初一上册数学期末考试卷及答案

合集下载

数学试卷---五套七年级数学上册期末试卷(附答案)

数学试卷---五套七年级数学上册期末试卷(附答案)

数学期末考试卷一、选择题(每小题3分,共36分) 1、下列说,其中正确的个数为( )①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。

A .1个B .2个C .3个D .4个 2、下列计算中正确的是( )A .532a a a =+B .22a a -=-C .33)(a a =-D .22)(a a -- 3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( ) A .13107.4⨯元 B .12107.4⨯ C .131071.4⨯元 D .131072.4⨯元5、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 。

a b 图3B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是4 。

D .多项式322++xy x 是三次三项式 6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x C .13413=+--x x D .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。

乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。

2023-2024年人教版七年级上册数学期末试题(含简单答案)

2023-2024年人教版七年级上册数学期末试题(含简单答案)

14.关于 x 的方程 2x 3 3m 和 2x 1 5 有相同的解,则 m 的值是
.
15.某车间有 22 名工人,每人每天可以生产 12 个螺钉或 20 个螺母,1 个螺钉需要配 2
个螺母,为使每天生产的螺钉和螺母刚好配套,应安排
人生产螺钉.
16.一个小正方体的六个面分别标有数字1, 2 , 3 , 4 , 5 , 6 .将它按如图所示的方 式顺时针滚动,每滚动 90 算一次,则滚动第 2023次时,小正方体朝下一面标有的数字
1 A.
4
B. 1 4
C.4
D. 4
5.小明同学在解方程 5x 1 mx 3 时,把数字 m 看错了,解得 x 4 ,则该同学把 m 3
看成了( )
A.3
B. 128 9
C.8
D. 8
6.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最
小值是( )
A.5
B.6
C.7
9.计算: 3 2 2 .
C.170
D.189
10.若 a 2 b 32 0 ,则 ba 的值为 .
11.多项式 x2 y 2x4 y xy3 2 y 是

项式.
12.若 x 2 , y 8 ,且 x y 则 x y =
13.规定如下两种运算: x y 2xy 1; x y x 2 y 1.例如: 2 3 2 2 3 1 13; 2 3 2 2 3 1 7 .若 a (4 5) 的值为 79,则 a
22.已知: A x 1 y 2 , B x y 1 . 2
(1)化简 2A B ; (2)若 3y 4x 的值为 4,求 A B 的值;
(3)当 y 3 时, 4A 2 A B 5 ,求 x 的值.

北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(word版,含答案)

北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(word版,含答案)

βα石景山区2023-2024学年第一学期初一期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m -(C )6.8m(D ) 6.8m -3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养 老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10 534人次. 其中,数字10 534用科学记数法可表示为 (A )310.53410⨯ (B )41.053410⨯ (C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1 (B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是 (A )20︒ (B )40︒ (C )50︒(D )70︒考生须知1.本试卷共4页,共三道大题,28道小题,满分100分。

考试时间100分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,选择题、作图题请用2B 铅笔作答,其他试题请用黑色字迹签字笔作答,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

-3b a -2-12106. 下列运算正确的是(A )325+=a b ab (B )2222-=c c(C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是 (A )0ab >(B )<-a b(C )20+>a(D )20->a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________. 10. 如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是 .÷3平方-2结果输入x11. 若233m x y -与253mx y --是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为 . 13. 如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在 (请在,,D E F中选择)处可使所用管道最短,理由是 .河岸FE D 村庄B村庄A第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=, (1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.l三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312-+-. 18.计算:11124(834-⨯-+19.计算:3122(7)2-+⨯-÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=-. 22.解方程:211123x x +--=. 23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ; (2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: .25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点. (1)如图,若=4AC ,求CD 的长. 根据题意,补全解题过程:∵10,4AB AC CB ===,AB - , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.石景山区2023-2024学年第一学期初一期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1- 13.E ;两点之间线段最短 14. 22()a r π-15.(1)4;(2)1 16.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=-+- ………………………… 3分 1=-. ………………………… 5分 19.解:原式82(7)2=-+⨯-⨯ ………………………… 2分 828=-- ………………………… 4分 36=-. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x ---=. ………………………… 5分 21.解:移项,得53182x x -=--. ………………………… 2分 合并同类项,得 220x =-. ………………………… 4分 系数化为1,得10x =-. ………………………… 5分 ∴10x =-是原方程的解.22.解:去分母,得 3(21)2(1)6x x +--=. ………………………… 2分去括号,得 63226x x +-+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分 系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =---+2217x =-. …………………………4分 当2x =-时,原式22(2)17=⨯--.9=-. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套. …… 1分 根据题意可得,180210(50)9600x x +-=. ………………………… 3分 解得:30x =. 则5020x -=. ………………………… 5分 答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB - AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分 27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒, ∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒-︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x -≤≤. …………………………7分。

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试卷附答案

沪科版七年级上册数学期末考试试题一、单选题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是()A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.若盈余2万元记作2+万元,则2-万元表示()A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损3.数据274.8万用科学记数法表示为()A .22.74810⨯B .4274.810⨯C .52.74810⨯D .62.74810⨯4.数轴上表示数m 和2m +的点到原点的距离相等,则m 为()A .2-B .2C .1D .1-5.已知23120x x --=,则代数式2395x x -++的值是()A .31B .31-C .41D .41-6.下列计算结果正确的是()A .22321x x -=B .235325x x x +=C .22330x y yx -=D .44x y xy+=7.星期天,小明一家从家里出发去爷爷家,妈妈骑自行车先走,速度为10千米/时,40分钟后爸爸开车和小明一起出发,速度为60千米/时,结果3人同时到达爷爷家,则小明家距爷爷家的路程为()A .8千米B .10千米C .12千米D .15千米8.在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足()2530a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB =,点Q 为PB 中点,则线段AQ 的长为()A .6B .8C .10D .159.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若114=※,123=※,则21※的值为()A .4B .9C .10D .1210.一组有规律的图案如图所示,它们由边长相等的等边三角形组合而成,第一个图案有4个等边三角形,第二个图案有7个等边三角形,第三个图案有10个等边三角形……按此规律摆下去,则第n 个图案中等边三角形的个数为()A .31n +B .3n +C .33n +D .34n +二、填空题11.﹣2的相反数的值等于_____.12.一个锐角的补角比这个角的余角的3倍还大10︒,则这个锐角的度数是______.13.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____.14.化简:()()423a b a b ---=_________.15.如图,°2918BOC '∠=,则AOC ∠的度数为__________.16.请写出一个解为2x =的一元一次方程:______.17.如图是一个简单的数值运算程序,若开始输入x 的值为5,则最后输出的结果为_____.三、解答题18.计算:(1)()()13271545-+---+;(2)()411582733-+-+÷-⨯19.解方程(组):(1)121134x x ++=-(2)27320x y x y -=⎧⎨+=⎩20.先化简,再求值:()()22221132542a a a a a a ⎡⎤-----⎣⎦,其中4a =-.21.如图,OA ⊥OB 于点O ,∠AOD :∠BOD =7:2,点D 、O 、E 在同一条直线上,OC 平分∠BOE ,求∠COD 的度数.22.已知关于x ,y 的方程组27134x y m x y m +=+⎧⎨+=⎩的解也是二元一次方程3x y -=的解,请求出方程组的解及m 的值.23.甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,一次性购买4kg 以上的苹果,超过4kg 的部分按标价的6折出售.(1)文文购买3kg 的苹果需付款______元;购买5kg 的苹果需付款______元;(2)若文文一次性购买()4x x >kg 的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折销售,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?24.某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____︒,统计表中m=______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.将一副三角板如图1摆放,60AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分COB ∠.(1)MON ∠=______;(2)将图1中的三角板OCD 绕点O 旋转到图2的位置,求MON ∠;(3)将图1中的三角板OCD 绕点O 旋转到图3的位置,求MON ∠.参考答案1.C2.B3.D4.D5.B6.C7.A8.C9.B10.A11.212.50︒13.-214.2a-b .15.15042'16.x-2=0(答案不唯一)17.65618.(1)20(2)-1【分析】(1)先把减法变成加法,再按照加法法则进行计算即可;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.(1)解:()()13271545-+---+()13271545=-+-++=4060-+20=(2)解:()411582733-+-+÷-⨯11132733⎛⎫=-++⨯-⨯ ⎪⎝⎭()133=-++-1=-19.(1)12x =(2)23x y =⎧⎨=-⎩【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)用加减消元法解方程组即可.(1)解:121134x x ++=-去分母得:()()4112321x x +=-+去括号得:441263x x +=--移项得:461234x x +=--合并同类项得:105x =两边同除以10得:12x =(2)解:27320x y x y -=⎧⎨+=⎩①②2⨯+①②得714x =解得2x =把2x =代入①得47y -=解得3y =-∴原方程组的解为23x y =⎧⎨=-⎩【点睛】本题考查了一元一次方程和二元一次方程组的解法,熟练掌握解题步骤是关键.20.22a a --;-8【分析】原式先去小括号,再去中括号,最后合并同类项即可得到答案.【详解】解:原式()22221161548a a a a a a =--+-+()2211122a a a =-+,2211122a a a =--,22a a =--,当4a =-时,原式()()24241688---⨯-=-+=-.21.100°【分析】由垂直的定义结合两角的比值可求解∠BOD 的度数,即可求得∠BOE 的度数,再利用角平分线的定义可求得∠BOC 的度数,进而可求解∠COD 的度数.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,∵∠AOD :∠BOD =7:2,∴∠BOD =29∠AOB =20°,∴∠BOE =180°﹣∠BOD =160°.∵OC 平分∠BOE ,∴∠BOC =12∠BOE =80°,∴∠COD =∠BOC+∠BOD =80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD 的度数是解题的关键.22.52x y =⎧⎨=⎩;23.【分析】此题可先将方程组的m 消去,然后与x−y =3联立,根据二元一次方程组的解法来求出x ,y ,将其代入②,可得出m .【详解】解27134x y m x y m +=+⎧⎨+=⎩①②②-①得x−3y =−1③联立x−y =3得消去m 得方程组为331x y x y -=⎧⎨-=-⎩解这个方程组,得52x y =⎧⎨=⎩,代入②,得:m =15+8=23.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入x 、y 的值即可得出答案.23.(1)30,46(2)她一次性购买()4x x >kg 苹果需付款()616x +元.(3)她在甲超市购买更划算.【分析】(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)4kg 苹果按照原价付款,超过4kg 的部分按标价的6折付款列出代数式即可;(3)计算出两种付款方式的结果,通过两种付款比较那个超市便宜即可(1)解:由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)解:文文一次性购买()4x x >kg 的苹果,需付款4×10+(x -4)×10×0.6=(6x +16)元;答:她一次性购买()4x x >kg 苹果需付款()616x +元.(3)解:∵当x =10时,6x +16=6×10+16=76(元),∴文文在甲超市购买10kg 苹果需付费76元;∵10×10×0.8=80(元),∴文文在乙超市购买10kg 苹果需付费80元;∴文文应该在甲超市购买更划算.【点睛】本题主要考查列代数式、求代数式的值、有理数的混合运算、整式的加减等知识,关键是读懂题意,列出正确的代数式.24.(1)200;(2)90,94;(3)1440名【分析】(1)用D 程度人数除以对应百分比即可;(2)用A 程度的人数与样本人数的比值乘以360°即可得到对应圆心角,算出B 等级对应百分比,乘以样本容量可得m 值;(3)用样本中A 、B 程度的人数之和所占样本的比例,乘以全校总人数即可.【详解】解:(1)16÷8%=200,则样本容量是200;(2)50200×360°=90°,则表示A程度的扇形圆心角为90°;200×(1-8%-20%-50200×100%)=94,则m=94;(3)50942000200+⨯=1440名,∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.【点睛】本题考查了扇形统计图,统计表,样本估计总体等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.25.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502 x yx y+=⎧⎨=-⎩,解得:2426 xy=⎧⎨=⎩,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.26.(1)52.5MON ∠=︒;(2)052.5MON ∠=;(3)052.5MON ∠=.【分析】(1)利用角平分线的性质,分别求出∠NOB 和∠MOB,相加即可求得∠MON,(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠+BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠+∠+∠=()12AOB COD ∠+∠,代值计算即可,(3)同(2)由角平分线分别表示出∠MOD 和∠NOB ,则1122MON AOD COB ∠=∠+∠-BOD ∠,将式子变形为∠MON=12()AOD BOD COB BOD ∠+∠-∠-∠()12AOD BOD =∠-∠()12COB BOD +∠-∠()12AOB COD =∠+∠,代值计算即可,【详解】(1)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠NOB=12∠COB=22.5°,∠MOB=12∠AOD=30°,∴MON ∠=∠NOB+∠MOB=22.5°+30°=52.5°,(2)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB 12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠+∠,()122AOD COB BOD =∠+∠+∠,()()()1211604552.522AOD BOD COB BOD AOB COD =∠+∠+∠+∠=∠+∠=︒+︒=︒,,(3)∵OM 平分AOD ∠,ON 平分COB ∠.∴∠MOD=12∠AOD,∠NOB=12∠COB ,∴1122MON AOD COB BOD ∠=∠+∠-∠,()122AOD COB BOD =∠+∠-∠,()()1122AOD BOD COB BOD =∠-∠+∠-∠,()12AOB COD =∠+∠()160452=⨯︒+︒52.5=︒.。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

仁爱版初一上册《数学》期末考试卷及答案【可打印】

仁爱版初一上册《数学》期末考试卷及答案【可打印】

仁爱版初一上册《数学》期末考试卷一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 3B. 0C. 3.14D.2. 下列各式中,正确的是()A. 3a = aB. 2a + 3b = 5a + 6bC. a + b = b + aD. a b = b a3. 若x = 2是方程ax + b = 0的解,则a + b的值为()A. 2B. 2C. 0D. 14. 若x = 1是方程ax + b = 0的解,则a + b的值为()A. 1B. 1C. 0D. 25. 若x = 3是方程ax + b = 0的解,则a + b的值为()A. 3B. 3C. 0D. 16. 若x = 3是方程ax + b = 0的解,则a + b的值为()A. 3B. 3C. 0D. 17. 若x = 4是方程ax + b = 0的解,则a + b的值为()A. 4B. 4C. 0D. 28. 若x = 4是方程ax + b = 0的解,则a + b的值为()A. 4B. 4C. 0D. 29. 若x = 5是方程ax + b = 0的解,则a + b的值为()A. 5B. 5C. 0D. 310. 若x = 5是方程ax + b = 0的解,则a + b的值为()A. 5B. 5C. 0D. 3二、填空题(每题3分,共30分)1. 有理数包括整数和______数。

2. 若x = 2是方程ax + b = 0的解,则a + b = ______。

3. 若x = 1是方程ax + b = 0的解,则a + b = ______。

4. 若x = 3是方程ax + b = 0的解,则a + b = ______。

5. 若x = 3是方程ax + b = 0的解,则a + b = ______。

6. 若x = 4是方程ax + b = 0的解,则a + b = ______。

7. 若x = 4是方程ax + b = 0的解,则a + b = ______。

2023最新七年级上册数学期末试卷及答案

2023最新七年级上册数学期末试卷及答案

2023最新七年级上册数学期末测试题及答案一、选择题(每题只有一个正确答案,每题2分,共20分)1.(2分)(2006•广州)某市某日的气温是﹣2℃~6℃,则该日的温差是()A .8℃B.6℃C.4℃D.一2℃2.(2分)下列各式中,是一元一次方程的是()A .2x+5y=6 B.3x﹣2 C.x2=1 D.3x+5=83.(2分)如图所示的几何体,从上面看得到的平面图形是()A .B.C.D.4.(2分)下列不是同类项的是()A .3x2y与﹣6xy2B.﹣ab3与b3a C.12和0 D.5.(2分)如图,以A、B、C、D、O为端点的线段共有()条.A .4 B.6 C.8 D.106.(2分)如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A .50°B.75°C.100°D.120°7.(2分)若与互为相反数,则a=()A .B.10 C.D.﹣108.(2分)关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A .10 B.﹣8 C.﹣10 D.89.(2分)已知线段AB,延长AB到C,使BC=2AB,M、N分别是AB、BC的中点,则()A .MN=BC B.AN=AB C.BM:BN=1:2D.AM=BC10.(2分)(2008•乌兰察布)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A .2 B.3 C.4 D.5二、填空题(每空3分,共24分)11.(3分)木匠在木料上画线,先确定两个点的位置,根据_________ 就能把线画得很准确.12.(3分)右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.13.(3分)已知关于x的一元一次方程a(x﹣3)=2x﹣3a的解是x=3,则a= _________ .14.(3分)不大于3的所有非负整数是_________ .15.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是_________ .16.(3分)如图所示,将长方形ABCD的一角沿AE折叠,若∠BAD′=30°,那么∠EAD′= _________ °.17.(3分)若线段AB=8,BC=3,且A,B,C三点在一条直线上,那么AC= _________ .18.(3分)(2006•旅顺口区)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为_________ .输入… 1 2 3 4 5 …输出……三、计算题(每题3分,共18分)19.(18分)(1)(﹣76)+(+26)+(﹣31)+(+17);(2)﹣14﹣2×(﹣3)2;(3)(2a﹣3a2)+(5a﹣6a2);(4)2(2b﹣3a)+3(2a﹣3b);(5)32°49'+25°51';(6)180°﹣56°23'.四、解下列一元一次方程(每题3分,共12分)20.(12分)(1);(2)5(x+2)=2(5x﹣1);(3);(4).四、作图题(每题3分,共6分)21.(3分)如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).22.(3分)淘气有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30度,在B地的南偏东45度,你能帮淘气确定C地的位置吗?五、解答题(每题3分,共9分)23.(3分)(1999•杭州)已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.24.(3分)先化简,再求值:﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=,b=10.25.(3分)如图所示,C、D是线段AB的三等分点,且AD=4,求AB的长.六、列方程解下列应用题(每题5分,共25分)26.(5分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?27.(5分)(2006•吉林)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?28.(5分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.29.(5分)(2007•徐州)某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条.该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元.问小王该月发送网内、网际短信各多少条?30.(5分)某城市按以下规定收取每月的煤气费:用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?七、解答题(6分)31.(6分)如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.参考答案与试题解析一、选择题(每题只有一个正确答案,每题2分,共20分)1.(2分)(2006•广州)某市某日的气温是﹣2℃~6℃,则该日的温差是()A .8℃B.6℃C.4℃D.一2℃考点: 有理数的减法. 专题:应用题. 分析: 认真阅读列出正确的算式,温差就是用最高温度减最低温度,列式计算.解答:解:该日的温差=6﹣(﹣2)=8(℃).故选A . 点评: 考查有理数的运算.有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.2.(2分)下列各式中,是一元一次方程的是( ) A . 2x+5y=6 B .3x ﹣2 C .x 2=1 D .3x+5=8考点:一元一次方程的定义. 分析: 只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a ≠0).解答: 解:A 、含有2个未知数,故选项错误; B 、不是等式,故选项错误;C 、是2次方程,故选项错误;D 、正确.故选D .点评: 本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.3.(2分)如图所示的几何体,从上面看得到的平面图形是()A .B .C . D.考点:简单组合体的三视图.分析:根据所看位置,找出此几何体的三视图即可.解答: 解:从上面看得到的平面图形是两个同心圆,故选:B .点评: 此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.(2分)下列不是同类项的是( )A . 3x 2y 与﹣6xy 2B . ﹣ab 3与b 3aC . 12和0D .考点:同类项.分析: 根据同类项的定义:所含字母相同,相同字母的指数相同即可作出判断.解答: 解:A 、相同字母的指数不同,不是同类项;B 、C 、D 都是同类项.故选A .点评:本题考查同类项的定义,理解定义是关键.5.(2分)如图,以A 、B 、C 、D 、O 为端点的线段共有()条.A . 4B . 6C . 8D .10考点:直线、射线、线段.分析:根据线段的定义结合图形可得出答案.解答: 解:以A 、B 、C 、D 、O 为端点的线段有:AB ,AO ,AD ,BO ,BC ,OC ,OD ,CD 共有8条线段.故选C .点评: 题考查了直线、射线、线段.属于基础题,注意在查找的时候按顺序,避免遗漏.6.(2分)如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD=25°,则∠AOB 等于( )A .50°B . 75°C . 100°D .120°考点:角的计算;角平分线的定义.专题:计算题.分析: 根据角的平分线定义得出∠AOD=∠COD ,∠AOB=2∠AOC=2∠BOC ,求出∠AOD 、∠AOC 的度数,即可求出答案.解答: 解:∵OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC ,∴∠AOB=2∠AOC=2(∠AOD+∠COD )=2×(25°+25°)=100°,故选C .点评:本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.7.(2分)若与互为相反数,则a=( ) A .B . 10C .D .﹣10考点:解一元一次方程.专题:计算题.分析: 先根据互为相反数的定义列出方程,然后根据一元一次方程的解法,去分母,移项,化系数为1,从而得到方程的解.解答: 解:根据题意得,+=0,去分母得,a+3+2a ﹣7=0,移项得,a+2a=7﹣3,合并同类项得,3a=4,系数化为1得,a=.故选A .点本题主要考查了解一元一次方程,注意在去分母时,方评: 程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.8.(2分)关于x 的方程2x ﹣4=3m 和x+2=m 有相同的解,则m 的值是( )A .10B . ﹣8C . ﹣10D .8考点:同解方程.专题:计算题.分析: 在题中,可分别求出x 的值,当然两个x 都是含有m 的代数式,由于两个x 相等,可列方程,从而进行解答. 解答: 解:由2x ﹣4=3m 得:x=;由x+2=m 得:x=m ﹣2 由题意知=m ﹣2 解之得:m=﹣8.故选B .点评:根据题目给出的条件,列出方程组,便可求出未知数.9.(2分)已知线段AB ,延长AB 到C ,使BC=2AB ,M 、N 分别是AB 、BC 的中点,则( )A . MN=BCB . AN=ABC . BM :BN=1:2D . AM=BC考点:两点间的距离.分析: 根据已知得出AM=BM=AB ,AB=BN=NC ,BN=NC=BC ,即可推出各个答案.解答: 解: A 、∵M 、N 分别是AB 、BC 的中点,∴BM=AB ,BN=BC ,∴MN=BM+BN=AB+BC=AC ,故本选项错误;B 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴BN=NC=AB ,∴AN=2AB ,故本选项错误;C 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴BA=BN=NC ,∴BM=AB=BN ,∴BM :BN=1:2,故本选项正确;D 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴AB=BN=NC ,∴AM=AB=BC ,故本选项错误;故选C .点评: 本题考查了线段的中点和求两点间的距离的应用,能熟练地推出各个有关的关系式是解此题的关键.10.(2分)(2008•乌兰察布)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B . 3C . 4D .5考点:一元一次方程的应用.专题:数字问题.分析: 由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.解答:解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程2x=5y ;2z=3y ,消去y 可得:x=z ,则3x=5z ,即三个球体的重量等于五个正方体的重量.故选D .点评:此题的关键是找到球,正方体,圆柱体的关系.二、填空题(每空3分,共24分)11.(3分)木匠在木料上画线,先确定两个点的位置,根据 两点确定一条直线 就能把线画得很准确.考点:直线的性质:两点确定一条直线.分析:根据直线的性质,两点确定一条直线解答.解答: 解:先确定两个点的位置,是根据两点确定一条直线. 故答案为:两点确定一条直线.点评: 本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.12.(3分)右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.考点:一元一次方程的应用.分析: 设出洗发水的现价是x 元,直接得出有关原价的一元一次方程,再进行求解.解答: 解:设洗发水的现价为x 元,由题意得:0.8×36=x ,解得:x=28.8(元).故答案为:28.8元.点评: 此题主要考查了一元一次方程的应用中打折问题,也可以直接计算得出.13.(3分)已知关于x 的一元一次方程a (x ﹣3)=2x ﹣3a 的解是x=3,则a= 2 .考点:一元一次方程的解.分析: 把x=3代入方程即可得到一个关于a 的方程,解方程即可求得a 的值.解答: 解:把x=3代入方程得:6﹣3a=0,解得:a=2.故答案是:2.点评:本题考查了方程的解的定义,理解定义是关键.14.(3分)不大于3的所有非负整数是 0、1、2、3 .考点:有理数大小比较;数轴.分析:非负整数包括0和正整数,根据题意找出即可.解答: 解:不大于3的所有非负整数是0、1、2、3,故答案为:0、1、2、3.点评: 本题考查了有理数的大小比较,注意:非负整数包括0和正整数.15.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是 欢 .考点: 专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答: 解:这是一个正方体的平面展开图,共有六个面,其中面“京”与“你”相对,面“迎”与面“北”相对,“欢”与面“空白”相对.故答案为:欢.点评: 本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.16.(3分)如图所示,将长方形ABCD 的一角沿AE 折叠,若∠BAD ′=30°,那么∠EAD ′= 30 °.考点:角的计算;翻折变换(折叠问题).分析: 首先根据矩形的性质得出∠DAD ′的度数,再根据翻折变换的性质得出∠DAE=∠EAD ′=∠DAD ′即可得出答案. 解答: 解:∵∠BAD ′=30°,∴∠DAD ′=90°﹣30°=60°,∵将长方形ABCD 的一角沿AE 折叠, ∴∠DAE=∠EAD ′=∠DAD ′=30°.故答案为:30.点评: 此题主要考查了翻折变换的性质以及角的计算,根据已知得出∠DAE=∠EAD ′是解题关键.17.(3分)若线段AB=8,BC=3,且A ,B ,C 三点在一条直线上,那么AC= 5或11 .考点:两点间的距离.分析:根据题意画出符合图形的两种情况,求出即可.解答: 解:分为两种情况:①如图1,AC=AB+BC=8+3=11;②如图2,AC=AB ﹣BC=8﹣3=5;故答案为:5或11.点评: 本题考查了两点之间的距离的应用,注意要进行分类讨论啊.18.(3分)(2006•旅顺口区)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为. 输入 …1 2 3 4 5 … 输出 ……考点:代数式求值.专压轴题;图表型.题:分析: 根据图表找出输出数字的规律,直接将输入数据代入即可求解.解答: 解:输出数据的规律为,当输入数据为8时,输出的数据为=. 点评: 此题主要考查根据已有输入输出数据找出它们的规律,进而求解.三、计算题(每题3分,共18分)19.(18分)(1)(﹣76)+(+26)+(﹣31)+(+17);(2)﹣14﹣2×(﹣3)2;(3)(2a ﹣3a 2)+(5a ﹣6a 2);(4)2(2b ﹣3a )+3(2a ﹣3b );(5)32°49'+25°51';(6)180°﹣56°23'.考点:有理数的混合运算;度分秒的换算.分析: (1)先化简,再进行计算即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(3)(4)先去括号,再合并同类项;(5)(6)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.解答: 解:(1)(﹣76)+(+26)+(﹣31)+(+17);=﹣76+26﹣31+17=﹣107+43=﹣64;(2)﹣14﹣2×(﹣3)2;=﹣1﹣2×9=﹣1﹣18=﹣19;(3)(2a ﹣3a 2)+(5a ﹣6a 2)=2a ﹣3a 2+5a ﹣6a 2=﹣9a 2+7a ;(4)2(2b ﹣3a )+3(2a ﹣3b )=4b ﹣6a+6a ﹣9b=﹣5b ;(5)32°49′+25°51′=58°40′;(6)180°﹣56°23′=123°37′.点评: 本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.同时考查了整式的混合运算和度分秒的加减运算.四、解下列一元一次方程(每题3分,共12分)20.(12分)(1);(2)5(x+2)=2(5x ﹣1);(3);(4).考点:解一元一次方程.专题:计算题.分析: 利用去分母,去括号,移项合并,将未知数系数化为1,即可求出解.解答: 解:(1)去分母得:3x+8=12﹣x ,移项合并得:4x=4,解得:x=1;(2)去括号得:5x+10=10x ﹣2,移项合并得:﹣5x=﹣12,解得:x=;(3)去分母得:6(x ﹣2)=2x ﹣1,去括号得:6x ﹣12=2x ﹣1,移项合并得:4x=11,解得:x=;(4)去分母得:3(y+3)=2(y ﹣3)+6y ,去括号得:3y+9=2y ﹣6+6y ,移项合并得:﹣5y=﹣15,解得:y=3.点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.四、作图题(每题3分,共6分)21.(3分)如图所示,直线l 是一条平直的公路,A ,B 是两个车站,若要在公路l 上修建一个加油站,如何使它到车站A ,B 的距离之和最小,请在公路上表示出点P 的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).考点:作图—应用与设计作图.分析:连接AB ,与l 的交点就是P 点.解答:解:如图所示:点P 即为所求.点评: 此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.22.(3分)淘气有一张地图,有A 、B 、C 三地,但地图被墨迹污染,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30度,在B 地的南偏东45度,你能帮淘气确定C 地的位置吗?考方向角.点:专题:作图题.分析: 根据方位角的概念画出:A 地的北偏东30度,B 地的南偏东45度两条直线,两直线的交点就是C .解答:解:如图C 在A 、B 两点的交点上点评: 解答此题需要熟练掌握方位角的概念,认真作图解答即可.五、解答题(每题3分,共9分)23.(3分)(1999•杭州)已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.考点:余角和补角.专题:计算题.分析: 利用题中“一个角的补角比这个角的余角的3倍大10°”作为相等关系列方程求解即可.解答: 解:设这个角是x ,则(180°﹣x )﹣3(90°﹣x )=10°, 解得x=50°.故答案为50°.点评: 主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.24.(3分)先化简,再求值:﹣(﹣a 2+2ab+b 2)+(﹣a 2﹣ab+b 2),其中a=,b=10.考点:整式的加减—化简求值.专题:计算题.分析: 原式利用去括号法则去括号后,合并同类项得到最简结果,将a 与b 的值代入计算即可求出值.解答: 解:原式=a 2﹣2ab ﹣b 2﹣a 2﹣ab+b 2=﹣3ab ,当a=﹣,b=10时,原式=﹣3×(﹣)×10=2.点评:此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.25.(3分)如图所示,C 、D 是线段AB 的三等分点,且AD=4,求AB 的长.考点:两点间的距离.分析: 根据已知得出AC=CD=BD ,求出BD ,代入AD+BD 求出即可.解答: 解:C 、D 是线段AB 的三等分点,AD=4,∵AC=CD=BD=AD=2,∴AB=AD+BD=4+2=6,即AB 的长是6.点评: 本题考查了线段的中点和求两点间的距离等知识点的应用.六、列方程解下列应用题(每题5分,共25分)26.(5分)一个长方形的周长为28cm ,将此长方形的长减少2cm ,宽增加4cm ,就可成为一个正方形,那么原长方形的长和宽分别是多少?考点:一元一次方程的应用.分析: 设长方形的长是xcm ,根据正方形的边长相等即可列出方程求解.解解:设长方形的长是xcm ,则宽为(14﹣x )cm ,答: 根据题意得:x ﹣2=(14﹣x )+4,解得:x=10,14﹣x=14﹣10=4.答:长方形的长为10cm ,宽为4cm .点评:此题主要考查了一元一次方程的应用,得到长方形的宽是解决本题的突破点,根据正方形的边长相等得到等量关系是解决本题的关键.27.(5分)(2006•吉林)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?考点:一元一次方程的应用.专题:应用题;工程问题.分析: 本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解解:设严重缺水城市有x 座,答: 依题意得:(4x ﹣50)+x+2x=664.解得:x=102.答:严重缺水城市有102座.点评: 本题考查列方程解应用题的能力,解决问题的关键在于找到合适的等量关系,列出方程组求解.28.(5分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.考点:一元一次方程的应用.分析: 设列车提速前的速度是x 千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度素.解答: 解:设列车提速前的速度是x 千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176)x=80∴提速后的速度为:x+176=256答:列车提速后的速度为256千米/小时.点评:本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.29.(5分)(2007•徐州)某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条.该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元.问小王该月发送网内、网际短信各多少条?考点:二元一次方程组的应用.分析: 本题的等量关系为:发送的网内短信的条数+发送的网际短信的条数=150条;发送网内短信的费用+发送网际短信的费用=19元;根据这两个等量关系来列出方程组.解答:解:设小王该月发送网内短信x 条,网际短信y 条. 根据题意得 解这个方程组得. 答:小王该月发送网内短信70条,网际短信80条.点评: 解题关键是弄清题意,找到关键语,找出合适的等量关系:发送的网内短信的条数+发送的网际短信的条数=150条;发送网内短信的费用+发送网际短信的费用=19元.然后列出方程组.30.(5分)某城市按以下规定收取每月的煤气费:用气如果不超过60m 3,按每立方米0.8元收费;如果超过60m 3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?考点:一元一次方程的应用.专题:应用题.分析: 先判断出4月份所用煤气一定超过60m 3,等量关系为:60×0.8+超过60米的立方数×1.2=0.88×所用的立方数,设4月份用了煤气x 立方,从而得出方程求解即可.解答: 解:由4月份煤气费平均每立方米0.88元,可得4月份用煤气一定超过60m 3,设4月份用了煤气x 立方,由题意得:60×0.8+(x ﹣60)×1.2=0.88×x ,解得:x=75,则所交电费=75×0.88=66元.答:4月份这位用户应交煤气费66元.点评: 本题考查用一元一次方程解决实际问题,判断出煤气量在60m 3以上是解决本题的突破点,得到煤气费的等量关系是解决本题的关键.七、解答题(6分)31.(6分)如图(1)所示,∠AOB 、∠COD 都是直角.(1)试猜想∠AOD 与∠COB 在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD 绕着点O 旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.考点:余角和补角.分析: (1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD 和∠COB 表示出∠BOD ,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.解答: 解:(1)∠AOD 与∠COB 互补.理由如下:∵∠AOB 、∠COD 都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD ﹣∠AOB=∠AOD ﹣90°,∠BOD=∠COD ﹣∠COB=90°﹣∠COB ,∴∠AOD ﹣90°=90°﹣∠COB ,∴∠AOD+∠COB=180°,∴∠AOD 与∠COB 互补;(2)成立.理由如下:∵∠AOB 、∠COD 都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD 与∠COB 互补.点评: 本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD 是解题的关键.。

人教版数学七年级上册期末考试试卷含答案

人教版数学七年级上册期末考试试卷含答案

人教版数学七年级上册期末考试试题一、选择题(每小题 3 分,共 30 分)1. a 、b ,在数轴上表示如图 1,下列判断正确的是()A. a + b > 0B .b + 1 > 0 C .- b - 1 < 0 D .a + 1 > 0 2. 如图 2,在下列说法中错误的是( )A. 射线OA 的方向是正西方向B. 射线OB 的方向是东北方向C. 射线OC 的方向是南偏东 60°D. 射线OD 的方向是南偏西 55°3. 下列运算正确的是( )A. 5x - 3x = 2B. 2a + 3b = 5abC. 2ab - ba = abD. - (a - b ) = b + a4. 如果有理数a , b 满足ab > 0 , a + b < 0 ,则下列说法正确的是()A. a > 0, b > 0B. a < 0, b > 0C. a < 0, b < 0D. a > 0, b < 05.若(1 - m ) 2+ | n + 2 |= 0 ,如m + n 的值为()A. -1B. - 3C.3D.不确定6.7. 平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2 条B.3 条C.4 条D.1 条或 3 条8.将长方形的纸ABCD 沿 AE 折叠,得到如图 3 所示的图形,已知∠CED ′=60.则∠AED 的是( ) A.60º B.50º C.75ºD.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图 4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是()若| a |> 0 ,那么() A. a > 0 B. a < 0 C. a ≠ 0D. a 为任意有理数10. 一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优4惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价 5收费。

北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)

北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)

2023−2024学年度第一学期初一数学期末考试试卷考查目标1.知识:人教版七年级上册《有理数》、《整式的加减》、《一元一次方程》、《几何图形初步》全部内容.2.能力:抽象能力,运算能力,推理能力,几何直观能力,阅读理解能力,实际应用能力.考生须知1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共14页;其中第1卷2页,第Ⅱ卷6页,答题卡6页.全卷共三道大题,28道小题.2.本试卷满分100分,考试时间100分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号.4.考试结束,将答题卡交回.第I 卷 (选择题共16分)一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.如图是某几何体的三视图,该几何体是( )A .圆柱B .圆锥C .三棱锥D .长方体2.2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为( )A .B .C .D .3.如图,甲从点出发向北偏东方向走到点,乙从点出发向南偏西方向走到点,则的度数是( )6110⨯51010⨯70.110⨯7110⨯O 50︒A O 20︒B AOB ∠A .B 4.已知,,且A .2或8B 5.如图,A .6.若是关于A .10107.如图,将一刻度尺放在数轴上.70︒29a =5b =AOB AOC ∠∠:36︒2x =A .1B .3C .5D .6第Ⅱ卷 (非选择题共84分)10.多项式是 11.若一个角的补角比它的余角的312.古代名著《算学启蒙》中有一题行一十二日,问良马几何追及之.意思是里.慢马先走12天,快马几天可追上慢马?若设快马程为 .32231a a a -+-15.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中号两张正方形纸片既不重叠也无空隙.已知阴影部分的周长是 .(用含a (1)画直线;(2)连接并延长到(3)画射线、并度量AB BC BC CA CD解:∵,∴,∵,∴90AOB ∠=︒90BOC AOC ∠+∠=︒90COD ∠=︒90BOC BOD ∠+∠=︒依题得:,,.50AOC ∠=︒AOB AOD BOD ∴∠=∠+∠COD AOC BOD =∠-∠+∠1805020=︒-︒+︒150=︒根据上图可知:第一次变换后,朝上的点数为5,9.两点之间,线段最短【分析】本题主要考查了线段的性质,即两点之间,线段最短.【详解】解:亮亮打开导航,显示两地直线距离为,但导航提供的三条可选路线长却分别为,,,能解释这一现象的数学知识是:两点之间,线段最短.故答案为:两点之间,线段最短.10. 三 四【分析】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.根据多项式的概念解答即可.【详解】解:∵有4个项,最高次项是3次,∴多项式是三次四项式.故答案为;三,四.11.##43度【分析】本题考查了余角和补角的意义,如果两个角的和等于,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于,那么这两个角互为补角,其中一个角叫做另一个角的补角.设这个角为,根据题意列方程求解即可.【详解】解:设这个角为,由题意,得,解得.故答案为:.12.240x=150x+12×150【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程.【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程.13.2或359km 70km 73km 75km 32231a a a -+-32231a a a -+-43︒90︒180︒x ︒x ︒()1803904x x ︒-︒=︒--︒43x =43︒21.2【分析】本题考查了与线段中点有关的计算,据线段中点的定义求出的长,再根据【详解】解:∵点O 是的中点,∴,OB AB 182OB AB ==及根据绝对值的意义化简绝对值.(1)根据数轴可知a .b ,c 的正负性即可求解.(2)根据数轴可知,,,然后根据绝对值的性质化解求解即可.【详解】(1)解:根据数轴可得:,∴,.故答案为:,(2)根据数轴可得:,,∴24.(1)1040(2)302立方米【分析】本题考查了有理数的混合运算,一元一次方程的应用,找到相等关系是解题的关键.(1)根据题中的收费标准计算;(2)根据“B 家庭2023年水费为1838元”列方程求解.【详解】(1)(元),故答案为:1040;(2)设该家庭年用水量为x 立方米,∵,∴,则:,解得:,答:该家庭年用水量为302立方米.25.(1)见详解0b <0a c +>0b a -<0b a c <<<0c -<0abc ><>0b <0a c +>0b a -<||||||b ac b a ++--()b ac a b =-++--b a c a b=-++-+c=()180572001801040⨯+⨯-=()1805726018014601838⨯+⨯-=<260x >()()1805726018092601838x ⨯+⨯-+-=302x =设,∵射线绕点O 顺时针旋转得到射线∴∵平分,平分AOC α∠=OC 90︒90AOD AOC COD a ∠=∠+∠=+OE AOD ∠OF BOC ∠设,则∵平分,平分∴,则设,则,∵平分,平分∴,设,则∵平分,平分AOC β∠=AOD β∠=+OE AOD ∠OF BOC ∠19022EOD AOD β+︒∠=∠=EOF EOD FOC COD ∠=∠+∠-∠AOC γ∠=90AOD γ∠=︒-OE AOD ∠OF BOC ∠19022EOD AOD γ︒-∠=∠=FOC ∠AOC α∠=AOD AOC ∠=∠-360240BOC AOB AOC ∠=︒-∠-∠=OE AOD ∠OF BOC ∠。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

七年级数学上册期末考试卷(有答案)

七年级数学上册期末考试卷(有答案)
25.(10分)随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数
为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下
列问题:
(1)分别求出选择这两种卡消费时,y关于x的函数表达式.
(2)求出B点坐标.
(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?
5.对于一次函数 的相关性质,下列描述错误的是()
A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为
C.y随x的增大而减小D.图象与坐标轴围成三角形的而积为
6.下列图形中的曲线不表示 是 的函数的是()
7.如图,在 中, ,垂足为D,下列结论中,不一定成立的是()
A. 与 互余B.∠B与 互余C. D.
15.如图,BD是△ABC的角平分线,DE⊥AB于点E;BD=13,BE=12,BC=14,则△BCD的面积是.
16.根据下图所示的程序计算函数值,若输入的x值为 ,则输出的结果为。
17.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是
18.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动
到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2022次运动后,动点的坐标是______.
三、解答题:本大题共7小题,共66分.解答要写出必要的文字说明、计算过程或验算步骤.
20、(1)图略,A′(1,3),B′(5,1),C′(2,-2);┄┄┄┄4分
(2)△ABC的面积为 .┄┄┄┄8分
21、证明:∵AB∥CD
∴∠ABD=∠CDE ┄┄┄┄┄3分

初一上期末考试数学试卷(含答案)

初一上期末考试数学试卷(含答案)

初一上期末考试数学试卷(含答案)第一学期期末考试初一数学试卷一、选择题(共9个小题,每小题3分,共27分)1.-1的相反数是()A。

2.B。

1/2.C。

-2.D。

-1/22.当地面高于海平面1米时,记作“+1米”,那么地面低于海平面10米时,记作()A。

-1米。

B。

+1米。

C。

-10米。

D。

+10米3.最新数据显示,目前全世界人口总数约为70亿,中国是世界第一人口大国,约为1 400 000 000人。

请将1 400 000 000用科学记数法表示为()A。

14×10^7.B。

1.4×10^9.C。

14×10^8.D。

140×10^114.如果x=1是关于x的方程2x+m=2的解,那么m的值是()A。

1.B。

1/2.C。

-1.D。

-1/25.下列运算正确的是()A。

6a-5a=a。

B。

a^2+a^2=2a^4.C。

3a^2b-4b^2a=-a^2b。

D。

(a^2)^3=a^56.从正面、上面、左面三个方向看某一个物体得到的图形如图所示,则这个物体是()A。

圆锥。

B。

圆柱。

C。

三棱锥。

D。

三棱柱7.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是()A。

①②。

B。

①④。

C。

②③。

D。

③④8.如图是一个正方体的展开图,如果在其中的三个面A,B,C内分别填入适当的数,使得它们围成正方体后相对的面上的两个数互为相反数,那么填入A,B,C内的三个数依次为()A。

0,-1,2.B。

0,2,-1.C。

2,-1,-2.D。

-1,1,-29.列数中第9个数及第n个数(n为正整数)分别是()A。

82,-n^2+1.B。

82,(-1)^n+2.C。

-82,(n^2+1)。

D。

-82,3n+1二、填空题(共6个小题,每小题3分,共18分)10.单项式-2xy的系数是_______,次数是_______。

11.角度换算:3615′=_______。

12.某商店把一双旅游鞋按进价提高30%标价,然后再按标价的8折出售,如果每双旅游鞋的进价为x元,那么每双鞋标价为_______元;8折后,每双鞋的实际售价为_______元。

七年级上册数学期末考试卷及答案

七年级上册数学期末考试卷及答案

七年级上册数学期末考试卷及答案七年级上册数学期末考试卷及答案期末考试是指每个学期快结束时,学校往往以试卷的形式对各门学科进行该学期知识掌握的检测,对上一学期知识的查漏补缺,一般由区或市统考,也可能是几个学校进行联考。

以下是店铺为大家整理的七年级上册数学期末考试卷及答案,欢迎阅读,希望大家能够喜欢。

一、选择题(每小题2分,共16分)1.﹣2的倒数是()A. ﹣2B. 2C. ﹣D.2.在数﹣32、|﹣2.5|、﹣(﹣2 )、(﹣3)3中,负数的个数是()A. 1B. 2C. 3D. 43.一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A. 3B. ﹣5C. ﹣1D. ﹣94.下列说法中,正确的是()A. 符号不同的两个数互为相反数B. 两个有理数和一定大于每一个加数C. 有理数分为正数和负数D. 所有的有理数都能用数轴上的点来表示5.若2x﹣5y=3,则4x﹣10y﹣3的值是()A. ﹣3B. 0C. 3D. 66.直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是()A. 不超过4cmB. 4cmC. 6cmD. 不少于6cm7.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程()A. =B. =C. =D. =8.纸板上有10个无阴影的正方形,从中选1个,使得它与5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A. 4种B. 5种C. 6种D. 7种二、填空题(每小题2分,共20分)9.在﹣5.3和6.2之间所有整数之和为.10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为公里.11.若关于x的方程2x+a=0的解为﹣3,则a的值为.12.已知两个单项式﹣3a2bm与na2b的和为0,则m+n的值是.13.固定一根木条至少需要两根铁钉,这是根据.14.若A=68,则A的余角是.15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.若|a|=3,|b|=2,且a+b0,那么a﹣b的值是.17.一个长方体的主视图与俯视图,则这个长方体的表面积是.18.BOC与AOC互为补角,OD平分AOC,BOC=n,则DOB=.(用含n的代数式表示)三、解答题(共64分)19.计算:40[(﹣2)4+3(﹣2)].20.计算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2(﹣5)].21.化简:3x+5(x2﹣x+3)﹣2(x2﹣x+3).22.先化简,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n= .23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.24.解方程: .25.在所示的方格纸中,每一个正方形的面积为1,按要求画图,并回答问题.(1)将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;(2)连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;(3)连接AC、BD,并用符号语言描述AC与BD的位置关系.26.将长方形纸片的一角折叠,使顶点A落在点A处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D处,D在BA的延长线上,折痕EB.(1)若ABC=65,求DBE的度数;(2)若将点B沿AD方向滑动(不与A、D重合),CBE的大小发生变化吗?并说明理由.27.已知,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度.28.为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm,根据图中数据.(1)该长方体盒子的宽为,长为;(用含x的代数式表示)(2)若长比宽多2cm,求盒子的容积.29.目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2030乙型4060(1)如何进货,进货款恰好为28000元?(2)如何进货,能确保售完这1000只灯后,获得利润为15000元?30.已知点A 、B在数轴上,点A表示的数为a,点B表示的数为b.(1)若a=7,b=3,则AB的长度为;若a=4,b=﹣3,则AB的长度为;若a=﹣4,b=﹣7,则AB的长度为.(2)根据(1)的启发,若A在B的右侧,则AB的长度为;(用含a,b 的代数式表示),并说明理由.(3)根据以上探究,则AB的长度为(用含a,b的代数式表示).参考答案与试题解析一、选择题(每小题2分,共16分)1.﹣2的倒数是()A. ﹣2B. 2C. ﹣D.考点:倒数.专题:计算题.分析:根据倒数的定义:乘积是1的两数互为倒数. 一般地,a =1 (a0),就说a(a0)的倒数是 .2.在数﹣32、|﹣2.5|、﹣(﹣2 )、(﹣3)3中,负数的个数是()A. 1B. 2C. 3D. 4考点:正数和负数.分析:根据乘方、相反数及绝对值,可化简各数,根据小于零的数是负数,可得答案.解答:解:﹣32=﹣90,|﹣2.5|=2.50,﹣(﹣2 )=2 0,(﹣3)3=﹣27,3.一个点从数轴上的﹣3表示的点开始,先向右移动2个单位长度,再向左移动4个单位长度,这时该点所对应的数是()A. 3B. ﹣5C.﹣1D. ﹣9考点:数轴.分析:根据数轴是以向右为正方向,故数的大小变化和平移变化之间的规律:左减右加,即可求解.解答:解:由题意得:向右移动2个单位长度可表示为+2,再向左移动4个单位长度可表示为﹣4,4.下列说法中,正确的是()A. 符号不同的两个数互为相反数B. 两个有理数和一定大于每一个加数C. 有理数分为正数和负数D. 所有的有理数都能用数轴上的点来表示考点:有理数的加法;有理数;数轴;相反数.分析:A、根据有相反数的定义判断.B、利用有理数加法法则推断.C、按照有理数的分类判断:有理数 D、根据有理数与数轴上的点的关系判断.解答:解:A、+2与﹣1符号不同,但不是互为相反数,错误;B、两个负有理数的和小于每一个加数,错误;C、有理数分为正有理数、负有理数和0,错误;D、所有的有理数都能用数轴上的点来表示,正确.5.若2x﹣5y=3,则4x﹣10y﹣3的值是()A. ﹣3B. 0C. 3D. 6考点:代数式求值.专题:计算题.分析:原式前两项提取2变形后,把已知等式代入计算即可求出值.解答:解:∵2x﹣5y=3,6.直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是()A. 不超过4cmB. 4cmC. 6cmD. 不少于6cm考点:点到直线的距离.分析:根据点到直线的距离是直线外的点与直线上垂足间线段的长度,垂线段最短,可得答案.解答:解:直线l外一点P与直线l上两点的连线段长分别为4cm,6cm,则点P到直线l的距离是小于或等于4,7.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程()A. =B. =C. =D. =考点:由实际问题抽象出一元一次方程.分析:设计划做x个中国结,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个中国结,8纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A. 4种B. 5种C. 6种D. 7种考点:展开图折叠成几何体.分析:利用正方体的展开图即可解决问题,共四种.二、填空题(每小题2分,共20分)9.在﹣5.3和6.2之间所有整数之和为 6 .考点:有理数的加法;有理数大小比较.专题:计算题.分析:找出在﹣5.3和6.2之间所有整数,求出之和即可.解答:解:在﹣5.3和6.2之间所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,10.京沪高铁全长约1318公里,将1318公里用科学记数法表示为 1.318103 公里.考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.11.若关于x的方程2x+a=0的解为﹣3,则a的值为 6 .考点:一元一次方程的解.专题:计算题.分析:把x=﹣3代入方程计算即可求出a的值.解答:解:把x=﹣3代入方程得:﹣6+a=0,12.已知两个单项式﹣3a2bm与na2b的和为0,则m+n的值是4 .考点:合并同类项.分析:根据合并同类项,可得方程组,根据解方程组,kedem、n的值,根据有理数的加法,可得答案.解答:解:由单项式﹣3a2bm与na2b的和为0,得13.固定一根木条至少需要两根铁钉,这是根据两点确定一条直线 .考点:直线的性质:两点确定一条直线.分析:根据直线的性质:两点确定一条直线进行解答.解答:解:固定一根木条至少需要两根铁钉,这是根据:两点确定一条直线,14.若A=68,则A的余角是 22 .考点:余角和补角.分析: A的余角为90﹣A.解答:解:根据余角的定义得:15.在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7 .考点:数轴.分析:根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.解答:解:分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;16.若|a|=3,|b|=2,且a+b0,那么a﹣b的值是 5,1 .考点:有理数的减法;绝对值.分析:根据绝对值的性质.解答:解:∵|a|=3,|b|=2,且a+b0,a=3,b=2或a=3,b=﹣2;17.一个长方体的主视图与俯视图如图所示,则这个长方体的表面积是 88 .考点:由三视图判断几何体.分析:根据给出的长方体的主视图和俯视图可得,长方体的长是6,宽是2,高是4,进而可根据长方体的表面积公式求出其表面积.解答:解:由主视图可得长方体的长为6,高为4,由俯视图可得长方体的宽为2,则这个长方体的表面积是(62+64+42)2=(12+24+8)2=442=88.18.BOC与AOC互为补角,OD平分AOC,BOC=n,则DOB= (90+ ) .(用含n的代数式表示)考点:余角和补角;角平分线的定义.分析:先求出AOC=180﹣n,再求出COD,即可求出DOB.解答:解:∵BOC+AOD=180,AOC=180﹣n,∵OD平分AOC,COD= ,三、解答题(共64分)19.计算:40[(﹣2)4+3(﹣2)].考点:有理数的混合运算.专题:计算题.分析:原式先计算中括号中的乘方及乘法运算,再计算除法运算即可得到结果.20.计算:[(﹣1)3+(﹣3)2]﹣[(﹣2)3﹣2(﹣5)].考点:有理数的混合运算.分析:先算乘方和和乘法,再算括号里面的,最后算减法,由此顺序计算即可.21.化简:3x+5(x2﹣x+3)﹣2(x2﹣x+3).考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.22.先化简,再求值:3mn﹣[6(mn﹣m2)﹣4(2mn﹣m2)],其中m=﹣2,n= .考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:原式=3mn﹣6mn+6m2+8mn﹣4m2=2m2+5mn,23.解方程:3(x﹣1)﹣2(1﹣x)+5=0.考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,把x系数化为1,即可求出解.解答:解:去括号得:3x﹣3﹣2+2x+5=0,24.解方程: .考点:解一元一次方程.专题:计算题.分析:先把等式两边的项合并后再去分母得到不含分母的.一元一次方程,然后移项求值即可.解答:解:原方程可转化为: =25.在方格纸中,每一个正方形的面积为1,按要求画图,并回答问题.(1)将线段AB平移,使得点A与点C重合得到线段CD,画出线段CD;(2)连接AD、BC交于点O,并用符号语言描述AD与BC的位置关系;(3)连接AC、BD,并用符号语言描述AC与BD的位置关系.考点:作图-平移变换.分析: (1)根据图形平移的性质画出线段CD即可;(2)连接AD、BC交于点O,根据勾股定理即可得出结论;(3)连接AC、BD,根据平移的性质得出四边形ABDC是平形四边形,由此可得出结论.解答:解:(1)(2)连接AD、BC交于点O,BCAD且OC=OB,OA=OD;(3)∵线段CD由AB平移而成,CD∥AB,CD=AB,26.将长方形纸片的一角折叠,使顶点A落在点A处,折痕CB;再将长方形纸片的另一角折叠,使顶点D落在点D处,D在BA的延长线上,折痕EB.(1)若ABC=65,求DBE的度数;(2)若将点B沿AD方向滑动(不与A、D重合),CBE的大小发生变化吗?并说明理由.考点:角的计算;翻折变换(折叠问题).分析:(1)由折叠的性质可得ABC=ABC=65,DBE=DBE,又因为ABC+ABC+DBE+DBE=180从而可求得(2)根据题意,可得CBE=ABC+DBE=90,故不会发生变化.解答:解:(1)由折叠的性质可得ABC=ABC=65,DBE=DBEDBE+DBE=180﹣65﹣65=50,DBE=25(2)∵ABC=ABC,DBE=DBE,ABC+ABC+DBE+DBE=180,ABC+DBE=90,27.已知,点A、B、C、D四点在一条直线上,AB=6cm,DB=1cm,点C是线段AD的中点,请画出相应的示意图,并求出此时线段BC的长度.考点:两点间的距离.分析:分类讨论:点D在线段AB上,点D在线段AB的延长线上,根据线段的和差,可得AD的长,根据线段中点的性质,可得AC 的长,再根据线段的和差,可得答案.解答:解:当点D在线段AB上时由线段的和差,得AD=AB﹣BD=6﹣1=5cm,由C是线段AD的中点,得AC= AD= 5= cm,由线段的和差,得BC=AB﹣AC=6﹣ = cm;当点D在线段AB的延长线上时由线段的和差,得AD=AB+BD=6+1=7cm,由C是线段AD的中点,得AC= AD= 7= cm,28.为一个无盖长方体盒子的展开图(重叠部分不计),设高为xcm,根据图中数据 .(1)该长方体盒子的宽为(6﹣x)cm ,长为(4+x)cm ;(用含x的代数式表示)(2)若长比宽多2cm,求盒子的容积.考点:一元一次方程的应用;展开图折叠成几何体.专题:几何图形问题.分析: (1)根据图形即可求出这个长方体盒子的长和宽;(2)根据长方体的体积公式=长宽高,列式计算即可.解答:解:(1)长方体的高是xcm,宽是(6﹣x)cm,长是10﹣(6﹣x)=(4+x)cm;(2)由题意得(4+x)﹣(6﹣x)=2,解得x=2,所以长方体的高是2cm,宽是4cm,长是6cm;则盒子的容积为:642=48(cm3).29.目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2030乙型4060(1)如何进货,进货款恰好为28000元?(2)如何进货,能确保售完这1000只灯后,获得利润为15000元?考点:一元一次方程的应用.分析:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,根据两种节能灯的总价为28000元建立方程求出其解即可;(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据售完这1000只灯后,获得利润为15000元建立方程求出其解即可.解答:解:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000﹣x)只,由题意得20x+40(1000﹣x)=28000,解得:x=600.则购进乙种节能灯1000﹣600=400(只).答:购进甲种节能灯600只,购进乙种节能灯400只,进货款恰好为28000元;(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000﹣a)只,根据题意得(30﹣20)a+(60﹣40)(1000﹣a)=15000,解得a=500.则购进乙种节能灯1000﹣500=500(只).答:购进甲种节能灯500只,购进乙种节能灯500只,能确保售完这1000只灯后,获得利润为15000元.30.已知点A、B在数轴上,点A表示的数为a,点B表示的数为b.(1)若a=7,b=3,则AB的长度为 4 ;若a=4,b=﹣3,则AB的长度为 7 ;若a=﹣4,b=﹣7,则AB的长度为 3 .(2)根据(1)的启发,若A在B的右侧,则AB的长度为 a﹣b ;(用含a,b的代数式表示),并说明理由.(3)根据以上探究,则AB的长度为 a﹣b或b﹣a (用含a,b的代数式表示).考点:数轴;列代数式;两点间的距离.分析: (1)线段AB的长等于A点表示的数减去B点表示的数;(2)由(1)可知若A在B的右侧,则AB的长度是a﹣b;(3)由(1)(2)可得AB的长度应等于点A表示的数a与点B表示的数b的差表示,应是右边的数减去坐标左边的数,故可得答案.解答:解:(1)AB=7﹣3=4;4﹣(﹣3)=7;﹣4﹣(﹣7)=3;(2)AB=a﹣b(3)当点A在点B的右侧,则AB=a﹣b;当点A在点B的左侧,则AB=b﹣a.下载全文。

初中七年级数学上册期末考试卷及答案【完整版】

初中七年级数学上册期末考试卷及答案【完整版】

初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。

2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷一.选择题(共12小题,满分36分)1.的绝对值是a,相反数是b,则a+b=( )A.0B.C.D.2.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体( )A.从正面看改变,从左面看改变B.从上面看不变,从左面看不变C.从上面看改变,从左面看改变D.从上面看改变,从左面看不变3.有理数a、b在数轴上的对应的位置如图所示,则正确的是( )A.a+b<0B.ab>0C.a﹣b>0D.|a|<|b|4.下列算式中,计算结果是负数的是( )A.(﹣2)+5B.|﹣3﹣2|C.3×(﹣3)D.(﹣5)25.若x2﹣3x的值为4,则3x2﹣9x﹣3的值为( )A.1B.9C.12D.156.下列说法正确的是( )A.单项式﹣a的系数和次数都是1B.x5﹣5x2y+2x三次项的系数为5C.单项式的系数和次数分别为,4D.π+4是单项式7.若3m4n|a|与﹣m|b﹣1|n2是同类项,且a<b,则a、b的值为( )A.a=2,b=5B.a=﹣2,b=﹣3C.a=±2,b=5D.a=±2,b=﹣38.若(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,那么k2﹣2k+1的值为( )A.1B.9C.1或9D.09.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB 和线段BC的中点,则线段MN的长度是( )A.8cm B.7cm C.5cm D.3cm10.大车平均速度每小时80公里,小车平均速度每小时100公里,则大车和小车行驶完同一条路的时间之比是( )A.80:100B.100:80C.4:5D.5:411.如图,在某世博园内从花城丝路A处看见福建厦门园C在其北偏东62°的方向上,从丝路起点B处看见福建厦门园C在其北偏东13°的方向上(花城丝路与丝路起点约在同一直线上),则从福建厦门园C处看A,B两处的视角∠ACB的度数为( )A.13°B.26°C.49°D.62°12.如图,表中给出的是某月的月历,任意用“H”型框选中7个数(如阴影部分所示),则这7个数的和不可能是( )A.63B.70C.98D.105二.填空题(共6小题,满分18分)13.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了30%,现在的收费标准是每分钟b元,则原收费标准每分钟为 元.14.写出一个只含字母a、b的三次三项式,并按字母a的降幂排列是 .15.已知a、b、c、d是有理数,|a﹣b|≤8,|c﹣d|≤17,且|a﹣b﹣c+d|=25,则|b﹣a|﹣|d﹣c|= .16.的值是 .17.x=2是方程x﹣m=1的解,则m= .18.七棱柱有 个面, 个顶点.三.解答题(共7小题,满分66分)19.计算:(1);(2).20.解方程:8x=.21.“整体思想”是中学数学学习中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:4(a+b)+3(a+b)=(4+3)(a+b)=7(a+b),请应用整体思想解答下列问题:(1)化简:5(m+n)2﹣7(m+n)2+3(m+n)2;(2)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.某中学对10名七年级男学生进行了引体向上的测试,以做4个为基准进行记录,超过的次数用正数表示,不足的次数用负数表示.他们的成绩记录如表:+1+3﹣10+1﹣1+1+2+2﹣1(1)学校规定:做4个(含4个)以上者为达标.这10名男学生中,达标的占百分之几?(2)在这次测试中,这10名男学生做引体向上次数最多与次数最小相差几次?23.如图是广告公司设计的商标图案,若每个小长方形的长为x,宽为y.(1)求阴影部分面积;(2)当x=2,y=1时,阴影部分面积是多少?24.如图,数轴上A、B两点表示的数分别为a,b,且点A在点B的左边,|a|=5,a+b=20,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,当PA=3PB时,求P运动的时间.(3)若点P从点A出发,以每秒3个单位长度的速度向右运动,同时数轴上另一动点Q 从点B出发,以每秒2个单位长度的速度向左运动.经过多长时间,两动点在数轴上相距10个单位长度?25.如图,已知OM平分∠AOC,ON平分∠BOC.(1)如果∠AOB=100°,∠BOC=40°,求∠MON的度数;(2)如果∠AOB=α,试求∠MON的度数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:根据题意可得,a=|﹣|=,b=﹣(﹣)=,故a+b==.故选:D.2.解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.3.解:由题意可得:a<0<b,且|a|>|b|,故选项D不符合题意;∴a+b<0,故选项A符合题意;ab<0,故选项B不符合题意;a﹣b<0,故选项C不符合题意;故选:A.4.解:∵(﹣2)+5=3>0,∴选项A不符合题意;∵|﹣3﹣2|=5>0,∴选项B不符合题意;∵3×(﹣3)=﹣9<0,∴选项C符合题意;∵(﹣5)2=25>0,∴选项D不符合题意.故选:C.5.解:由题意可知,x2﹣3x=4,∴3x2﹣9x﹣3=3(x2﹣3x)﹣3=3×4﹣3=9.故选:B.6.解:A、单项式﹣a的系数是﹣1,次数是1,原说法错误,故此选项不符合题意;B、x5﹣5x2y+2x三次项的系数为﹣5,原说法错误,故此选项不符合题意;C、单项式的系数和次数分别为,3,原说法错误,故此选项不符合题意;D、π+4是单项式,原说法正确,故此选项符合题意;故选:D.7.解:∵3m4n|a|与﹣m|b﹣1|n2是同类项,∴|a|=2,|b﹣1|=4,解得:a=±2,b=5或﹣3,又∵a<b,∴a=±2,b=5.故选:C.8.解:∵(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,∴k﹣2≠0且|k|﹣1=1,解得:k=﹣2,∴k2﹣2k+1=(﹣2)2﹣2×(﹣2)+1=9,故选:B.9.解:∵AB=10cm点M是AB的中点,∴BM=AB=5(cm),∵BC=4cm,点N是BC的中点,∴BN=BC=2cm,∴MN=BM﹣BN=3cm,∴线段MN的长度为3cm.故选:D.10.解:设该条路的长度为S,则:=,即大车和小车行驶完同一条路的时间之比是5:4.故选:D.11.解:由题意得:∠CAB=90°﹣62°=28°,∠ABC=90°+13°=103°,∴∠ACB=180°﹣∠CAB﹣∠ABC=49°.故选:C.12.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,∴这7个数的和为:x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=7x,当7x=63时,此时x=9,当7x=70时,此时x=10,当7x=98时,此时x=14,当7x=105时,此时x=15,由图可知:14的左没有数字,则这7个数的和不可能是98.故选:C.二.填空题(共6小题,满分18分)13.解:根据题意知原收费标准每分钟为+a=(+a)元,故答案为:(+a).14.解:由题意得:a3+a2b+a(答案不唯一),故答案为:a3+a2b+a.15.解:∵|a﹣b|≤8,|c﹣d|≤17,∴|a﹣b|+|c﹣d|≤8+17=25.∵|a﹣b﹣c+d|=|(a﹣b)﹣(c﹣d)|=25,∴a﹣b与c﹣d符号相反,并且|a﹣b|=8,|c﹣d|=17,∴|b﹣a|﹣|d﹣c|=|a﹣b|﹣|c﹣d|=8﹣17=﹣9.故答案为:﹣9.16.解:原式=(﹣3)×(﹣)×××(﹣)=﹣(3×)×(×)=﹣1×1=﹣1,故答案为:﹣1.17.解:把x=2代入方程得:2﹣m=1,解得:m=1,故答案为:1.18.解:七棱柱有2个底面,7个侧面,因此有9个面,七棱柱有14个顶点,故答案为:9,14.三.解答题(共7小题,满分66分)19.解:(1)原式=×(﹣24)﹣×(﹣24)﹣×(﹣24)=﹣9+4+18=13;(2)原式=﹣1÷25×+=﹣+=.20.解:8x=,系数化为1得:x=.21.解:(1)原式=5(m+n)2﹣7(m+n)2+3(m+n)2=(5﹣7+3)(m+n)2=(m+n)2.(2)原式=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(2b﹣c)+(c﹣d).当a﹣2b=2,2b﹣c=﹣5,c﹣d=9时,原式=2﹣5+9=6.22.解:(1)7÷10=,答:这10名男学生中,达标的占;(2)3﹣(﹣1)=3+1=4(次),答:这10名男学生做引体向上次数最多与次数最小相差4次.23.解:(1)如图,S阴影=S矩形ABCD﹣S△ABE﹣S△AHF﹣S△ECG=4x×4y﹣x×4y﹣×3x×3y﹣×3x×3y=16xy﹣2xy﹣xy﹣xy=5xy.(2)当x=2,y=1时,5xy=5×2×1=10.∴阴影部分面积为:10.24.解:(1)∵|a|=5,∴a=5或a=﹣5,∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,∴a<b,∵ab<0,∴a<0,b>0,∴a=﹣5,∵a+b=20,∴﹣5+b=20,∴b=25,答:a、b的值分别是﹣5、25.(2)设运动的时间为t秒,由(1)得,点A、B表示的数分别是﹣5、25,∴AB=25﹣(﹣5)=30,根据题意得3t=3(30﹣3t)或解3t=3(3t﹣30),解得t=7.5或t=15,答:当PA=3PB时,点P运动时间为7.5秒或15秒.(3)设经过x秒,两动点在数轴上相距10个单位长度,根据题意得3t+2t+10=30或3t+2t﹣10=30,解得t=4或t=8,答:经过4秒或8秒两动点在数轴上相距10个单位长度.25.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=140°,∴,,∴∠MON=∠MOC﹣∠NOC=70°﹣20°=50°;(2)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=α,∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB=∠α.。

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。

2023-2024学年青岛版七年级数学上册期末考试卷附答案

2023-2024学年青岛版七年级数学上册期末考试卷附答案

2023-2024学年青岛版七年级数学上册期末考试卷附答案(时间:120分钟 分值:120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共12题,共36分) 1. (3分)下列说法错误的是 ( ) A .长方体、正方体都是棱柱B .六棱柱有 18 条棱、 6 个侧面、 12 个顶点C .三棱柱的侧面是三角形D .圆柱由两个平面和一个曲面围成2. (3分)在 1,-3,-4.5,0,32与−37,3.14 中,负数的个数为A .2 个B .3 个C .4 个D .5 个3. (3分) −18的倒数是 ( ) A . 18B . −8C . 8D . −184. (3分)随着中国 5G 的开发,预计到 2025 年,我国 5G 用户将超过 460000000,将 460000000 用科学记数法表示为 ( ) A . 4.6×109 B . 46×107 C . 4.6×108 D . 0.46×1095. (3分) ∣−5∣ 的倒数是 ( ) A . −5B . −15C . 5D . 156. (3分)为了了解我区 16000 名初中生的身高情况,从中抽取了 400 名学生测量身高,在这个问题中,样本是 ( ) A .4000B .4000 名C .400 名学生的身高情况D .400 名学生7. (3分)当 a =1 时a +2a +3a +4a +⋯+99a +100a 的值为 ( )A . 5050B . 100C . −50D . 508.(3分)已知∣a∣=3,∣b∣=2且a⋅b<0,则a+b值为( )A.5或−5B.1或−1C.3或−2D.5或19.(3分)下列各式中,正确的是( )A.2a+3b=5ab B.−2xy−3xy=−xyC.−2(a−6)=−2a+6D.5a−7=−(7−5a)10.(3分)下列各式中运算正确的是( )A.a3+a2=a5B.5a−3a=2C.3a2b−2a2b=a2b D.3a2+2a2=5a411.(3分)有理数a,b在数轴上的位置如图所示,则下列结论中正确的是( )A.a+b>0B.ab>0C.a−b<0D.a÷b>012.(3分)下列方程中,是一元一次方程的是( )C.x+2y=1D.xy−3=5 A.x2−4x=3B.3x−1=x2二、填空题(共6题,共18分)13.(3分)有理数a、b在数轴上对应点的位置如图所示,则∣a∣∣b∣(填“ >”、“ <”或“ =”).14.(3分)近似数54.62万精确到位.15.(3分)调查市场上某种食品的色素含量是否符合国家标准,这种调查适用.(填全面调查或者抽样调查)16.(3分)若规定一种运算:a∗b=ab+a−b,则1∗(−2)=.17.(3分)已知a−b=3,c+d=2则(b+c)−(a−d)的值为.18.(3分)若(a−2)x∣2a−3∣−6=0是关于x的一元一次方程,则a=.三、解答题(共7题,共66分) 19. (6分)计算:(1) (−23)÷(−58)÷(−0.25);(2) 2×(−7)−6×(−9).20. (8分)化简:(1) 12(−4x 2+2x −8)−2(12x −1).(2) 2(x 2y +xy 2)−2(x 2y −3x )−2xy 2−2y .21. (8分)先化简,再求值:5ab 2−[2a 2b −(4ab 2−2a 2b )],其中 a ,b 满足 ∣a −2∣+(b +1)2=0.22. (10分)为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1) 上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少? (2) 把条形统计图补充完整.(3) 从借阅情况分析,如果要添置这四类图书 300 册,请你估算“科普”类图书应添置多少册合适?23. (10分)小明同学准备购买若干本某品牌的笔记本,甲、乙两家文具店该笔记本标价都是每本 6元,甲文具店的销售方案是:购买该笔记本的数量不超过 5 本时,按原价销售;购买该笔记本的数量超过 5 本时,从第 6 本开始按标价的 70% 出售.乙文具店的销售方案是:不管购买多少本该笔记本,一律按标价的 80% 出售.(1) 若设小明要购买 x (x >5) 本该笔记本,请用含 x 的代数式分别表示小明到甲文具店购买所需的费用 元;到乙文具店购买所需的费用 元.(2) 小明购买多少本笔记本时,到甲、乙两家文具店购买全部笔记本所需的费用相同?24. (12分)某城市按以下规定收取每月的水费:用水量如果不超过 6 吨,按每吨 1.2 元收费;如果超过 6 吨,未超过的部分仍按每吨 1.2 元收取,而超过部分则按每吨 2 元收费.如果某用户 5 月份水费平均为每吨 1.4 元,那么该用户 5 月份应交水费多少元?25.(12分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:无制版费,不超过2000本时,每本收印刷费 1.5元;超过2000本时,超过部分每本收印刷费0.25元.(1) 若设该校共需印制证书x本,请用代数式分别表示甲,乙两厂的收费情况;(2) 当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?答案一、选择题(共12题,共36分)1. 【答案】C【解析】A.长方体、正方体都是棱柱是正确的,不符合题意;B.六棱柱有18条棱、6个侧面、12个顶点是正确的,不符合题意;C.棱柱的侧面是长方形,不可能是三角形,原来的说法是错误的,符合题意;D.圆柱由两个平面和一个曲面围成是正确的,不符合题意.2. 【答案】B3. 【答案】B4. 【答案】C【解析】460000000用科学记数法表示为4.6×108.5. 【答案】D【解析】∵∣−5∣=5,5的倒数是15.∴∣−5∣的倒数是156. 【答案】C7. 【答案】A【解析】当a=1时a+2a+3a+4a+⋯+99a+100a=1+2+3+4+⋯+99+100=100×(100+1)2=5050.8. 【答案】B【解析】∵∣a∣=3,∣b∣=2且ab<0∴a=3,b=−2或a=−3,b=2∴a+b=3+(−2)=1或a+b=−3+2=−1.故选B.9. 【答案】D10. 【答案】C【解析】A.a3+a2,无法计算故此选项错误;B.5a−3a=2a故此选项错误;C.3a2b−2a2b=a2b故此选项正确;D.3a2+2a2=5a2故此选项错误;故选:C.11. 【答案】C【解析】由图可知,−2<a<−1<0<b<1∴a+b<0故A错误;ab<0故B错误;a−b<0故C正确;a÷b<0故D错误.12. 【答案】B【解析】A.未知数的指数最高为2,不是一元一次方程.C.含有两个未知数,不是一元一次方程.D.含有两个未知数,不是一元一次方程.二、填空题(共6题,共18分)13. 【答案】>14. 【答案】百【解析】54.62万精确到0.01万,即精确到百位.15. 【答案】抽样调查16. 【答案】1【解析】∵a∗b=ab+a−b∴1∗(−2)=1×(−2)+1−(−2)=(−2)+1+2=1.17. 【答案】−1【解析】原式=b+c−a+d=c+d−a+b=(c+d)−(a−b)=2−3=−1.18. 【答案】1【解析】(a−2)x∣2a−3∣−6=0是关于x的一元一次方程∴a−2≠0且∣2a−3∣=1解得:a=1.故答案为:1.三、解答题(共7题,共66分)19. 【答案】(1)(−23)÷(−58)÷(−0.25)=−23×(−85)×(−4)=−6415.(2)2×(−7)−6×(−9) =−14+54=40.20. 【答案】(1) 原式=−2x 2+x−4−x+2=−2x2−2.(2) 原式=2x 2y+2xy2−2x2y+6x−2xy2−2y=6x−2y.21. 【答案】原式=5ab 2−2a2b+4ab2−2a2b=9ab2−4a2b.∵∣a−2∣+(b+1)2=0∴a=2,b=−1,则原式=18+16=34.22. 【答案】(1) 上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“艺术”部分的圆心角度数=360∘×100240=150∘.(2) 借阅“科普”的学生数=240−100−60−40=40(人).条形统计图为:(3) 300×40240=50估计“科普”类图书应添置50册合适.23. 【答案】(1) 4.2x+9;4.8x(2) 依题意得4.2x +9=4.8x.x =15.答:小明购买 15 本笔记本时,到甲、乙两家文具店购买该笔记本所需的费用相同. 【解析】(1) 在甲文具店所需费用:5×6+(x −5)×6×70%=4.2x +9; 在乙文具店所需费用:6×80%x =4.8x .24. 【答案】设该用户 5 月份用水 x 吨,则1.2×6+(x −6)×2=1.4x.7.2+2x −12=1.4x.0.6x =4.8.x=8.∴1.4×8=11.2(元).答:该用户 5 月份应交水费 11.2 元.25. 【答案】(1) 若 x 不超过 2000 时,甲厂的收费为 (1000+0.5x ) 元,乙厂的收费为 (1.5x ) 元. 若 x 超过 2000 时,甲厂的收费为 (1000+0.5x ) 元,乙厂的收费为 2000×1.5+0.25(x −2000)=0.25x +2500 元.(2) 当 x =8000 时,甲厂费用为 1000+0.5×8000=5000 元 乙厂费用为:0.25×8000+2500=4500 元∴ 当印制证书 8000 本时应该选择乙印刷厂更节省费用,节省了 500 元.。

最新人教版七年级数学上册期末考试卷及答案【可打印】

最新人教版七年级数学上册期末考试卷及答案【可打印】

最新人教版七年级数学上册期末考试卷及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若分式的值为0, 则x的值为()A. 0B. 1C. ﹣1D. ±12.如图, 过△ABC的顶点A, 作BC边上的高, 以下作法正确的是()A. B.C. D.3. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)4.互联网“微商”经营已成为大众创业新途径, 某微信平台上一件商品标价为200元, 按标价的五折销售, 仍可获利20元, 则这件商品的进价为()A. 120元 B. 100元 C. 80元 D. 60元5.如图在正方形网格中, 若A(1, 1), B(2, 0), 则C点的坐标为()A. (-3, -2)B. (3, -2)C. (-2, -3)D. (2, -3)6.如图, 在△ABC中, ∠ABC, ∠ACB的平分线BE, CD相交于点F, ∠ABC=42°, ∠A=60°, 则∠BFC的度数为()A. 118°B. 119°C. 120°D. 121°7. 下列各组数中, 能作为一个三角形三边边长的是()A. 1, 1, 2B. 1, 2, 4C. 2, 3, 4D. 2, 3, 58.用图象法解某二元一次方程组时, 在同一直角坐标系中作出相应的两个一次函数的图象(如图所示), 则所解的二元一次方程组是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是________.2.如图, 在△ABC中, BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°, 则∠A=________.3. 有4根细木棒, 长度分别为2cm、3cm、4cm、5cm, 从中任选3根, 恰好能搭成一个三角形的概率是__________.4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 若关于x、y的二元一次方程组的解满足x+y>0, 求m的取值范围.3. 如图, △ABC中, AB=AC, 点E, F在边BC上, BE=CF, 点D在AF的延长线上, AD=AC,(1)求证: △ABE≌△ACF;(2)若∠BAE=30°, 则∠ADC= °.4. 某住宅小区有一块草坪如图所示. 已知AB=3米, BC=4米, CD=12米, DA =13米, 且AB⊥BC, 求这块草坪的面积.5. 为使中华传统文化教育更具有实效性, 军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动, 围绕“在诗词、国画、对联、书法、戏曲五种传统文化中, 你最喜爱哪一种?(必选且只选一种)”的问题, 在全校范围内随机抽取部分学生进行问卷调查, 将调查结果整理后绘制成如图所示的不完整的统计图, 请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生, 请你估计该中学最喜爱国画的学生有多少名?6. 某市环保局决定购买A.B两种型号的扫地车共40辆, 对城区所有公路地面进行清扫. 已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨, 2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A.B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元, B型扫地车每辆价格为20万元, 要想使环保局购买扫地车的资金不超过910万元, 但每周处理垃圾的量又不低于1400吨, 请你列举出所有购买方案, 并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.D4.C5.B6.C7、C8、D9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.22.40°3.4.-15.40°6.2或-8三、解答题(本大题共6小题, 共72分)1.2.m>﹣23、(1)证明见解析;(2)75.4.36平方米5.(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)40,30;(2)购买方案见解析, 方案一所需资金最少, 900万元.。

人教版七年级数学上册期末试卷(含答案)

人教版七年级数学上册期末试卷(含答案)

人教版七年级数学上册期末试卷七年级数学满分:120分 时间:90分钟题号 一 二 三 四 五 总分 得分一、选择题:本大题共10小题,每小题3分,共30分,注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在表格内。

1.如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是A .B .C .D .2.如右图,沿图中虚线旋转一周,能围成的几何体是下面几何体中的A .B .C .D .3.下列说法错误的是A .长方体、正方体都是棱柱B .六棱柱有六条棱、六个侧面C .三棱柱的侧面是三角形D .球体的三种视图均为同样的图形4.a 与b 的平方的和表示为A .(a + b )2B .a 2 + b 2C .a 2 + bD .a + b 25.下列说法正确的是A .2a是单项式B .− 23a 3b 3c 是五次单项式C .ab 2﹣2a + 3是四次三项式D .2πr 的系数是2π,次数是1次6.下列计算正确的是A .2x + 3y = 5xyB .2a 2 + 2a 3 = 2a 5C .4a 2﹣3a 2=1D .﹣2ba 2 + a 2b =﹣a 2b7.把一副三角板按如图所示那样拼在一起,那么∠ABC 的度数是A .150°B .135°C .120°D .105°8.将21.54°用度、分、秒表示为A .21°54′B .21°50′24″C .21°32′40″D .21°32′24″9.若单项式﹣12x 2a ﹣1y 4与2xy 4是同类项,则式子(1﹣a )2015 =A .0B .1C .﹣1D .1 或﹣110.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛。

如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为 A .2 + 6nB .8 + 6nC .4 + 4nD .8n二、填空题:本大题共6小题,每小题4分,共24分。

初一上册数学期末试卷及答案人教版

初一上册数学期末试卷及答案人教版

初一上册数学期末试卷及答案人教版第一部分:选择题1. 一张纸的面积是70平方厘米,这张纸的长是10厘米,那么宽是多少?A. 5厘米B. 6厘米C. 7厘米D. 8厘米2. 若A:B = 2:5,且A = 6,求B的值。

3. 简便计算:17 × 6 + 17 × 14 =?4. 若a + b = 12,且a - b = 4,则a的值为多少?5. 如图,A、B两个数比的比是3:5,如果A = 12,那么B = ?6. 小李现在的年龄比小张大2岁,小张现在10岁,那么小李现在几岁?7. 计算:12 + 45 - 23 =?8. 若a × b = 72,且a = 8,求b的值。

9. 如图,当x = 2时,代数式y = 4x - 1的值是多少?10. 一只青蛙从井底往上跳,每次上升3米,但是同时会下滑2米,如果井深18米,那么青蛙需要跳多少次才能跳出井口?第二部分:填空题1. 请计算7 × 9 = ______。

2. 若x = 5,那么 x² = _______。

3. 一个几何体有8个顶点和12条边,那么这个几何体的面数是_______。

4. 若A + B = 30,且A - B = 14,则A的值是 _______。

5. 一个正方形的周长是24厘米,那么它的边长是 _______。

第三部分:解答题1. 将12斤的土豆分成3袋,每袋重量相等,请问每袋重多少斤?解答:首先,我们可以计算出每斤土豆的重量:12斤 ÷ 3袋 = 4斤/袋。

所以,每袋土豆的重量是4斤。

2. 一头大象每天需要喝180升水,它从水池中装满一个容积为45升的桶来喝水,请问大象一天需要喝几桶水?解答:首先,我们可以计算大象需要喝水的天数:180升 ÷ 45升/天 = 4天。

所以,大象一天需要喝4桶水。

3. 一张纸的长度是30厘米,宽度是18厘米,那么它的面积是多少平方厘米?(计算公式:面积 = 长 ×宽)解答:根据计算公式,我们可以计算出纸的面积:面积 = 30厘米 × 18厘米 = 540平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级第一学期数学期末试卷(答案附后)
一、选择题(每小题3分,共30分)
1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%
2.如果
2
()13
⨯-=,则“
”内应填的实数是( )
A .
32 B .23 C .23- D .32
- 3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..
的是( ) }
A .0ab >
B .0a b +<
C .1a
b <
D .0a b -<
4. 下面说法中错误的是( ).
A .368万精确到万位
B .精确到百分位
C .有4个有效数字
D .10000保留3个有效数字为×104
(
5. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )
A .这是一个棱锥
B .这个几何体有4个面
C .这个几何体有5个顶点
D .这个几何体有8条棱
6. 如果a <0,-1<b <0,则a ,ab ,2
ab 按由小到大的顺序排列为( )
A .a <ab <2
ab B .a <2
ab <ab
C .ab <2
ab <a
D .2
ab <a <ab
7.在解方程
5
113--=x x 时,去分母后正确的是( ) }
A .5x =15-3(x -1)
B .x =1-(3 x -1)
C .5x =1-3(x -1)
D .5 x =3-3(x -1) 8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )
A .4x -1
B .4x -2
C .5x -1
D .5x -2
9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉
一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )
b
A .
2m n - B .m n - C .2
m
D .
2
n
图1 图2 从正南方向看 从正西方向看 第7题 第8题
10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成( )
A .12个
B .13个
C .14个
D .18个 `
二、填空题:(每小题3分,共24分)
11.多项式1322
23-+--x xy y x x 是_______次_______项式
12.三视图的平面图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.多项式22
3368x kxy y xy --+-不含xy 项,则k = ;
15.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)
16.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果
是________________.
%
17.一个角的余角比它的补角的
3
2
还少40°,则这个角为 度. 18.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售, 售货员最低可以打___________折出售此商品 三、解答题(共46分) 19.计算:(1)(-10)÷551⨯⎪⎭⎫ ⎝⎛- (2)()[]
2
32315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝
⎛⨯--.
,
m
&
n
n
A B
m
n
x
20.解方程:(1)13421+=-x x (2)
0.10.20.02
x --1
0.5x += 3.


21.先化简 (本题8分):-5a 2+(3a 2-2a)-(-3a 2-7),然后选择一个自己喜欢的数求值。

|
22.如图,已知线段AB 和CD 的公共部分BD =13AB =1
4
CD ,线段AB 、CD 的中点 E 、F 之间距离是10cm ,求AB ,CD 的长.

A
E C
D B F

23.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折。

;
(1)若规定只能到其中一个超市购买所有物品,什么情况下到A超市购买合算
(2)若学校想购买20张书柜和100只书架,且可到两家超市自由选购.你认为至少要准备多少货款,请用计算的结果来验证你的说法。

*

24、如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线分,
求∠DOE的度数.
A O E
%
C
B
|
七年级第一学期数学期末试卷
参考答案
一、选择题:本大题共10小题,每小题2分,共20分. 1. 答案:C ,
解析:正数和负数表示一对相反意义的量. 2. 答案:D
解析:互为倒数两数乘积为1,所以本题实质上求2
3
-的倒数.
3. 答案:C )
解析:由数轴可知:a <b <0,a b >.
4. 答案:C
解析:有效数字是从左边第一个不为零的数字起到最后一位数字止,所以有3 个有效数字. 5. 答案:B
解析:这是一个四棱锥,四棱锥有5个边. 6. 答案:B
解析:可以去a =-1,b =-12;ab =12,2
ab =14
-. 7.答案:A ,
解析:去分母时,方程左右两边各项都要乘以分母的最小公倍数,不能漏乘. 8.答案:B
解析:由题意可得:y =3x ,z =6x -2,x -y +z =4x -2. 9. 答案:A
解析:设剪下的小长方形的宽度为x ,则大正方形的宽度可表示为m -x 或者n +x 10.答案:B
解析:我们可以假设观察者面向北,此时正南方向看的就是主视图,正西方向看到的 就是左视图,由主视图和左视图宽度可知,该几何体的俯视图应该在如图1所 。

示3×3的范围内.
22
2
2
22111
22
2
2
22111
21
2
2
12111
图1 图2 图3 图4
由于主视图两旁两列有两层小方格,中间一列1层小立方体,因此俯视图区域内 每个方格内小正方体最多个数如图2所示.
由左视图信息,可知俯视图区域内每个方格内小正方体最多个数如图3所示. 综合图3、图4信息可知俯视图区域内每个方格内小正方体最多个数如图4所示. 二、填空题:本大题共10小题,每小题3分,共30分. #
11.答案:四,五
解析:多项式的次数是指多项式中最高次项的次数. 12.答案:球、正方体. 13.答案:a 、b 同号,
解析:分a 、b 同号和a 、b 异号两种情况讨论,当a 、b 同号等式a b a b +=+. 14.答案:2
解析:原式=2
2
(36)38x k xy y +-+--,因为不含xy 项,所以36k -+=0. 15.答案:n -m :
解析:数轴上两点之间的距离等于这两点表示的数中较大的数减去较小的数. 16.答案:-2a
解析:原式=(-a -b )-(a -c )+(b -c )=-2a 17.答案:30
解析:设这个角为x °,
则90-x =
3
2
(180-x )-40,解得:x =30 18.答案:7
解析:设可以打x 折出售此商品 、
300×10
x
-200=200×5%,解得:x =7
三、解答题:本大题共6小题,共50分.解答时应写出文字说明、证明过程或演算步骤. 19.(1)250;(2)7
6
- 20.(1)95
x =-
;(2)5x = 21.-5a 2+(3a 2-2a)-(-3a 2-7)=722+-a a
代值答案不唯一
22.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ∵点E 、点F 分别为AB 、CD 的中点,∴AE =
12AB =,CF =1
2
CD =2x cm . ∴EF =AC -AE -CF =.∵EF =10cm ,∴=10,解得:x =4.
∴AB =12cm ,CD =16cm . 23.(1)解:设买x 张书架时,到两家超市一样优惠.根据题意得: 2021070(20)0.8(2021070)x x ⨯+-=⨯+ 解得:40x =
①当202040x ≤<时,取30x =
A 超市:2021070(20)x ⨯+-=4900(元)
B 超市:0.8(2021070)x ⨯+=5040(元)
∴当2040x ≤<时到甲超市合算; ②当40x >时,取50x =
A 超市:2021070(20)x ⨯+-=6300(元)
B 超市:0.8(2021070)x ⨯+=6160(元)
∴当40x >时,到乙超市合算
∴当购买书架在20个至40个之间时,到A 超市购买合算
(2)到A 超市购买20个书柜和20个书架,到B 超市购买80个书架,共需8680元
24.∠DOE=90˚。

相关文档
最新文档