测试初一数学试卷及答案(版)
x1
9. 在解方程
2x
3
1 时,去分母正确的是
2
3
A . 3 x 1 2 2x 3 1
B. 3 x 1 2 2x 3 3
C . 2 x 1 3 2x 3 6
D. 3 x 1 2 2x 3 6
10. 商场为了促销,推出两种促销方式: 方式①:所有商品打 8 折销售 . 方式②:购物每满 100 元送 30 元现金. 杨奶奶同时选购了标价为 120 元和 280 元的商品各一件,现有四种购
13
1,7, 3 8x2 y2
18
3
14
15
减去 13, 除以 2,
>
1
2
19
20
1 x
1 x
1 x
65
2,6
234
三、计算题: (每小题 5 分 ,共 20 分)
21. 原式 = -19+30 - 2----------------2 分
= 11— 2 -----------------------4 分
4
6
六、请按下列步骤画图: (用圆规、三角板或量角器画图,不写画法、保 留作图痕迹)
5
29. (每小题 1 分 ,共 4 分)如图,已知平面上的三个点 A、B、 C.
( 1)连接 AB;
( 2)画射线 AC;
C
B
( 3)画直线 BC; ( 4)过点 A 作 BC 的垂线,垂足为 D.
A
七、列方程解应用题(本题 8 分)
分
27
9
【评分标准】过程与结论无误,满分
5 分。
如果结论错误,符号正确,得
1 分;
体现“除以分数,等于乘以分数的倒数”得
初一上学期数学期末试卷带答案
初一上学期数学期末试卷带答案一、选择题1.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .52.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .554.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1115.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .46.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3617.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人8.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形9.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .2016201510. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm11.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3212.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <13.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .414.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .4 15.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-116.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >017.在上午八点半钟的时候,时针和分针所夹的角度是( ) A .85°B .75°C .65°D .55°18.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |19.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2-B .8±或2±C .8- 或2D .8或220.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .25321.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1522.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >023.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A.B.C.D.24.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有()A.2种B.3种C.4种D.5种25.如图所示是一个自行设计的计算程序,若输入x的值为1,那么执行此程序后,输出的数y是()A.﹣2 B.2 C.3 D.426.一辆客车和一辆卡车同时从A地出发沿同一公路同向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车经过x小时到达B地,卡车比客车晚到1h.根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7027.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .628.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条29.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-< D .a b b a -<-<<30.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >0【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由题意可知:摆a 个正方形需要4+3(a -1)=3a +1根小木棍;摆b 个六边形需要6+5(b -1)=5b +1根小木棍;由此得到方程3a +1+5b +1-1=60,再确定正整数解的个数即可求得答案. 【详解】设摆出的正方形有a 个,摆出的六边形有b 个,依题意有 3a +1+5b +1-1=60, 3a +5b =59,当a =3时,b =10,t =13; 当a =8时,b =7,t =15; 当a =13时,b =4,t =17; 当a =18时,b =1,t =19. 故t 可以取4个不同的值. 故选:C . 【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1,323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.A解析:A【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.4.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.5.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.6.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.7.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.9.C解析:C【解析】【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解.【详解】 解:22221111 (11223320152015)++++++++ =21111261220152015+++++ =111111112233420152016-+-+-++- = 112016- =20152016故选:C .【点睛】 本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.10.A解析:A【解析】 【分析】根据C 点为线段AB 的中点,D 点为BC 的中点,可知AC=CB=12AB ,CD=12CB ,AD=AC+CD ,又AB=4cm ,继而即可求出答案.【详解】∵点C 是线段AB 的中点,AB=20cm ,∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm .故选A .【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.11.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.12.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.13.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C .【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.14.B解析:B【解析】【分析】设第1列第3行的数字为x,P 处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p ,可得P 处数字.【详解】解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p ,解得p=2,故选:B .【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.D解析:D【解析】【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案.【详解】∵232-m a b 和45n a b 是同类项∴2m=4,n=3∴m=2,n=3∴=231m n --=-故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.16.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.17.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.18.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.19.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.20.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.21.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.22.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.23.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D .【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.25.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x =1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x =﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y =4,故选D .【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.26.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.27.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 28.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.29.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.30.B解析:B【解析】【分析】先确定出a 、b 、c 的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a <﹣1,0<b <1,1<c <2,∴c >b >a ,1b >1c ,|a |>|b |,abc <0. 故选:B .【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.。
七年级数学上册期末考试卷及完整答案
七年级数学上册期末考试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a 4.长方形如图折叠,D 点折叠到的位置,已知∠FC =40°,则∠EFC =( )A .120°B .110°C .105°D .115°5.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分.设他做对了x 道题,则可列方程为________.4.使分式211x x -+的值为0,这时x=________. 5102.0110.1= 1.0201.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程: (1)37615=-y (2)21136x x ++-=2 (3)0.430.20.5x x +--=﹣1.62.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?6.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、A6、A7、C8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、20°.3、4x﹣2(15﹣x)=42.4、15、±1.016、±3三、解答题(本大题共6小题,共72分)1、(1)y=3;(2)x=113;(3)x=﹣3.2.2、-3≤a<-23、(1)略;(2)略;(3)∠PQC=60°,理由略4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)30,补图见解析;(2)扇形B的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.6、(1)每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个;(2)租用小客车数量的最大值为3.。
七年级数学(上册)期末试卷及答案(完整)
七年级数学(上册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x ++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .10032007 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43 3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( )A .180B .182C .184D .1864.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB 的大小是( )A.60°B.50°C.75°D.55°6.观察下列图形,是中心对称图形的是( )A.B. C. D.7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.如图,在数轴上,点A、B、C对应的数分别为a、b、c,若以下三个式子:b c<①,0a c②+<,0a b+<③都成立,则原点在()A.点A的左侧 B.点A和点B之间 C.点B和点C之间 D.点C的左侧9.已知实数a、b满足a+b=2,ab=34,则a﹣b=()A.1 B.﹣52C.±1 D.±5210.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:34x x-=________.2.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.已知不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<,则()()11a b +-的值是________. 6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.已知,x 无论取什么值,式子35ax bx ++必为同一定值,求a b b +的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;x 时,求S的值.(3)当2004.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、B5、D6、D7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x (x +2)(x ﹣2).2、3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3、44、40°5、6-6、200°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、853、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、(1)证明略;(2)证明略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
初中七年级数学上册期末考试卷及答案【完整版】
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
第一学期期末考试七年级数学试卷答案
第一学期期末考试七年级数学 答案一、选择题(本大题共4题,每题3分,满分12分) 1. A ; 2. D ; 3. B ; 4. C ;二、填空题(本大题共14题,每题2分,满分28分)5. y x 1+-; 6. 1-; 7. 62+x ; 8. 123212+-x x ; 9. 2)2(-a a ; 10. 3≠x ; 11. 236y x -; 12. 2+-m ;13. 5-1045.3⨯; 14.61a; 15. 3; 16. 45°; 17. 20; 18. 65+n ;三、简答题(本大题共6题,每题6分,满分36分)19. 原式=81491--+......4分875=......2分20. 原式=)4()2(42222x y xy x y ---+......2分 =22224844x y xy x y +--+......2分 =xy x 852-......2分21. 原式=)623)(62322+---+-x x x x x x (.....2分 =)65)(622+---x x x x (.....2分 =)3)(2)(2)(3(--+-x x x x ......2分 22. 原式=)())((a x b a x a x ---+......3分 =))((b a x a x -+-......3分 23. 3321-=+-x x ......3分73-=-x ......1分37=x 经检验37=x 是方程的解.......1分∴原方程的解是37=x .......1分24. 原式=)1111(12-+--÷-x x x x x =112-÷-x xx x ......2分 =x x x x 112-⨯-......1分 =11+x ......1分 当x=2时,3111=+x ......2分25. (1)图略;作出△A 1B 1C 1......3分;(2)图略;标出点O......1分;作出△A 2B 2C 2.......2分; 答 (1)26. 设甲工程队每周铺设2x 千米管道,乙工程队每周铺设3x 千米管道.3318218=-xx ......3分 1=x ......2分经检验,1=x 是方程的解且符合题意.......1分答:甲工程队每周铺设2千米管道,乙工程队每周铺设3千米管道........1分 27. (1)3.5...2分(2)320....4分 (3)画出图...各1分.=a 6和310 (1)。
七年级上册数学期末试卷(含答案)
七年级上册数学期末试卷(含答案)一、选择题1.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 2.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm6.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+57.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +18.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=69.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.3的倒数是( ) A .3B .3-C .13D .13-12.下列方程的变形正确的有( ) A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x =13.下列变形中,不正确的是( )A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x ym m =,则x y = D .若x y =,则x y m m= 14.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .15.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 19.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.20.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.219________22.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________23.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.24.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.25.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.26.若∠1=35°21′,则∠1的余角是__.27.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 28.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.29.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 30.用度、分、秒表示24.29°=_____.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.34.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.35.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数36.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.37.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值38.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .2.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.A解析:A 【解析】 【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题. 【详解】解:延长CD 交直线a 于E .∵a ∥b , ∴∠AED =∠DCF , ∵AB ∥CD ,∴∠DCF =∠ABC =70°, ∴∠AED =70°∵∠ADC =∠AED +∠DAE , ∴∠ADC >70°, 故选A . 【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C解析:C 【解析】 【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm , ∴AC=10-4=6cm . ∵M 是线段AC 的中点, ∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时, ∵BC=4cm , ∴AC=14cmM 是线段AC 的中点, ∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.A解析:A 【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.7.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.C解析:C 【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C .【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.D解析:D【解析】A. ∵∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;B. ∵∠AOB =2∠BOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;C. ∵∠AOC =12∠AOB , ∴∠AOB =2∠AOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;D. ∵∠AOC +∠BOC =∠AOB ,∴假如∠AOC =30°,∠BOC =40°,∠AOB =70°,符合上式,但是OC 不是∠AOB 的角平分线,故本选项正确.故选D.点睛: 本题考查了角平分线的定义,注意:角平分线的表示方法,①OC 是∠AOB 的角平分线,②∠AOC =∠BOC ,③∠AOB =2∠BOC (或2∠AOC ),④∠AOC (或∠BOC )=12∠AOB . 11.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】 本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 13.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确;D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.14.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.15.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题16.8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.18.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.19.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.20.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.22.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261-++-+=(a-1)x2+(b-6)x+1,x bx ax x由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.23.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠A CB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.24.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.25.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若经过二次输入结果得131,则5(5x +1)+1=131,解得x =5;若经过三次输入结果得131,则5[5(5x +1)+1]+1=131,解得x =45; 若经过四次输入结果得131,则5{5[5(5x +1)+1]+1}+1=131,解得x =−125(负数,舍去);故满足条件的正数x 值为:26,5,45. 【点睛】 本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x 的值.26.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.27.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.28.8【解析】【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8. 故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x =﹣2代入方程2x +a ﹣4=0求解即可.【详解】把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x =﹣2代入方程2x +a ﹣4=0求解. 29.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.30.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.33.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.34.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.35.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.。
初一数学上册期末试题(附答案)
初一数学上册期末试题(附答案)一、选择题1.下列说法正确的是() A. 字母是一种变量 B. 所有数的集合是自然数C. x+y的值即为两个数之和D. 所有正整数集合是自然数答案:A解析:变量是指在一定范围内能够取不同数值的量,字母本身并不具有数值,因此是一种变量。
2.求 $\\dfrac{1}{2} + \\dfrac{3}{8} - \\dfrac{1}{4}$ 的结果是() A.$\\dfrac{1}{8}$ B. $\\dfrac{3}{8}$ C. $\\dfrac{1}{2}$ D. $\\dfrac{3}{4}$答案:B解析:$\\dfrac{1}{2} + \\dfrac{3}{8} - \\dfrac{1}{4} = \\dfrac{4}{8} +\\dfrac{3}{8} - \\dfrac{2}{8} = \\dfrac{5}{8}$,因此答案为B。
3.一个数加上6,再减去3,得到的结果是4,则这个数是() A. 1 B.3 C. 5 D. 7答案:C解析:设这个数为x,则有x+6−3=4,解得x=−5,因此答案为C。
4.已知a=3,b=4,则下列哪个等式成立() A. a2+b2=25 B.a2b2=84 C. ab+1=13 D. $\\dfrac{a}{b}=\\dfrac{3}{4}$答案:A解析:由勾股定理可知,三角形的直角边的平方和等于斜边的平方,因此a2+ b2=9+16=25,成立,因此答案为A。
5.若 $\\dfrac{x}{4}=\\dfrac{3}{5}$ 则x=() A. 0.75 B. 1.25 C. 3 D.12答案:D解析:移项得$x=\\dfrac{12}{5}$,因此答案为D。
二、填空题1.$(4+2) \\times 3 - (12-2)=$ ________答案:18解析:展开括号得$(6)\\times 3 - (10) = 18$。
2.$\\dfrac{1}{5} + \\dfrac{2}{5} + \\dfrac{1}{5} =$ ________答案:$\\dfrac{4}{5}$解析:分数的分母一致时,分子直接加和即可得到答案$\\dfrac{4}{5}$。
数学初一上学期数学期末试卷带答案
数学初一上学期数学期末试卷带答案一、选择题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+ 3.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或54.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°5.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A.132°B.134°C.136°D.138°6.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.77.已知关于x的方程ax﹣2=x的解为x=﹣1,则a的值为()A.1 B.﹣1 C.3 D.﹣38.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×29.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC.30﹣x=2(24+x)D.30+x=2(24﹣x)11.3的倒数是()A.3B.3-C.13D.13-12.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为()A.3.31×105B.33.1×105C.3.31×106D.3.31×107二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.15030'的补角是______.18.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____.19.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.20.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.21.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.23.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.26.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数27.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.28.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.29.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.30.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.32.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.2.D解析:D【解析】【分析】方程两边同乘以6即可求解.【详解】12132x x +-=, 方程两边同乘以6可得,2x-6=3(1+2x ).故选D.【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.3.D解析:D【解析】【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C 表示的数为m ,∵点A 、B 表示的数互为相反数,∴AB 的中点O 为原点,∴点B 表示的数为3,∵点C 到点B 的距离为2个单位,∴3m -=2,∴3-m=±2,解得:m=1或m=5,∴m 的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.4.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.D解析:D【解析】【分析】将x 与y 的值代入原式即可求出答案.【详解】当x=﹣13,y=4, ∴原式=﹣1+4+4=7故选D .【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.7.B解析:B【解析】【分析】将1x =-代入2ax x -=,即可求a 的值.【详解】解:将1x =-代入2ax x -=,可得21a --=-,解得1a =-,故选:B .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.8.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x 厘米.根据题意得:2×(10+x )=10×4+6×2.故选:A .【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.9.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.10.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.11.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.18.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.19.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.20.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.21.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 22.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解23.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()x x x x x+++++++=+1771416x+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.26.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834 【解析】【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.27.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10, ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP)=12AB=10, ∴线段MN 的长度不发生变化,其值为10.【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得,3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.29.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.31.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,。
初一上学期数学期末试卷带答案
初一上学期数学期末试卷带答案一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -3.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 324.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .5.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 6.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4 B .﹣4 C .1 D .﹣1 7.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y 8.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >010.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥11.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.若2m ab -与162n a b -是同类项,则m n +=( ) A .3B .4C .5D .7二、填空题13.若|x |=3,|y |=2,则|x +y |=_____. 14.|-3|=_________;15.写出一个比4大的无理数:____________. 16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 17.因式分解:32x xy -= ▲ .18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.52.42°=_____°___′___″.20.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.21.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)22.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.23.如果A、B、C在同一直线上,线段AB=6厘米,BC=2厘米,则A、C两点间的距离是______.24.观察“田”字中各数之间的关系:则c的值为____________________.三、解答题25.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.26.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.27.如图所示,OE和OD分别是∠AOB和∠BOC的平分线,且∠AOB=90°,∠EOD=67.5°的度数.(1)求∠BOD的度数;(2)∠AOE与∠BOC互余吗?请说明理由.28.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.29.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生; (2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______; (4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.30.先化简,再求值:已知2(3xy ﹣x 2)﹣3(xy ﹣2x 2)﹣xy ,其中x ,y 满足|x+2|+(y ﹣3)2=0.四、压轴题31.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度. 32.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.33.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.3.C解析:C 【解析】 【分析】把64代入转换器,根据要求计算,得到输出的数值即可. 【详解】,是有理数, ∴继续转换,,是有理数, ∴继续转换,∵2,是无理数,∴输出, 故选:C. 【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.4.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)mnm na a a a +⋅=>,所以此题结果等于325a a +=,选A ;5.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案.解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.A解析:A 【解析】 【分析】将a ﹣3b =2整体代入即可求出所求的结果. 【详解】解:当a ﹣3b =2时, ∴2a ﹣6b =2(a ﹣3b ) =4, 故选:A . 【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.7.B解析:B 【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可. 详解:原式=2x ﹣3y ﹣12x +6y =﹣10x +3y . 故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.8.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.9.C解析:C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .10.C解析:C 【解析】 【分析】根据面动成体可得长方形ABCD 绕CD 边旋转所得的几何体. 【详解】解:将长方形ABCD 绕CD 边旋转一周,得到的几何体是圆柱, 故选:C . 【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.11.D解析:D 【解析】 【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可. 【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D . 【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.C解析:C 【解析】 【分析】根据同类项的概念求得m 、n 的值,代入m n +即可. 【详解】解:∵2m ab -与162n a b -是同类项, ∴2m=6,n-1=1, ∴m=3,n=2, 则325m n +=+=. 故选:C . 【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.15.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.16.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.17.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).18.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,,∴AB=1–(,则点C表示的数为,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.19.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.20.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.21.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.22.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14023.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.24.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
初一上学期数学期末试卷带答案
初一上学期数学期末试卷带答案一、选择题1.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快2.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a >0D .ab >03.根据等式性质,下列结论正确的是( )A .如果22a b -=,那么=-a bB .如果22a b -=-,那么=-a bC .如果22a b =-,那么a b =D .如果122a b =,那么a b = 4.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=5.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( )A .方案一B .方案二C .方案三D .不能确定6.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985 B .-1985 C .2019 D .-20197.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()n a b +的展开式的各项系数,此三角形数阵称为“杨辉三角”.第一行 ()0a b + 1第二行 ()1a b + 1 1第三行 ()2a b + 1 2 1第四行 ()3a b + 1 3 3 1第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( )A .190B .210C .231D .2538.下列运算正确的是( )A .()a b c a b c -+=-+B .2(1)21x y x y --=-+C .22223m n nm m n -=-D .532x x -= 9.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30B .35︒C .40D .45 10.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定 11.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海12.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个A .1B .2C .3D .4二、填空题13.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.14.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm .15.统计得到的一组数据有 80 个,其中最大值为 141,最小值为 50,取组距为 10,可以分成 _______________组.16.我们知道,分数可以转化为有限小数或无限循环小数,无限循环小数也可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,则x 10x 3-=,解得13x =.仿照这样的方法,将0.16化成分数是________.17.关于x 的方程()212a x x -=-的解为__________.18.将一列有理数1,2,3,4,5,6,---按如图所示有序排列,如:“峰1”中的封顶C 的位置是有理数4;“峰2”中C 的位置是有理数-9,根据图中的排列规律可知,2008应排在,,,,A B C D E 中的__________位置.19.观察表一寻找规律,表二、表三分别是从表一中截取的一部分,则a =_____,b =____.20.我们知道,一个两位数的十位数字为a ,个位数字为b ,其中09a <≤,09b ≤≤,且a ,b 都为整数,这个两位数可以表示为10a b +.观察下列各式:2323÷101=23,4545÷101=45,5151÷101=51,7979÷101=79,……,根据以上等式,猜想:()()101010110a b a b +÷+=______.21.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.22.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.三、解答题23.(1)化简:35(24)n m m n +--(2)先化简,再求值:23(2)2(51)2m m m ---++,其中1m =-24.化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =225.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值(3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)26.如图:在数轴上A 点表示数,a B 点示数,b C 点表示数,c b 是最大的负整数,A 在B 左边两个单位长度处,C 在B 右边5个单位处()1a = ;b = _;c = _;()2若将数轴折叠,使得A 点与C 点重合,则点B 与数_ __表示的点重合; ()3点、、A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为,AB 点A 与点C 之间的距离表示为,AC 点B 与点C 之间的距离表示为BC ,则AB =_ _,AC =_ _,BC =__ _;(用含t 的代数式表示)()4请问:52BC AB -的值是否随着时间t 的变化而改变﹖若变化,请说明理由;若不变,请求其值.27.如图,将连续的奇数1,3,5,7,…按图 中的方式排成一个数表,用一个十字框框住5个数,这样框出的意5个数(如图2)分别用,,,,a b c d x 表示.(1)若17x =,则a b c d +++=______.(2)用含x 的式子分别表示数a 、b 、c 、d .(3)直接写出,,,,a b c d x 这5个数之间的一个等量关系:______.(4)设M a b c d x =++++,判断M 的值能否等于2020,请说明理由.28.把一副三角板的直角顶点O 重叠在一起.()1如图1,当OB 平分COD ∠时,求AOC ∠和AOD ∠度数;()2如图2,当OB 不平分COD ∠时,①直接写出AOC ∠和BOD ∠满足的数量关系;②直接写出AOD ∠和BOC ∠的和是多少度?()3当AOC ∠的余角的4倍等于AOD ∠时,求BOC ∠是多少度?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.2.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题3.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.4.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.5.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..6.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.7.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b )21的展开式中第三项的系数.【详解】解:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b )21第三项系数为1+2+3+…+19+20=210;【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.8.C解析:C【解析】【分析】分别判断各选项是否正确.【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.9.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x )°,余角的度数为(90-x )°,代入等量关系即可求解.【详解】设:这个角的度数是x ,则补角的度数为180-x ,余角的度数为90-x ,由题意得: ()()39018020x x ---=解得35x =故选B .【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.10.C解析:C【解析】【分析】把(3x-2y )看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.11.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.12.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.二、填空题13.﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整解析:﹣2【解析】【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整理变形即得答案.【详解】解:在图1中,设中心数为x ,根据题意得:2104x a x ++=++,解得:8a =; 在图2中,根据题意得:2020m n n -+=++,整理得:32m n -+=-;故答案为:8,﹣2.【点睛】本题以三阶幻方为载体,主要考查了一元一次方程的应用和代数式求值,正确理解题意、掌握解答的方法是关键.14.13或3【解析】【分析】根据线段的和与差运算法则,若点在延长线上时,即得;若点在之间,即得.【详解】当点在延长线上线段,当点在之间线段,综上所述:或故答案为:13或3【点解析:13或3【解析】【分析】根据线段的和与差运算法则,若点C 在BA 延长线上时,=+BC AB AC 即得;若点C 在AB 之间,=BC AB AC -即得.【详解】当点C 在BA 延长线上线段8cm AB =,5cm AC =∴==8+5=13cm +BC AB AC当点C 在AB 之间线段8cm AB =,5cm AC =∴==853cm --=BC AB AC综上所述:=13cm BC 或=3cm BC故答案为:13或3【点睛】本题考查线段的和与差,分类讨论确定点C 的位置是易错点,正确理解线段的无方向的性质是正确进行分类讨论的关键.15.10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,解析:10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.16.【解析】根据无限循环小数都可以转化为分数的方法,先设=x①,得到=100x②,由②-①得16=99x,进而解得x=,即可得到=.【详解】解:设=x①,则=100x②,,②-①得1解析:16 99【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设0.16=x①,得到16.16=100x②,由②-①得16=99x,进而解得x=1699,即可得到0.16=1699.【详解】解:设0.16=x①,则16.16=100x②,,②-①得16=99x,解得x=16 99,即0.16=16 99,故答案为:16 99.【点睛】本题主要考查了解一元一次方程的应用,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.17.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.18.B【解析】【分析】根据图形,可以发现每个峰中有5个数字,这些数字中的奇数都是负的,偶数都是正的,从而可以得到2008应排在A,B,C,D,E中的哪个位置.【详解】解:由图可知,奇数为负值解析:B【解析】【分析】根据图形,可以发现每个峰中有5个数字,这些数字中的奇数都是负的,偶数都是正的,从而可以得到2008应排在A,B,C,D,E中的哪个位置.【详解】解:由图可知,奇数为负值,偶数为正值,每个峰中有5个数据,∵(2008-1)÷5=2007÷5=401…2,∴2008应排在B的位置,故答案为:B.【点睛】此题考查图形的变化类,解答本题的关键是明确题意,发现数字的变化特点,利用数形结合的思想解答.19.88【解析】观察不难发现,图表中的数据等于行数乘列数,然后确定出a、b所在的行数与列数,计算即可得解.【详解】解:∵12=3×4,18=3×6,∴a=3×5=15;∵7解析:88【解析】【分析】观察不难发现,图表中的数据等于行数乘列数,然后确定出a、b所在的行数与列数,计算即可得解.【详解】解:∵12=3×4,18=3×6,∴a=3×5=15;∵70=10×7,99=11×9,∴b=11×8=88,∴a、b的值分别为:15,88.故答案为15,88.【点睛】本题是对数字变化规律的考查,观察出图表中的数据等于行数乘列数是解题的关键.20.101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10解析:101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10a+b)=101.故答案为:101.【点睛】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.21.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.22.【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC 与△A1BB1底相等(AB =A1B ),高为1:2(BB1=2B解析:【解析】【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证S △A 2B 2C 2=7S △A 1B 1C 1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2013,最少经过4次操作.故答案为:4.【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题23.(1)37m n +;(2)原式267m m =+;-1.【解析】【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把m 的值代入计算即可求出值.【详解】(1)35(24)n m m n +--3524n m m n =+-+37m n =+;(2)23(2)2(51)2m m m ---++2631022m m m =-+-+267m m =+,当1m =-时,原式671=-=-.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.ab 2,-12.【解析】【分析】先去括号,再合并,最后再把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=2a 2b+4b 3-2ab 2+3a 3-2a 2b+3ab 2-3a 3-4b 3=ab 2,当a=-3,b=2时,原式=-3×22=-12.【点睛】本题考查了整式的化简求值,解题的关键是掌握去括号法则和合并同类项的法则.25.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】【分析】 (1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可;(3)PA 的距离为由A 去B ,B 返回A 两种情况求值.【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km =425 1.5PC AC AP k ∴=-=-=()2当小明由A 地去B 地过程中:在AC 之间时, 41355t -==(小时), 在BC 之间时, 4115t +==(小时), 当小明由B 地返回A 地过程中:在BC 之间时, 1024135t ⨯--==(小时), 在AC 之间时, 102(41)1755t ⨯--==(小时), 故满足条件的t 值为:317,1,3,55h h h h (3)当小明从A 运动到B 的过程中,AP=vt= 5,当小明从B 运动到A 的过程中,AP= 20-vt= 20- 5t.【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.26.(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【解析】【分析】(1)根据b 为最大的负整数可得出b 的值,再根据A 在B 左边两个单位长度处,C 在B 右边5个单位处即可得出a 、c 的值;(2)根据折叠的性质结合a 、b 、c 的值,即可找出与点B 重合的数;(3)根据运动的方向和速度结合a 、b 、c 的值,即可找出t 秒后点A 、B 、C 分别表示的数,利用数轴上两点间的距离即可求出AB 、AC 、BC 的值;(4))将(3)的结论代入52BC AB -中,可得出52BC AB -的值不会随着时间的变化而变化,即为定值,此题得解.【详解】(1)b 是最大的负整数,∴1b =-A 在B 左边两个单位长度处,C 在B 右边5个单位处∴3a =-,c 4=(2)将数轴折叠,使得A 点与C 点重合∴()3412a c b +-=-+--=(3)点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动∴t 秒钟过后,根据s vt =得:s 2A t =,s 3B t =,s 5C t = 又3a =-,1b =-,c 4=∴点A 表示的数为23t --,点B 表示的数为31t -,点C 表示的数为54t +, ∴25AB t =+,77AC t =+,2+5BC t =;(4)由(3)可知:25AB t =+,2+5BC t =∴()()52=525225102541021BC AB t t t t -⨯+-+=+--=∴52BC AB -的值为定值21.故答案为:(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【点睛】本题考查了数轴及两点间的距离,根据点运动的方向和速度找出点A 、B 、C 运动后代表的数是解题的关键.27.(1)68(2)12a x =-,2b x =-,2c x =+,12d x =+(3)4a b c d x +++=(4)M 的值不能等于2020,理由见解析【解析】【分析】(1)根据图片信息可得到a 、b 、c 、d 的值,再将它们相加即可得解;(2)根据图片信息可发现a 、b 、c 、d 的值与x 的关系,从而可用含x 的式子表示出他们的值;(3)在(2)结论的基础上,将它们相加即可得到五个数之间的数量关系;(4)在(3)结论的基础上进行计算可得404x =,这与已知条件产生矛盾,从而得到结论.【详解】解:(1)∵17x =∴17125a =-=,17215b =-=,17219c =+=,171229d =+=∴515192968a b c d +++=+++=;(2)∵观察图片可知,a 比x 小12,b 比x 小2,c 比x 大2,d 比x 大12∴12a x =-,2b x =-,2c x =+,12d x =+;(3)∵12a x =-,2b x =-,2c x =+,12d x =+∴()()()()1222125a b c d x x x x x x x ++++=-+-+++++=∴4a b c d x +++=;(4)结论:M 的值不能等于2020理由:∵4a b c d x +++=∴5M a b c d x x =++++=∴当52020x =时,404x =∵404是偶数,而图片中的所有数均为奇数∴M 的值不能等于2020.故答案是:(1)68(2)12a x =-,2b x =-,2c x =+,12d x =+(3)4a b c d x +++=(4)M 的值不能等于2020,理由见解析【点睛】本题考查了一元一次方程的应用以及列代数式,仔细阅读图表排列规律,观察出其余四个数与最中间的数的关系是解题的关键.28.(1)45°,135°;(2)①AOC BOD ∠=∠,②180AOD BOC ∠+∠=︒;(3)36°.【解析】【分析】(1)根据角平分线的定义,求出45COB ∠=︒,由直角等于90°,可得AOC ∠的度数,则90AOD AOC ∠=∠+︒,计算即得;(2)①因为AOC ∠和BOD ∠是同一个角BOC ∠余角,所以相等;②因为AOD AOC BOC BOD ∠=∠+∠+∠,利用两个直角的和180°可得. (3)根据余角的定义,列出等量关系,看成解一元一次方程即得.【详解】(1)当OB 平分COD ∠时,90AOB COD ︒∠=∠=45BOC BOD ︒∴∠=∠=904545BOC AOB COB ︒︒︒∴∠=∠-∠=-=4590135AOD AOC COD ︒︒︒∴∠=∠+∠=+=;故答案为:45°,135°;(2)①90AOC COB BOD COB ∠+∠=∠+∠=︒, AOC BOD ∴∠=∠; ②AOC CO O AOD B B D ∠+∠+∠∠=,90AOC COB BOD COB ∠+∠=∠+∠=︒ 9090180AOC COB COB BOD AOD BOC ∴∠+∠+∠+∠=︒+︒==∠+∠︒故答案为:AOC BOD ∠=∠;180AOD BOC ∠+∠=︒;(3)()490AOD AOC ︒∠=-∠()90490AOC AOC ︒︒∴+∠=-∠54AOC ︒∴∠=9036BOC AOC ︒︒∴∠=-∠=,故答案为:36°.【点睛】考查了角平分线的定义和性质,余角的定义,同角的余角相等,利用等量关系列出方程式求解.熟记概念内容是解题的关键.。
初一上学期数学期末试卷带答案
初一上学期数学期末试卷带答案一、选择题1.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( )A .B .C .D .4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠ B .132122∠-∠ C .12()12∠-∠ D .21∠-∠5.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-2 6.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+6 7.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .78.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m - 11.下列各数中,比73-小的数是( ) A .3- B .2- C .0 D .1-12.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32b B .a =2b C .a =52b D .a =3b二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.若212-m y x 与5x 3y 2n 是同类项,则m +n =_____. 16.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________17.化简:2xy xy +=__________.18.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.19.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.20.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.21.化简:2x+1﹣(x+1)=_____.22.计算:3+2×(﹣4)=_____.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.计算(1)32527-(2)()3335+- 26.如图,AB 和CD 相交于点O ,∠A=∠B ,∠C=75°求∠D 的度数.27.解方程:(1)()43203x x --= (2)23211510x x -+-= 28.快车以200km/h 的速度由甲地开往乙地再返回甲地,慢车以75km/h 的速度同时从乙地出发开往甲地,已知快车回到甲地时,慢车距离甲地还有225km ,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?29.解方程:(1)()()32324y y -=-;(2)13124x x +--=. 30.如图,在数轴上点A 表示的数a 、点B 表示数b ,a 、b 满足|a ﹣30|+(b+6)2=0.点O 是数轴原点.(1)点A 表示的数为 ,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC=2BC ,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B .225m n 的系数是25,故本选项错误. C .单项式﹣x 3yz 的次数是5,故本选项正确.D .3x 2﹣y +5xy 5是六次三项式,故本选项错误.故选C .【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.6.C解析:C【解析】【分析】利用完全平方式的结构特征即可求出m 的值.【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式,∴2m =±6,解得:m =±3,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.7.D解析:D【解析】【分析】将x 与y 的值代入原式即可求出答案.【详解】当x=﹣13,y=4, ∴原式=﹣1+4+4=7故选D .【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.8.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C .【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.9.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.10.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.12.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16.-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x 取值解析:-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,由结果与x 取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x 的取值无关”的意义是解本题的关键.17..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.19.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.设有x 辆车,则可列方程:3(x ﹣2)=2x+9.故答案是:3(x ﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.20.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.21.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.22.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)2;(2)435【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】32527=5-3=2;(2)==【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.26.75°.【解析】【分析】先判断AC//BD ,然后根据平行线的性质进行求解即可得.【详解】∵∠A=∠B ,∴AC//BD ,∴∠D=∠C=75°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.27.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110x x ---=,217x =,8.5x =.28.(1)甲乙两地相距900千米.(2)出发3636115或小时后,两车相遇.(3)3211或4011或6.4或8或2103小时,【解析】【分析】(1) 设甲乙两地相距x 千米根据题意列出方程222520075x x -=解出x 值即可; (2)分为两种情况:①快车到达乙地之前两车相遇,②快车到达乙地之后返回途中相遇,根据两种情况分别列出方程求出答案即可;(3)分类去讨论:①快车到达乙地之前,且两车相遇前,②快车到达乙地之前,且两车相遇后,③快车到达乙地之后,且返回途中两车相遇前,④快车到达乙地之后,且返回途中两车相遇后,⑤快车到达乙地停止后,并分别求出其时间即可.【详解】解:(1)设:甲乙两地相距x 千米.222520075x x -= 解得900x =答:甲乙两地相距900千米.(2)设:从出发开始,经过t 小时两车相遇.①快车到达乙地之前,两车相遇20075900t t += 解得3611t = ②快车到达乙地之后,返回途中两车相遇20075900t t -= 解得365t = 答:出发3611小时或365小时后两车相遇. (3)设:从出发开始,t 小时后两车相距100千米.①快车到达乙地之前,且两车相遇前,两车相距100千米20075900100t t +=- 解得3211t = ②快车到达乙地之前,且两车相遇后,两车相距100千米20075900+100t t += 解得4011t = ③快车到达乙地之后,且返回途中两车相遇前,两车相距100千米200-75900100t t =-解得 6.4t =④快车到达乙地之后,且返回途中两车相遇后,两车相距100千米200-75900+100t t=解得8t=⑤快车到达乙地停止后,两车相距100千米2(1800200)(225100)75=103÷+-÷答:出发3211或4011或6.4或8或2103小时后,两车相距100千米.【点睛】本题考查的是一元一次方程的应用问题,解题关键在于分别去讨论所发生的情况去分别求解即可.29.(1)14y=;(2)1x=-.【解析】【分析】(1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y-3)=2(y-4);6928y y-=-.6298y y-=-.41y=.14y=.(2)131 24x x+--=.2(1)(3)4x x+--=.2234x x+-+=.-1x=.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.30.(1)30,﹣6, 36;(2)6或﹣42;(3)当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.【解析】【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤6、6<x≤9和9<t≤30三种情况考虑,根据两点间的距离公式结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.【详解】(1)∵|a﹣30|+(b+6)2=0,∴a﹣30=0,b+6=0,解得a=30,b=﹣6,AB=30﹣(﹣6)=36.故点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)点C在线段AB上,∵AC=2BC,∴AC=36×212+=24,点C在数轴上表示的数为30﹣24=6;点C在射线AB上,∵AC=2BC,∴AC=36×2=72,点C在数轴上表示的数为30﹣72=﹣42.故点C在数轴上表示的数为6或﹣42;(3)经过t秒后,点P表示的数为t﹣6,点Q表示的数为6(06){3(6)6(636)tt t-<≤--<≤,(i)当0<t≤6时,点Q还在点A处,∴PQ=t﹣6﹣(﹣6)=t=4;(ii)当6<x≤9时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣6)﹣6]=4,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.四、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 32.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.②3AC -4AB 的值不变.当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.33.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。
初一上学期数学期末试卷带答案
初一上学期数学期末试卷带答案一、选择题1.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1392.计算32a a ⋅的结果是( )A .5a ;B .4a ;C .6a ;D .8a .3.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°4.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( )A .a >ab >ab 2B .ab >ab 2>aC .ab >a >ab 2D .ab <a <ab 25.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y 6.方程312x -=的解是( )A .1x =B .1x =-C .13x =- D .13x = 7.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC=∠BOCB .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠A OB 8.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米9.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( )A .3.31×105B .33.1×105C .3.31×106D .3.31×107 10.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°11.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6 二、填空题13.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
七年级上学期数学期末试卷含答案
精品试卷,请参考使用,祝老师、同学们取得好成绩!七年级第一学期数学期末试卷一、选择题(每小题3分,共30分)1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( )A .32 B .23 C .23- D .32- 3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .B .C .D .4. 下面说法中错误的是( ).A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×1045. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6. 如果a <0,-1<b <0,则,,按由小到大的顺序排列为( )A .<<B .<<C .<<D .<<7.在解方程时,去分母后正确的是( ) A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果,,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为、宽为的长方形()沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .B .C .D .0ab >0a b +<1ab <0a b -<a ab 2ab a ab 2ab a 2ab ab ab 2ab a 2ab a ab 5113--=x x x y 3=)1(2-=y z m n m n >2m n -m n -2m2n图1 图2 从正南方向看从正西方向看第7题第8题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这个几何体最多可由多少个这样的正方体组成?()A.12个B.13个C.14个D.18个二、填空题:(每小题3分,共24分)11.多项式132223-+--xxyyxx是_______次_______项式12.三视图的平面图都是同一平面图形的几何体有、.(写两种即可)13.若ab≠0,则等式a b a b+=+成立的条件是______________.14.多项式223368x kxy y xy--+-不含xy项,则k=;15.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是.(用含m,n的式子表示)16.有理数a、b、c在数轴上的位置如图所示,化简的结果是________________.17.一个角的余角比它的补角的32还少40°,则这个角为度.18.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品三、解答题(共46分)19.计算:(1)(-10)÷551⨯⎪⎭⎫⎝⎛-(2)()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛⨯--.cbcaba-+--+mnnn20.解方程:(1)13421+=-x x (2)0.10.20.02x --10.5x += 3.21.先化简 (本题8分):-5a 2+(3a 2-2a)-(-3a 2-7),然后选择一个自己喜欢的数求值。
七年级数学第一学期期末试题及答案
3 4七年级数学第一学期期末考试卷同学们,答题前请先看:1、本卷共 8 页,七大题,共 30 小题,满分 100 分,答案一律写在答题卡上,否则无效。
考试形式为闭卷,考试时间 120 分钟。
2、答题时要冷静思考,仔细检查。
预祝你旗开得胜,取得好成绩!题号一 二 三 四 五 六 七 总分得分得 分评卷人一、你能填得又快又对吗?(每小题 2 分,共 20 分)11、 -1 的倒数是 。
82、 如果 x= -3,那么 x 的相反数是 。
3、 计算-2-5= 。
4 5 4 54、 比较- 和- 的大小,结果是:- -5 6 5 65、 据统计,到 2005 年底,某州总人口约为 391 万,如果用科学记数法来表示,可以表示成人。
6、 木工师傅要把一根 14m 长的木头锯成七段,锯一段要用 5 分钟,一共需要分钟。
7、 1.45 度=分= 秒。
8、2700 秒= 分度。
3x 19、当 x=时,代数式—1 等于零。
510、将圆分成三个扇形,其三个扇形的面积比为 2: : ,则最小那个扇形的圆心角为 度。
得 分评卷人二、看谁的命中率高(每小题 3 分,共 30 分)11、在数轴上到-3 的距离等于 5 的数是:A 、2B 、-8 和-2C 、-2D 、2 和-812、计算(-1)2004+(-1)2005 有值为:A 、0B 、-2C、2D、2(-1)200413、若b<0<a,则下列各式不成立的是:A、a-b>0B、-a+b<0C、ab<0D、|a|>|b|14、下列说法中正确的是A、两点之间的所有连线中,线段最短。
B、射线就是直线。
C、两条射线组成的图形叫做角。
D、小于平角的角可分为锐角和钝角两类。
115、已知线段AB,延长AB到C,使BC=AB,D为AC中点,DC=2cm,则线段3AB的长度是A、3B、6cmC、4cmD、3cm16、元旦节期间,百货商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是:A、150元B、50元C、120元D、100元17、如图,∠AOC和∠BOD都是直角,如果∠AOB=150º,那么∠COD等于DA、30ºB、40ºAC、50ºD、60º18、如果一个数的平方等于这个数的倒数,那么这个数是A、-1B、0CO BC、1D、-119、一条船向北偏东50方向航行到某地,然后依原航线返回,船返回时航行的正确方向是:A、南偏西400B、南偏西500C、北偏西400D、北偏西50020、下列各题中合并同类项,结果正确的是A、2a2+3a2=5a2B、2a2+3a2=6a2C、4xy-3xy=1D、2x3+3x3=5x6求: +x 3 –cd 的值:·得 分评卷人三、看谁算得又快又正确(每小题 5 分,共 25 分)1 3 121、计算:{1+[ -( )2] ⨯ (-2)4} ÷ (2 )216 4 322、化简:5x 2-[x 2+(5x 2-2x )- 2(x 2-3x )]23、已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为 2,a + bx24、解方程: x 1.7 - 2 x- =10.7 0.325、相信你很细心,请先化简,再求值:1 17x 2y + {xy - [3x 2y-(4xy 2 + xy )] - 4x 2y},其中 x= - ,y= -12 2得 分评卷人四、阅读理解题:(本题共 5 分)26、如图,已知射线OX ,当 OX 绕端点按逆时针方向旋转 300 到 OA 时,如果线段 OA 的长是 2cm ,那么点 A 用记号 A (2,300)表示。
人教版七年级上册第一学期期末数学试卷(含答案).doc
第一学期期末数学试题七年级数学座位号一选择题(共20分)1.零不属于( )A.正数集合B.有理数集合C.整数集合D.非正有理数集合2.已知下列各数-8, 2.1, 19, 3, 0,﹣2.5, 10, -1中,其中非负数的个数是( )A.2个B.3个C.4个D.5个3.下列各组数中,互为相反数的是( )A.|-13︱和﹣13B.|-13︱和﹣3C.|-13︱和13D.|-13︱和34.甲‚乙‚丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高( )A.10米B.25米C.35米D.5米5.质检员抽查某零件的质量,超过规定尺寸的记为正数,不足规定尺寸的记为负数,结果第一个0.13mm,第二个–0.12mm,第三个0.15mm,第四个0.11mm,则质量最好的零件是( )A.第一个B. 第二个C. 第三个D. 第四个6.绝对值相等的两数在数轴上对应两点的距离为8,则这两个数为( )A.±8B.0和-8C. 0和8D.4和-47.下列判断正确的是( )A.比正数小的数一定是负数B.零是最小的有理数C.有最大的负整数和最小的正整数D.一个有理数所对应的点离开原点越远,则它越大8.一个数的平方仍然得这个数,则此数是( )A.0B.±1C. ±1和0D.1和09.圆柱的侧面展开图是()A.圆形B.扇形C.三角形D.四边形10.下列说法正确的是()A.两点之间的距离是两点间的线段;B.同一平面内,过一点有且只有一条直线与已知直线平行;C.同一平面内,过一点有且只有一条直线与已知直线垂直;D.与同一条直线垂直的两条直线也垂直.二 填空(共24分)1.六棱柱有_____个顶点,_____个面。
2.如果运进72吨记作+72吨,那么运出56吨记作_________。
3.任意写出5个正数,5个负数,并且分别填入所属集合里,正数集合{ } 负数集合{ } 。
4.-1/3的相反数是________,倒数是_________。
七年级数学第一学期期末试卷(含答案)
14.观察按规律排列的数:﹣1,1,3,5,7…则这列数的第n项是.
(n是正整数,用含n的代数式表示)
座号
得 分
三、解答题(每小题5分,共20分)
阅卷人
15.计算:
16.解方程: =x+1.
17.先化简,再求值:ab+(a2﹣ab)﹣(a2﹣2ab),其中a=1,b=2.
(D)线段AB和射线AB都是直线AB的一部分
6.下列变形正确的是( )
(A) x=0变形得x=3(B) 变形得2x﹣3=3x
(C)3x=2变形得x= (D)3x=2x﹣2变形得3x﹣2x=2
得 分
二、填空题(每小题4分,共32分)
阅卷人
7.整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌便整整齐齐摆在了一条线上,这其中蕴含的数学道理
18.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中只添加一个正方形并用阴影表示,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.
得 分
四、解答题(每小题7分,共14分)
阅卷人
19.某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动(划船须知如图).他们一共租了10条船,并且每条船都坐满了人,那么大船租了几只?
20.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.
得 分
五、解答题(每小题8分,共16分)
阅卷人
21.某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A地出发到收工时的行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣13,﹣2,+12,﹣5,+4,+6,求:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上学期期末考试试卷
班级 学号 姓名 成绩
一、 选择题 (将答案的题号填写在表格中)(2'
⨯10)
1 (A ) 若a 表示有理数,则-a 表示非正数; (B )和为零,商为-1的两个数必是互为相反数
(C ) 一个数的绝对值必是正数; (D ) 若|a|>|b|,则a <b <0 2、两个单项式是同类项,下列说法正确的是 (A ) 只有它们的系数可以不同 (B ) 只要它们的系数相同 (C ) 只要它们的次数相同 (D ) 只有它们所含字母相同
3、已知等式y =kx +b ,当x =-1时,y =-3;当x =3时,y =-2,则k,b 的值分别为
(A ) 2.5,-0.5 (B ) 0.25,-2.75 (C ) 2.5,0.5 (D ) -0.25,-2.75
4、若m <n ,且|m|>|n|,那么 (A ) m 一定是正数 (B ) m 一定是0
(C ) m 一定是负数 (D ) 这样的m 不存在
5、要使关于x 的方程3(x -2)+ b =a(x -1)是一元一次方程,必须满足
(A ) a ≠0 (B ) b ≠0 (C ) a ≠3 (D ) a ,b 为任意有理数 6、某工厂去年的产值是a 万元,今年产值是b 万元(0<a <b
), 那么今年比去年产值增加的百
分数是
(A )a a b -×100℅ (B )a
b ×100℅ (C ))1(-b a ×100℅ (D ) a a
b -℅
7、在下列5个等式中①ab =0 ②b a +=0 ③
b
a =0 ④2a =0 ⑤2
2b a +=0 中,a 一定是零的等式有
(A ) 一个 (B ) 二个 (C ) 三个 (D ) 四个
8、数3.949×105
精确到万位约
(A ) 4.0万 (B ) 39万 (C ) 3.95×105 (D ) 4.0×105
9、多项式2x -3y +4+3kx +2ky -k 中没有含y 的项,则k 应取 (A ) k =
2
3 (B ) k =0 (C ) k =-32
(D ) k =4
10、已知二元一次方程组⎩
⎨
⎧=-=+122
3y x y ax 无解,则a 的值是
(A ) 2-=a (B )6=a (C ) 2-=a (D ) 6-=a
二、填空 (2'⨯14)
11、-
4
3
的倒数与3的相反数的积等于 ; 12、(1-2a )2
与|3b -4|是互为相反数,则ab = ;
13、已知⎩⎨
⎧==3
2y x 是方程组⎩⎨⎧=+=+1
2
2y nx my x 的解,则m = ;n = ;
14、关于x 的方程 2x -4=3m 与方程x +3=m 的解的绝对值相等则m = ;
15、若2
12
1b a
y x --与22-+y x ab 是同类项,则x = y = ; 16、数a ,b 在数轴上的位置如图所示 a 0 1 b 则|a|+|a -b|-|1+b|-|a -1|= ;
17、方程ax +b =0的解是正数,那么a ,b 应具备的条件是 ;
18、已知M 点和N 点在同一条数轴上,又已知点N 表示-2,且M 点距N 点的距离是5个长度单位,
则点M 表示数是____________;
19、方程3x +y =10的所有正整数解有 对;
20、已知xyz ≠0,从方程组⎩⎨⎧=+-=-+0
34z y x z y x 中求出x : y : z =________________;
21、设x 是一位数,y 为三位数,若把y 放在x 的左边组成一个四位数,则这个四位数用代数式可
以表示为 ;
22、一列火车通过隧道,从车头进入道口到车尾离开隧道共需45秒,当整列火车在隧道里时需32
秒,若车身长为180米,隧道x 米,可列方程为_________________ _________.
三、计算及解方程(组) (4'
⨯6)
23、-22
+(-2)3
×5-(-0.28) ÷(-2)2
24、4
1
31312--=--
x x x
25、)4(61
)256(31)375(21+--=+x x x 26、⎪⎩⎪⎨⎧=+=-4
32225n m n m
27、⎪⎩⎪⎨⎧=--==3423:7:3:5:z y x z x y x 28、 ⎪⎩
⎪⎨⎧=-+=++=++1232721323z y x z y x z y x
四、解答题 (6'
⨯2)
29、关于y x ,的方程组⎩
⎨
⎧=-=+m y x m
y x 932
(1)若x 的值比y 的值小5,求m 的值;
(2)若方程3x +2y =17与方程组的解相同,求m 的值.
30、在等式c bx ax y ++=2
中,当41==y x 时,,当101
=-=y x 时,,当72==y x 时,. 1.求出c b a ,,的值; 2. 当2-=x 时,y 的值等于多少?
五、先化简,再求值 (6') 31.)3123()31(22122y x y x x +-+-- 其中3
2,2=-=y x
六、应用题 (5'
⨯2)
32、某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了
20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?
33、修筑高速公路经过某村,需搬迁一批农户。
为了节约土地资源和保护环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得少于区域总面积的20%。
若搬迁农户建房每户占地1502
m ,则绿色环境占地面积占总面积的40%;政府又鼓励其他有积蓄的农户到规划区建房,这样又有20户农户加入建房,若仍以每户占地1502
m 计算,则这时绿色环境面积只占总面积的15%。
为了符合规划要求,又需要退出部分农户。
问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少2
m ?
(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?
初一数学期末答案
一、
二、11、4
12、
3
2 13、-
3
2
,-1 14、-10或
5
2 15、
3 1 16、-2-a 17、a ,b 异号 18、3或-7 19、3 20、2:7:5 21、10y+x
22、
32
180
45180-=
+x x 三、23、-43.93
24、x=
13
11
25、x=-4
26、⎩⎨⎧-==25n m 27、⎪⎩
⎪
⎨⎧===15
2135
z y x
28、⎪⎩
⎪
⎨⎧===132
z y x
四、29、(1)m=-
9
5
(2)m=1 30、1、⎪⎩
⎪
⎨⎧=-==532c b a
2、19
五、-3x+y 2
)9
46(958 六、32、100天 4000个零件
33、(1)48户 12000m 2
(2)4户。